
33

Ontology-Based Data Access: A Study through Disjunctive Datalog,
CSP, and MMSNP

MEGHYN BIENVENU, CNRS and Université Paris Sud
BALDER TEN CATE, University of California, Santa Cruz
CARSTEN LUTZ, Universität Bremen
FRANK WOLTER, University of Liverpool

Ontology-based data access is concerned with querying incomplete data sources in the presence of domain-
specific knowledge provided by an ontology. A central notion in this setting is that of an ontology-mediated
query, which is a database query coupled with an ontology. In this article, we study several classes of
ontology-mediated queries, where the database queries are given as some form of conjunctive query and
the ontologies are formulated in description logics or other relevant fragments of first-order logic, such
as the guarded fragment and the unary negation fragment. The contributions of the article are threefold.
First, we show that popular ontology-mediated query languages have the same expressive power as natural
fragments of disjunctive datalog, and we study the relative succinctness of ontology-mediated queries and
disjunctive datalog queries. Second, we establish intimate connections between ontology-mediated queries
and constraint satisfaction problems (CSPs) and their logical generalization, MMSNP formulas. Third, we
exploit these connections to obtain new results regarding: (i) first-order rewritability and datalog rewritabil-
ity of ontology-mediated queries; (ii) P/NP dichotomies for ontology-mediated queries; and (iii) the query
containment problem for ontology-mediated queries.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query languages

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Ontology-based data access, query answering, query rewriting

ACM Reference Format:
Meghyn Bienvenu, Balder Ten Cate, Carsten Lutz, and Frank Wolter. 2014. Ontology-based data access: A
study through disjunctive datalog, CSP, and MMSNP. ACM Trans. Datab. Syst. 39, 4, Article 33 (December
2014), 44 pages.
DOI: http://dx.doi.org/10.1145/2661643

1. INTRODUCTION

Ontologies are logical theories that formalize domain-specific knowledge, thereby
making it available for machine processing. Recent years have seen an increasing
interest in using ontologies in data-intensive applications, especially in the context of
intelligent systems, the Semantic Web, and in data integration. A much studied sce-
nario is that of answering queries over an incomplete database under the open-world

M. Bienvenu was supported by the ANR project PAGODA (ANR-12-JS02-007-01). B. ten Cate was sup-
ported by NSF grants IIS-0905276 and IIS-1217869. C. Lutz was supported by the DFG SFB/TR 8 “Spatial
Cognition.”
Authors’ addresses: M. Bienvenu (corresponding author), Laboratoire de Recherche en Informatique, Uni-
versite Paris-Sud, 15 Rue Georges Clemenceau, 91400 Orsay, France; email: meghyn@lri.fr; B. ten Cate,
University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064; C. Lutz, Fachbereich Infor-
matik, Universitat Bremen, Bibliothekstraße 1, 28359 Bremen, Germany; F. Wolter, Department of Computer
Science, University of Liverpool, Liverpool, Merseyside L69 3BX, UK.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 0362-5915/2014/12-ART33 $15.00

DOI: http://dx.doi.org/10.1145/2661643

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:2 M. Bienvenu et al.

semantics, taking into account knowledge provided by an ontology [Calvanese et al.
1998, 2007; Calı̀ et al. 2012]. We refer to this as ontology-based data access (OBDA).

There are several important use-cases for OBDA. A classical one is to enrich an in-
complete data source with background knowledge in order to obtain a more complete
set of answers to a query. For example, if a medical patient database contains the facts
that patient1 has finding Erythema Migrans and patient2 has finding Lyme disease,
and the ontology provides the background knowledge that a finding of Erythema Mi-
grans is sufficient for diagnosing Lyme disease, then both patient1 and patient2 can be
returned when querying for patients that have the diagnosis Lyme disease. This use of
ontologies is central to query answering in the Semantic Web. OBDA can also be used
to enrich the data schema (that is, the relation symbols allowed in the presentation
of the data) with additional symbols to be used in a query. For example, a patient
database may contain facts such as patient1 has diagnosis Lyme disease and patient2
has diagnosis Listeriosis, and an ontology could add the knowledge that Lyme disease
and Listeriosis are both bacterial infections, thus enabling queries such as “return
all patients with a bacterial infection” despite the fact that the data schema does not
include a relation or attribute explicitly referring to bacterial infections. Especially in
the biomedical domain, applications of this kind are fueled by the availability of com-
prehensive professional ontologies such as SNOMED CT and FMA. A third prominent
application of OBDA is in data integration, where an ontology can be used to provide
a uniform view on multiple data sources [Poggi et al. 2008]. This typically involves
mappings from the source schemas to the schema of the ontology, which we will not
explicitly consider here.

We may view the actual database query and the ontology as two components of one
composite query that we call an ontology-mediated query. OBDA in the prior sense is
then the problem of answering ontology-mediated queries. The database queries used
in OBDA are typically unions of conjunctive queries, while the ontologies are specified
in an ontology language that is either a description logic or, more generally, a suit-
able fragment of first-order logic. For popular choices of ontology languages, the data
complexity of ontology-mediated queries can be CONP-complete, which has resulted in
extensive research on finding tractable classes of ontology-mediated queries, as well
as on finding classes of ontology-mediated queries that are amenable to efficient query
answering techniques [Calvanese et al. 2006; Hustadt et al. 2007; Krisnadhi and Lutz
2007]. In particular, classes of ontology-mediated queries have been identified that ad-
mit an FO rewriting (i.e., that are equivalent to a first-order query) or, alternatively,
admit a datalog rewriting. FO rewritings make it possible to answer ontology-mediated
queries using traditional database management systems while datalog rewritings en-
able the use of datalog engines. This approach is considered one of the most promising
for OBDA and is the subject of significant research activity; see, for example, Calvanese
et al. [2007], Gottlob and Schwentick [2012], Kikot et al. [2012b], Kontchakov et al.
[2010], Pérez-Urbina et al. [2010], and Rosati and Almatelli [2010].

The main aims of this article are: (i) to characterize the expressive power of ontology-
mediated queries, both in terms of more traditional database query languages and from
a descriptive complexity perspective; (ii) to make progress towards complete and decid-
able classifications of ontology-mediated queries with respect to their data complexity;
and (iii) to establish decidability and tight complexity bounds for relevant reasoning
problems such as query containment and deciding whether a given ontology-mediated
query is FO rewritable or datalog rewritable.

We take an ontology-mediated query to be a triple (S,O, q), where S is a data schema,
O an ontology, and q a query. Here, the data schema S fixes the set of relation symbols
allowed in the data and the ontology O is a logical theory that may use the relation

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:3

symbols from S as well as additional symbols. The query q can use any relation symbol
that occurs in S or in O. As ontology languages, we consider a range of standard
description logics (DLs) and several fragments of first-order logic that embed ontology
languages such as Datalog± [Calı̀ et al. 2009], namely the guarded fragment (GFO),
the unary negation fragment (UNFO), and the guarded negation fragment (GNFO).
As query languages for q, we focus on unions of conjunctive queries (UCQs) and unary
atomic queries (AQs). The latter are of the form A(x), with A a unary relation symbol,
and correspond to what are traditionally called instance queries in the OBDA literature
(note that Amay be a relation symbol from O that is not part of the data schema). These
two query languages are among the most used in OBDA. In the following, we use (L,Q)
to denote the query language that consists of all ontology-mediated queries (S,O, q)
with O specified in the ontology language L and q specified in the query language Q.
For example, (GFO, UCQ) refers to ontology-mediated queries in which O is a GFO
ontology and q is a UCQ. We refer to such query languages (L,Q) as ontology-mediated
query languages (OBDA languages).

In Section 3, we characterize the expressive power of OBDA languages in terms of
natural fragments of (negation-free) disjunctive datalog. We first consider the basic
description logic ALC. We show that (ALC, UCQ) has the same expressive power as
monadic disjunctive datalog (abbreviated MDDlog) and that (ALC, AQ) has the same
expressive power as unary queries defined in a syntactic fragment of MDDlog that
we call connected simple MDDlog. Similar results hold for various description logics
that extend ALC with, for example, inverse roles, role hierarchies, and the universal
role, all of which are standard operators included in the W3C standardized ontology
language OWL2 DL. Turning to other fragments of first-order logic, we then show
that (UNFO, UCQ) also has the same expressive power as MDDlog, while (GFO, UCQ)
and (GNFO, UCQ) are strictly more expressive and coincide in expressive power with
frontier-guarded disjunctive datalog, which is the DDlog fragment given by programs
in which, for every atom α in the head of a rule, there is an atom β in the rule body
that contains all variables from α.

An additional contribution of Section 3 is to analyze the relative succinctness of
OBDA query languages and equi-expressive versions of datalog. We first argue that
(ALC, UCQ) is exponentially more succinct than MDDlog, with the lower bound being
conditional on the assumption from complexity theory that EXPTIME �⊆ CONP/POLY. We
then prove that (ALCI, UCQ), with ALCI the extension of ALC with inverse roles, is
at least exponentially more succinct than MDDlog (without any complexity-theoretic
assumptions) and at most double exponentially more succinct. This latter result ex-
tends from (ALCI, UCQ) to (UNFO, UCQ). Actually, we show that a single-exponential
succinctness gap can already be observed between (ALC, UCQ) and (ALCI, UCQ), and
leave open whether the additional exponential blowup encountered in our translation
of (ALCI, UCQ) to MDDlog can be avoided (we conjecture this is not the case). We also
show that, in contrast to inverse roles, several other standard extensions of ALC do not
seem to have an impact on succinctness. Regarding other fragments of FO, we estab-
lish that (GNFO, UCQ) is at least exponentially more succinct than frontier-guarded
DDlog and at most double exponentially more succinct. The case of (GFO, UCQ) is a bit
different since our translation from frontier-guarded DDlog into (GFO, UCQ) involves
an exponential blowup, whereas this direction is polynomial in all other cases.

In Section 4, we study ontology-mediated queries from a descriptive complexity per-
spective. In particular, we establish an intimate connection between OBDA query lan-
guages, constraint satisfaction problems, and MMSNP. Recall that constraint satis-
faction problems (CSPs) form a subclass of the complexity class NP that, although it
contains NP-hard problems, is in certain ways more computationally well behaved.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:4 M. Bienvenu et al.

The widely known Feder-Vardi conjecture [Feder and Vardi 1998] states there is a di-
chotomy between PTIME and NP for the class of all CSPs, that is, each CSP is either
in PTIME or NP-hard. The conjecture thus asserts that there are no CSPs that are
NP-intermediate in the sense of Ladner’s theorem. Monotone monadic strict NP with-
out inequality (abbreviated MMSNP) was introduced by Feder and Vardi as a logical
generalization of CSP that enjoys similar computational properties [1998]. In particu-
lar, it was shown in Feder and Vardi [1998] and Kun [2007] that there is a dichotomy
between PTIME and NP for MMSNP sentences if and only if the Feder-Vardi conjecture
holds.

In Section 4, we first observe that (ALC, UCQ) and many other OBDA languages
based on UCQs have the same expressive power as the query language coMMSNP,
which consists of all queries whose complement is definable by an MMSNP formula
with free variables. In the spirit of descriptive complexity theory, we say (ALC, UCQ)
captures coMMSNP. In fact, this result is a consequence of those in Section 3 and the
observation that MDDlog has the same expressive power as coMMSNP.

To establish a counterpart of (GFO, UCQ) and (GNFO, UCQ) in the MMSNP world,
we introduce guarded monotone strict NP (abbreviated GMSNP) as a generalization of
MMSNP; specifically, GMSNP is obtained from MMSNP by allowing guarded second-
order quantification in the place of monadic second-order quantification, similarly as
in the transition from MDDlog to frontier-guarded disjunctive datalog. The resulting
query language coGMSNP has the same expressive power as frontier-guarded dis-
junctive datalog and therefore, in particular, (GFO, UCQ) and (GNFO, UCQ) capture
coGMSNP. We observe that GMSNP has the same expressive power as the extension
MMSNP2 of MMSNP proposed in Madelaine [2009]. It follows from our results in Sec-
tion 3 that GMSNP (and thus MMSNP2) is strictly more expressive than MMSNP,
closing an open problem from Madelaine [2009].

In the second part of Section 4, we consider OBDA languages based on atomic queries
and establish a tight connection to (certain generalizations of) CSPs. This connection
is most easily stated for Boolean atomic queries (BAQs), which take the form ∃x A(x)
with A a unary relation symbol: we prove (ALC, BAQ) captures the query language
that consists of all Boolean queries definable as the complement of a CSP. Similarly,
we show that (ALCU, AQ), with ALCU the extension of ALC with the universal role,
and where queries are unary rather than Boolean, captures the query language that
consists of all unary queries definable as the complement of a generalized CSP, which
is given by a finite collection of structures (instead of a single one) enriched in a certain
way with a constant symbol.

The results of Section 4 have fundamental consequences for ontology-based data ac-
cess. In fact, significant progress has been made in understanding CSPs and MMSNP
formulas [Bulatov 2011; Bodirsky et al. 2012; Kun and Nesetril 2008], and the con-
nection established in Section 4 enables the transfer of techniques and results from
CSP and MMSNP to OBDA. This is investigated in Section 5, where we consider three
applications of the results in Section 4.

We first consider the data complexity of query evaluation for OBDA languages.
Ideally, one would like to classify the data complexity of every ontology-mediated query
within a given OBDA language such as (ALC, UCQ). Our aforementioned results tie
this task to proving the Feder-Vardi conjecture. We obtain that there is a dichotomy
between PTIME and CONP for ontology-mediated queries from (ALC, UCQ) if and only
if the Feder-Vardi conjecture holds, and similarly for many other OBDA languages
based on UCQs. Additionally, we obtain the same result for ontology-mediated query
languages based on atomic queries such as (ALC, BAQ) and (ALC, AQ). This even
holds for ontology-mediated query languages based on very expressive descriptions
logics such as (SHIU, BAQ) and (SHIU, AQ). We also consider the standard extension

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:5

ALCF of ALC with functional roles and note that, for query evaluation in (ALCF, AQ),
there is no dichotomy between PTIME and CONP unless PTIME = NP.

The second application of the connection between OBDA and MMSNP/CSP con-
cerns query containment in a rather general form as recently introduced and stud-
ied in Bienvenu et al. [2012]. It was shown in Feder and Vardi [1998] that con-
tainment between MMSNP sentences is decidable. We use this result to prove that
query containment is decidable for many OBDA languages based on UCQs, including
(ALC, UCQ) and (GFO, UCQ). For many OBDA languages based on atomic queries
such as (ALC, AQ), we additionally pinpoint the exact computational complexity of
query containment as NEXPTIME-complete. The upper bound is obtained by transfer-
ring the easy to obtain result that containment between CSP problems is in NP. The
lower bound is established by reduction of a NEXPTIME-complete tiling problem. We
also show that, for (ALCF, AQ), the query containment problem is undecidable.

As the third application, we consider FO rewritability and datalog rewritability of
ontology-mediated queries. Taking advantage of recent results for CSPs [Larose et al.
2007; Freese et al. 2009; Bulatov 2009], we are able to show that FO rewritability
and datalog rewritability, as properties of ontology-mediated queries, are decidable
and NEXPTIME-complete for (ALC, AQ) and (ALC, BAQ). This result extends to several
extensions of ALC. For (ALCF, AQ) both problems again turn out to be undecidable.

In Section 6, we consider the case where the data schema is not fixed in advance.
In contrast to the setup assumed in the previous sections, it is thus not possible to
disallow any relation symbol from occurring in the data. This case is natural in many
OBDA applications, where the data is not under the control of the user. We show that
all decidability and complexity results obtained in the previous sections also hold in the
schema-free case. In particular, this is true for query containment, FO rewritability,
and datalog rewritability. We also show that, for all OBDA languages considered in
this article, there is a dichotomy between PTIME and CONP in the schema-free case if
and only if there is such a dichotomy in the fixed schema case. Via the results from
Sections 4 and 5, this yields a connection to the Feder-Vardi conjecture also for the
schema-free case.

Omitted proofs and additional proof details can be found in the electronic appendix
accessible in the ACM Digital Library.

Related Work. A connection between query answering in DLs and the negation-free
fragment of disjunctive datalog was first discovered in the influential papers Motik
[2006] and Hustadt et al. [2007], where it was used to obtain a resolution calculus for
reasoning about DL ontologies and to answer atomic queries (AQs) in the presence
of such ontologies. A different approach to reasoning about DL ontologies that also
involves disjunctive datalog can be found in Rudolph et al. [2012]. In contrast to the
current article, these previous works do not consider the expressive power of ontology-
mediated queries nor their succinctness and descriptive complexity. A connection be-
tween DL-based OBDA and CSPs was first found and exploited in Lutz and Wolter
[2012], in a setup different from the one studied in this article. In particular, instead
of focusing on ontology-mediated queries that consist of a data schema, an ontology,
and a database query, the work reported in Lutz and Wolter [2012] concentrates on
ontologies while quantifying universally over all database queries and without fixing a
data schema. It establishes links to the Feder-Vardi conjecture that are incomparable
to the ones found in this article, and does not consider the expressive power, succinct-
ness, or descriptive complexity of queries used in OBDA. To the best of our knowledge,
a connection between OBDA and MMSNP has not been established before. Existing
work that is related to our results on query containment, FO rewritability, and datalog
rewritability in DL-based OBDA is discussed in the main body of the article.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:6 M. Bienvenu et al.

This article is based on the conference paper Bienvenu et al. [2013b]. It adds succinct-
ness considerations, the study of schema-free ontology-mediated queries, and detailed
proofs.

2. PRELIMINARIES

Schemas, Instances, and Queries. A schema is a finite collection S = (S1, . . . , Sk) of
relation symbols with associated arity. A fact over S is an expression of the form
S(a1, . . . , an), where S ∈ S is an n-ary relation symbol, and a1, . . . , an are elements of
some fixed, countably infinite set const of constants. An instance D over S is a finite
set of facts over S. The active domain adom(D) of D is the set of all constants that
occur in the facts in D. We will frequently use boldface notation for tuples, such as in
a = (a1, . . . , an), and we denote the empty tuple by ().

A query over S is semantically defined as a mapping q that associates with every
instance D over S a set of answers q(D) ⊆ adom(D)n, where n ≥ 0 is the arity of q. If
n = 0, then we say that q is a Boolean query, and we write q(D) = 1 if () ∈ q(D) and
q(D) = 0 otherwise.

A prominent way of specifying queries is by means of first-order logic (FO). Specifi-
cally, each schema S and domain-independent FO formula ϕ(x1, . . . , xn) that uses only
relation symbols from S (and possibly equality) give rise to the n-ary query qϕ,S, defined
by setting, for all instances D over S,

qϕ,S(D) = {(a1, . . . , an) ∈ adom(D)n | D |= ϕ[a1, . . . , an]}.
To simplify the exposition, we assume FO queries do not contain constants. The free
variables of an FO query are called answer variables. We use FOQ to denote the set
of all first-order queries as defined before. Similarly, we use CQ to refer to the class
of conjunctive queries, that is, FOQs of the form ∃y ϕ(x, y), where ϕ is a conjunction of
relational atoms with the relation potentially being equality. UCQ refers to the class
of unions of conjunctive queries, that is, disjunctions of CQs with the same answer
variables. Finally, AQ denotes the set of atomic queries, which are CQs of the very
simple form A(x) with A a unary relation symbol. Each of these is called a query
language that is defined abstractly as a set of queries. Besides FOQ, CQ, UCQ, and
AQ, we consider various other query languages that are introduced later, including
ontology-mediated ones and variants of datalog.

Two queries q1 and q2 over S are equivalent, written q1 ≡ q2, if, for every instance D

over S, we have q1(D) = q2(D). We say that query language Q2 is at least as expressive
as query language Q1, written Q1 � Q2, if, for every query q1 ∈ Q1 over some schema S,
there is a query q2 ∈ Q2 over S with q1 ≡ q2; Q1 and Q2 have the same expressive power
if Q1 � Q2 � Q1.

Ontology-Mediated Queries. We introduce the fundamentals of ontology-based data
access. An ontology language L is a fragment of first-order logic (i.e., a set of FO
sentences), and anL-ontologyO is a finite set of sentences fromL.1 We introduce various
concrete ontology languages throughout the article, including descriptions logics and
the guarded fragment.

An ontology-mediated query over a schema S is a triple (S,O, q), where O is an
ontology and q is a query over S ∪ sig(O), with sig(O) the set of relation symbols used
in O. Here, we call S the data schema. Note that the ontology can introduce symbols
that are not in the data schema, which allows it to enrich the schema of the query q.
Of course, we do not require that every relation symbol of the data schema actually

1Domain independence is not required. In fact, there are many ontology languages in which domain indepen-
dence is not guaranteed. In contrast, FOQs should be domain independent to ensure the usual correspondence
to relational algebra.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:7

Table I. Example Ontology, Presented in (the guarded fragment of) First-Order Logic and the DL ALC

∀x(∃y(HasFinding(x, y) ∧ ErythemaMigrans(y)) → ∃y(HasDiagnosis(x, y) ∧ LymeDisease(y)))
∀x((LymeDisease(x) ∨ Listeriosis(x)) → BacterialInfection(x))

∀x(∃y.(HereditaryPredisposition(y) ∧ HasParent(x, y)) → HereditaryPredisposition(x)))

∃HasFinding.ErythemaMigrans � ∃HasDiagnosis.LymeDisease

LymeDisease � Listeriosis � BacterialInfection

∃HasParent.HereditaryPredisposition � HereditaryPredisposition

occur in the ontology. We have explicitly included S in the specification of the ontology-
mediated query to emphasize that the ontology-mediated query is one over S-instances,
even though O and q might use additional relation symbols.

The semantics of an ontology-mediated query is given in terms of certain answers,
defined next. A finite relational structure over a schema S is a pair B = (dom,D), where
dom is a nonempty finite set called the domain of B and D is an instance over S with
adom(D) ⊆ dom. When S is understood, we use Mod(O) to denote the set of all models
of O, that is, all finite relational structures B over S ∪ sig(O) such that B |= O. Let
(S,O, q) be an ontology-mediated query with q of arity n. The certain answers to q on
an S-instance D given O is the set certq,O(D) of tuples a ∈ adom(D)n such that, for
all (dom,D′) ∈ Mod(O) with D ⊆ D′ (that is, all models of O that extend D), we have
a ∈ q(D′).

An instance D is called consistent with an ontology O if there exists a finite relational
structure (dom,D′) with D′ ⊇ D such that (dom,D′) ∈ Mod(O). Note that, if an S-
instance D is not consistent with O and a query q has arity n, then certq,O(D) =
adom(D)n.

All ontology languages considered in this article enjoy finite controllability, meaning
that finite relational structures can be replaced with unrestricted ones without chang-
ing the certain answers to unions of conjunctive queries [Baader et al. 2003; Bárány
et al. 2010, 2012].

Every ontology-mediated query Q = (S,O, q) can be semantically interpreted as a
query qQ over S by setting qQ(D) = certq,O(D) for all S-instances D. In other words, we
jointly consider the ontology O and actual query q to be an “overall query” qQ. Taking
this view one step further, each choice of an ontology language L and query language
Q gives rise to a query language, denoted (L,Q), defined as the set of queries q(S,O,q)
with S a schema, O an L ontology, and q ∈ Q a query over S ∪ sig(O). We refer to such
query languages (L,Q) as ontology-mediated query languages, or OBDA languages for
short.

Example 2.1. The upper half of Table I shows an ontology O formulated in the
guarded fragment of FO. Consider the ontology-mediated query (S,O, q) with the fol-
lowing data schema and query.

S = {ErythemaMigrans, LymeDisease, Listeriosis,

HereditaryPredisposition, HasFinding, HasDiagnosis, HasParent}
q(x) = ∃y(HasDiagnosis(x, y) ∧ BacterialInfection(y)).

For the instance D over S that consists of the facts

HasFinding(patient1, jan12find1) ErythemaMigrans(jan12find1)
HasDiagnosis(patient2, may7diag2) Listeriosis(may7diag2)

we have certq,O(D) = {patient1, patient2}.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:8 M. Bienvenu et al.

Table II. First-Order Translation of ALC Concepts

�∗(x) = � (C � D)∗(x) = C∗(x) ∧ D∗(x)
⊥∗(x) = ⊥ (C � D)∗(x) = C∗(x) ∨ D∗(x)
A∗(x) = A(x) (∃R.C)∗(x) = ∃y R(x, y) ∧ C∗(y)

(¬C)∗(x) = ¬C∗(x) (∀R.C)∗(x) = ∀y R(x, y) → C∗(y)

Description Logics for Specifying Ontologies. In description logic, schemas are generally
restricted to relation symbols of arity one and two, called concept names and role
names, respectively. Despite the potential presence of unary relations, we speak of
binary schemas. We briefly review the basic description logic ALC. Relevant extensions
of ALC will be introduced later on in the article.

An ALC-concept is formed according to the syntax rule

C, D ::= A | � | ⊥ | ¬C | C � D | C � D | ∃R.C | ∀R.C,

where A ranges over concept names and R over role names. An ALC-ontology O is
a finite set of concept inclusions C � D, with C and D ALC-concepts. We define the
semantics of ALC-concepts by translation to FO formulas with one free variable, as
shown in Table II. An ALC-ontology O then translates into the set of FO sentences

O∗ = {∀x (C∗(x) → D∗(x)) | C � D ∈ O}.
In the lower half of Table I, we show the ALC version of the guarded fragment on-
tology displayed in the upper half. Note that, although the translation is equivalence
preserving in this case, in general (and even on binary schemas), the guarded frag-
ment is a more expressive ontology language than ALC. For example, the guarded
sentence ∀x∀y(R(x, y) → S(x, x)) stating that every individual with an R-successor is
S-reflexive is not equivalent to any ALC ontology. Throughout the article, we do not
explicitly distinguish between a DL ontology and its translation into FO.

We remark that, from a DL perspective, the previous definitions of instances and
certain answers correspond to making the standard name assumption (SNA) in ABoxes,
which in particular implies the unique name assumption. We make the SNA only to
facilitate uniform presentation; the SNA is inessential for the results presented in this
article since we do not consider query languages with inequality.

The following example provides some first intuition about how ontology-mediated
queries based on description logics relate to more traditional query languages.

Example 2.2. Let O and S be as in Example 2.1. For q1(x) = BacterialInfection(x),
the ontology-mediated query (S,O, q1) is equivalent to the union of conjunctive queries
LymeDisease(x) ∨ Listeriosis(x). For q2(x) = HereditaryPredisposition(x), the ontology-
mediated query (S,O, q2) is equivalent to the query defined by the datalog program

P(x) ← HereditaryPredisposition(x) goal(x) ← P(x)
P(x) ← HasParent(x, y) ∧ P(y)

but not to any first-order query.

Throughout the article, for any syntactic object o we will use |o| to denote the number
of syntactic symbols used to write out o, and call |o| the size of o. For example, the size
|q| of the conjunctive query q from Example 2.1 is 15, including all parentheses and
counting each relation name as one syntactic symbol. This also defines the size |O| of
an ontology O, the size |Q| of an ontology-mediated query Q = (S,O, q), and so on.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:9

3. OBDA AND DISJUNCTIVE DATALOG

We show that, for many OBDA languages, there is a natural fragment of disjunctive
datalog with exactly the same expressive power.

A disjunctive datalog rule ρ has the form

S1(x1) ∨ · · · ∨ Sm(xm) ← R1(y1) ∧ · · · ∧ Rn(yn)

with m ≥ 0 and n > 0. We refer to S1(x1) ∨ · · · ∨ Sm(xm) as the head of ρ, and to
R1(y1) ∧ · · · ∧ Rn(yn) as the body of ρ. Every variable that occurs in the head of a
rule ρ is required to also occur in the body of ρ. Empty rule heads are denoted ⊥. A
disjunctive datalog (DDlog) program � is a finite set of disjunctive datalog rules with
a selected goal relation goal that does not occur in rule bodies and only in goal rules of
the form goal(x) ← R1(x1) ∧ · · · ∧ Rn(xn). The arity of � is the arity of the goal relation.
Relation symbols that occur in the head of at least one rule of � are intensional (IDB)
relations, and all remaining relation symbols in � are extensional (EDB) relations. An
S′-instance, with S′ the set of all (IDB and EDB) relation symbols in �, is a model of �
if it satisfies all rules in �. We use Mod(�) to denote the set of all models of �.

Every DDlog program � of arity n naturally defines an n-ary query q� over the
schema S that consists of the EDB relations of �: for every instance D over S, we have

q�(D) = {a ∈ adom(D)n | goal(a) ∈ D′ for all D′ ∈ Mod(�) with D ⊆ D′}.
Note that the DDlog programs considered in this article are negation free. Restricted to
this fragment, there is no difference between the different semantics of DDlog studied,
for example in Eiter et al. [1997].

We use adom(x) in rule bodies as a shorthand for “x is in the active domain of the
EDB relations”. Specifically, whenever we use adom in a rule of a DDlog program �,
we assume that adom is an IDB relation and that the program � includes all rules of
the form adom(x) ← R(x), where R is an EDB relation of � and x is a tuple of distinct
variables that includes x.

For simplicity, we generally speak about equivalence of an ontology-mediated query Q
and a DDlog program �, meaning equivalence of the queries qQ and q�.

A monadic disjunctive datalog (MDDlog) program is a DDlog program in which all
IDB relations with the possible exception of goal are monadic. We use MDDlog to denote
the query language that consists of all queries defined by an MDDlog program.

Note that, while the data complexity of query evaluation in MDDlog and in many
OBDA languages is CONP-complete [Eiter et al. 1997],2 there is a significant difference
in combined complexity. For example, the evaluation of queries from (ALC, AQ) is
EXPTIME-complete, and that of queries from (ALCI, UCQ) is even 2EXPTIME-complete
regarding combined complexity [Lutz 2008]. The following theorem, which we prove
here for the sake of completeness, shows that MDDlog has lower complexity. The lower
bound proof was suggested to us by Thomas Eiter (please see Eiter et al. [2007] for
closely related results).

THEOREM 3.1. Query evaluation in MDDlog is �
p
2 -complete regarding combined com-

plexity. The lower bound holds already over binary schemas.

PROOF. The upper bound is immediate: given an MDDlog program �, instance D,
and candidate answer tuple d, we can show d �∈ q�(D) by guessing an instance D′ with
D ⊆ D′, adom(D′) = adom(D), and goal(d) �∈ D′, and verifying using an NP oracle that
every rule in � is satisfied in D′.

2In the case of ontology-mediated queries, data complexity refers to the setup where both the ontology and
the actual query are fixed.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:10 M. Bienvenu et al.

For the lower bound, we give a reduction from 2QBF validity. Consider a 2QBF
∀x1 . . . xm∃y1 . . . yn ϕ, where ϕ is a 3CNF over clauses c1, . . . , ck. We create an MDDlog
program � whose set of EDB relations consists of unary relations C1, . . . , Ck and binary
relations V1, V2, V3, and start, and whose (monadic) IDB relations are X1, . . . , Xm. For
each clause ci, we denote by v

j
i (1 ≤ j ≤ 3) the variable appearing in the jth literal

of ci, and we let Si denote the set of tuples in {0, 1}3 representing the seven truth
assignments for (v1

i , v2
i , v3

i) that satisfy ci. We encode ϕ using the instance Dϕ defined
as follows:

Dϕ = {
Ci

(
ab

i

)
, V1

(
ab

i , b1
)
, V2

(
ab

i , b2
)
, V3

(
ab

i , b3
) | b = (b1, b2, b3) ∈ Si

} ∪ {start(0, 1)}.
The program � consists of a set of rules that select a truth assignment for the univer-
sally quantified variables

Xi(u0) ∨ Xi(u1) ← start(u0, u1) 1 ≤ i ≤ m

and a goal rule to check whether the selected truth assignment can be extended to a
model of ϕ:

goal() ←
∧

1≤i≤k

(
Ci(zi) ∧ V1

(
zi, v

1
i

) ∧ V2
(
zi, v

2
i

) ∧ V3
(
zi, v

3
i

)) ∧
∧

1≤�≤m

X�(x�).

It is straightforward to show that ∀x1 . . . xm∃y1 . . . yn ϕ is valid iff Q�(Dϕ) = 1.

We now introduce a characterization of Boolean MDDlog based on colorings of in-
stances and forbidden pattern problems in the style of Madelaine and Stewart [2007];
see also Kun and Nesetril [2008] and Bodirsky et al. [2012]. The forbidden patterns
characterization will be used later in this section as a technical tool to prove nonex-
pressibility results. An extension of forbidden pattern problems will also be used later
in the article to characterize non-Boolean MDDlog.

Let S be a schema and C a set of unary relation symbols (colors) {C1, . . . , Cn} that
is disjoint from S. A C-colored S-instance is an S ∪ C-instance D such that, for every
d ∈ adom(D), there is exactly one fact in D of the form Ci(d). An instance D′ is called a
C-coloring of an S-instance D if D is the restriction of D′ to the schema S. Given a set
F of C-colored S-instances (called forbidden patterns), we define Forb(F) as the set of
all S-instances D for which there exists a C-coloring D′ of D such that, for every F ∈ F ,
there is no homomorphism from F into D′ (written F �→ D′). The forbidden patterns
problem defined by F is to decide whether a given S-instance belongs to Forb(F). We
let FPP denote the set of all forbidden patterns problems and use coFPP to refer to the
query language that consists of all Boolean queries qF,S defined by setting

qF,S(D) = 1 iff D �∈ Forb(F),

with F a set of C-colored S-instances.
It follows from a result in Madelaine and Stewart [2007] and Theorem 4.1 in Section 4

that coFPP queries correspond precisely to Boolean MDDLog queries. We provide a
direct proof here as a warm-up to the other proofs in this section.

PROPOSITION 3.2. coFPP and Boolean MDDlog have the same expressive power.

PROOF. First consider a set F of {C1, . . . , Cn}-colored S-instances, and let �F be the
MDDlog program that consists of the following rules:

C1(x) ∨ · · · ∨ Cn(x) ← adom(x)
⊥ ← Ci(x) ∧ Cj(x) for 1 ≤ i < j ≤ n

goal() ← ϕD for D ∈ F

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:11

where ϕD is obtained by taking the conjunction of facts in D and treating the constants
as variables. It can be verified that the queries q�,S and qF,S are equivalent. Indeed,
the first two types of rules generate all possible colorings of a given instance, and the
goal rules check for the presence of a forbidden pattern.

Next consider an MDDlog program � whose set of EDB relations is S and whose set
of non-goal IDB relations is P. We may suppose without loss of generality that there is
no rule in � whose head and body contain the same atom (such rules are tautologous
and can be removed). Define the set of colors C = {CT | T ⊆ P}, and let F be the set of
all C-colored S-instances that can be obtained from a rule ρ in � by:

(1) taking all facts obtained from an EDB atom in the body of ρ by replacing each
variable x by a distinct constant dx;

(2) adding a single fact CTx (dx) for each variable x, where the subset Tx ⊆ P is chosen
such that it contains every IDB relation R for which R(x) appears in the body of ρ
and omits R if the atom R(x) appears in the head of ρ.

Intuitively, the forbidden patterns in F that are obtained from goal rules check for
the satisfaction of the body of a goal rule, whereas those derived from non-goal rules
check for the violation of such rules. Therefore, an S-instance D belongs to Forb(F) just
in the case that there is a model of � and D in which the goal relation is not derived.
The equivalence of qF,S and q�,S follows immediately.

3.1. Ontologies Specified in Description Logics

We show that (ALC, UCQ) has the same expressive power as MDDlog and identify a
fragment of MDDlog that has the same expressive power as (ALC, AQ). While in both
cases the translation from MDDlog into ontology-mediated queries is linear, the back-
wards translations incur an exponential blowup (refer to the proof of Proposition 3.2
given before). The different combined complexity of query evaluation in (ALC, UCQ)
and MDDlog queries provides a first indication that this might be unavoidable. To give
more concrete evidence, we argue that, unless EXPTIME ⊆ CONP/POLY, an exponential
blowup is indeed unavoidable. We additionally consider the extensions of ALC with
inverse roles, role hierarchies, transitive roles, and the universal role, which we also
relate to MDDlog and its fragments. To match the syntax of ALC and its extensions,
we generally assume schemas to be binary throughout this section.3

(ALC, UCQ) and (ALC, AQ). The first main result of this section is the following.

THEOREM 3.3. (ALC, UCQ) and MDDlog have the same expressive power. In fact:

(1) there is a polynomial p such that, for every query (S,O, q) from (ALC, UCQ), there
is an equivalent MDDlog program � with |�| ≤ 2p(|O|+|q|);

(2) for every MDDlog program �, there is an equivalent query (S,O, q) from (ALC, UCQ)
with |q| ∈ O(|�|) and |O| ∈ O(|�|).

PROOF. We start by proving Point 1. Thus, let Q = (S,O, q) be an ontology-mediated
query from (ALC, UCQ). We first give some intuitions about answering Q that guide
our translation into an equivalent MDDlog program �.

The definition of certain answers to Q on an instance D involves a quantification over
all models of O that extend D. It turns out that, in the case of (ALC, UCQ) queries, it
suffices to consider a particular type of extensions of D that we term forest extension.
Intuitively, such an extension of D corresponds to attaching tree-shaped structures to
the elements of D. Formally, a relational structure (dom,B) over a binary schema is

3In fact, this assumption is inessential for Theorems 3.3 and 3.6 (that speak about UCQs), but required for
Theorems 3.4, 3.11, and 3.12 (that speak about AQs) to hold.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:12 M. Bienvenu et al.

tree shaped if the directed graph (dom, {(a, b) | R(a, b) ∈ B for some R}) is a tree and
there do not exist facts R(a, b), S(a, b) ∈ B with R �= S. A relational structure D′ is
a forest extension of an instance D if D ⊆ D′ and D′ \ D is a union of tree-shaped
instances {D′

a | a ∈ adom(D)} such that:

—adom(D′
a) ∩ adom(D) = {a} with a the root of D′

a and
—adom(D′

a) ∩ adom(D′
b) = ∅ for a �= b.

The fact that we need only consider models of O that are forest extensions of D is
helpful because it constrains the ways in which a CQ can be satisfied. Specifically,
every homomorphism h from q to D′ gives rise to a decomposition of q into a collection
of components q0, . . . , qk, where:

(i) the core component q0 comprises all atoms of q whose variables are sent by h to
elements of D, and

(ii) for each D′
a in the image of h, there is a noncore component qi, 1 ≤ i ≤ k, that

comprises all atoms of q whose variables are sent by h to elements of D′
a.

Note that the noncore components are pairwise variable-disjoint and share at most
one variable with the core component. Also note that each noncore component qi is a
homomorphic preimage of a tree. In other words, qi can be converted into a tree by
exhaustively eliminating forks, that is, for all atoms R(y1, x), R(y2, x) ∈ qi with y1 �= y2,
identifying y1 with y2.

We now detail the translation of Q into the MDDlog program �. Let sub(O) be
the set of subconcepts (that is, syntactic subexpressions) of concepts that occur in O.
For example, if we take the ontology O consisting of a single inclusion ∀R.∃S.¬B �
A� D, then sub(O) would contain the following concepts: ∀R.∃S.¬B, ∃S.¬B,¬B, B, A �
D, A, D. Next, we let tree(q) denote the set of all CQs that can be obtained from a CQ
q′ in the UCQ q in the following way:

(1) perform exhaustive fork elimination in q′, resulting in a CQ q̂′;
(2) include in tree(q) any connected component of q̂′ that is tree shaped and has no

answer variable;
(3) for every atom R(x, y) ∈ q̂′ such that the restriction q̂′|y of q̂′ to those variables

that are reachable from y (in q̂′ viewed as a directed graph) is tree shaped and
has no answer variable, include {R(x, y)} ∪ q̂′|y in tree(q), with x as the only answer
variable.

To illustrate the construction, suppose that the UCQ q contains the following CQ q′.

∃y1 · · · ∃y8 P(y1, y2) ∧ S(y1, y3) ∧ R(y2, y4) ∧ R(y3, y4) ∧ S(y4, y5) ∧ R(y6, y7) ∧ S(y6, y8)

In step (1), we unify y2 and y3, leading to the query q̂′ with y3 replaced by y2. In
step (2), we include in tree(q) the query ∃y6∃y7∃y8 R(y6, y7) ∧ S(y6, y8). Note that the
other connected component of q̂′ is not included as it is not tree shaped due to the
presence of atoms P(y1, y2) and S(y1, y2). In step (3), we add four additional queries:
∃y4∃y5 R(y2, y4) ∧ S(y4, y5), ∃y5 S(y4, y5), ∃y7 R(y6, y7), and ∃y8 S(y6, y8).

It can be shown that the number of queries in tree(q) is bounded by |q|; see Lutz
[2008] for full details. Moreover, we clearly have |p| ≤ |q| for all p ∈ tree(q). Set
cl(O, q) = sub(O)∪ tree(q). A type (for O and q) is a subset of cl(O, q). The CQs in tree(q)
include all potential noncore components from the intuitive explanation given earlier.
The answer variable of such a CQ (if any) represents the overlap between the core
component and the noncore component.

We introduce a fresh unary relation symbol Pτ for every type τ , and we denote by
S′ the schema that extends S with these additional symbols. In the MDDlog program

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:13

that we aim to construct, the relation symbols Pτ are used as IDB relations, and the
symbols from S are the EDB relations.

We say that a relational structure B over S′ ∪ sig(O) is type coherent if Pτ (d) ∈ B just
in the case that

τ = {ϕ ∈ cl(O, q) | ϕ Boolean ,B |= ϕ}
∪ {ϕ ∈ cl(O, q) | ϕ has one free variable,B |= ϕ[d]}.

Set k equal to the maximum of 2 and the width of q, that is, the number of variables
that occur in q. By a diagram, we mean a conjunction δ(x1, . . . , xn) of atomic formulas
over the schema S′, with n ≤ k variables. A diagram δ(x) is realizable if there exists a
type-coherent B ∈ Mod(O) that satisfies ∃xδ(x). A diagram δ(x) implies q(x′), with x′
a sequence of variables from x, if every type-coherent B ∈ Mod(O) that satisfies δ(x)
under some variable assignment satisfies q(x′) under the same assignment.

The desired MDDlog program � consists of the following collections of rules.∨
τ⊆cl(O,q)

Pτ (x) ← adom(x)

⊥ ← δ(x) for all non-realizable diagrams δ(x)
goal(x′) ← δ(x) for all diagrams δ(x) that imply q(x′)

Intuitively, these rules “guess” a (representation of a) forest extension D′ of D. Specifi-
cally, the types Pτ guessed in the first line determine which subconcepts of O are made
true at each element of D. Since MDDlog does not support existential quantifiers, the
D′

a parts of D′ cannot be guessed explicitly. Instead, the CQs included in the guessed
types Pτ determine those noncore component queries that homomorphically map into
the D′

a parts. The second line ensures coherence of the guesses and the last line guar-
antees that q has the required homomorphism into D′. It is proved in the electronic
appendix that � is indeed equivalent to Q.

For the converse direction, let � be an MDDlog program that defines an n-ary query
(n ≥ 0). For each unary IDB relation A of �, we introduce two fresh unary relation
symbols, denoted by Aand Ā. The ontologyO enforces that Ārepresents the complement
of A, that is, it consists of all inclusions of the form

� � (A� Ā) � ¬(A� Ā).

In addition, the ontology contains the inclusion � � D, for a fresh unary relation
symbol D, enforcing that D denotes the entire domain.

Let q be the union of: (i) all n-ary conjunctive queries that constitute the body of a
goal rule, as well as (ii) all n-ary conjunctive queries obtained from a non-goal rule of
the form

A1(x1) ∨ · · · ∨ Am(xm) ← R1(y1) ∧ · · · ∧ Rn(yn)

by taking the conjunctive query q′(z1, . . . , zn) defined by

Ā1(x1) ∧ · · · ∧ Ām(xm) ∧ R1(y1) ∧ · · · ∧ Rn(yn) ∧ D(z1) ∧ · · · ∧ D(zn).

It can be shown that the ontology-mediated query (S,O, q), where S is the schema
that consists of the EDB relations of �, is equivalent to the query defined by �.
Indeed, if D is an S-instance, then every model of O and D corresponds to an instance
D′ ⊇ D over the schema consisting of the EDB relations and non-goal IDB relations
of �. Queries of type (ii) ensure that q is trivially satisfied (i.e., returns all n-tuples of
constants) in all models whose corresponding instance D′ violates some non-goal rule
in �. All other models of O and D correspond to models D′ ⊇ D of the non-goal rules
in �, and for these we use queries of type (i) to identify those tuples of constants that
must belong to the goal relation.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:14 M. Bienvenu et al.

Next, we characterize (ALC, AQ) by a fragment of MDDlog. While atomic queries
are regularly used in ontology-mediated queries, they also occur in several other
forms. In particular, (ALC, AQ) has the same expressive power as the OBDA language
(ALC, ConQ), where ConQ denotes the set of all ALC-concept queries, that is, queries
C(x) with C a (possibly compound) ALC-concept. Specifically, each query (S,O, q) ∈
(ALC, ConQ) with q = C(x) can be expressed as a query (S,O′, A(x)) ∈ (ALC, AQ), where
A is a fresh concept name (that is, it does not occur in S ∪ sig(O)) and O′ = O∪ {C � A}.
As a consequence, (ALC, AQ) also has the same expressive power as (ALC, TCQ), where
TCQ is the set of all CQs that take the form of a directed tree with a single answer
variable at the root.

Each disjunctive datalog rule can be associated with an undirected graph whose
nodes are the variables that occur in the rule and whose edges reflect co-occurrence
of two variables in an atom in the rule body. We say a rule is connected if its graph
is connected, and that a DDlog program is connected if all its rules are connected. An
MDDlog program is simple if each rule contains at most one atom R(x) with R an EDB
relation; additionally, we require that in this atom every variable occurs at most once.
An MDDlog program is unary if its goal relation is unary.

THEOREM 3.4. (ALC, AQ) has the same expressive power as unary connected simple
MDDlog. In fact:

(1) there is a polynomial p such that, for every query (S,O, q) from (ALC, AQ), there is
an equivalent unary connected simple MDDlog program � such that |�| ≤ 2p(|O|);

(2) for every MDDlog program �, there is an equivalent query (S,O, q) from (ALC, AQ)
such that |O| ∈ O(|�|).

PROOF. Let Q = (S,O, A0(x)) be a query from (ALC, AQ). To define an equivalent
MDDlog program �, fix unary relation symbols PC and P¬C for every C ∈ sub(O). Let
S′ be the schema that extends S with these symbols. A type t(x) is a conjunction of
atomic formulas of the form PD(x) such that, for each subconcept C ∈ sub(O), either
PC(x) or P¬C(x) occurs as a conjunct. A diagram is a conjunction δ(x) of atomic formulas
over the schema S′ that is of the form t(x), A(x) ∧ t(x) or t1(x) ∧ R(x, y) ∧ t2(y), where A
and R are from S and t, t1, and t2 are types. A diagram δ(x) is realizable if there is a
B ∈ Mod(O) that satisfies ∃xδ(x) and such that PC(a) ∈ B implies B |= C[a]. Now the
MDDlog program � consists of the following rules.∧

C∈sub(O)

(PC(x) ∨ P¬C(x)) ← adom(x)
⊥ ← δ(x) for all non-realizable diagrams δ(x)

goal(x) ← PA0 (x)

Clearly, � is unary, connected, and simple. It can be shown as in the proof of Theorem 3.3
that Q is equivalent to �. Because of the atomic nature of AQs, though, the argument
is substantially simpler. Details are omitted.

Conversely, let � be a unary connected simple MDDlog program. It is easy to rewrite
each rule of � into an equivalent ALC-concept inclusion, where goal is now regarded as
a concept name. For example, goal(x) ← R(x, y) is rewritten into ∃R.� � goal. Similarly,
goal(x) ← R(y, z) is rewritten into � � ∀R.goal}, and P1(x) ∨ P2(y) ← R(x, y) ∧ P3(x) ∧
P4(y) is rewritten into P3 � ∃R.(P4 � ¬P2) � ¬P1 � ⊥. Let O be the resulting ontology
and let q = goal(x). Then � is equivalent to the query (S,O, q), where S consists of the
EDB relations in �.

Note that the connectedness condition is required since one cannot express MDDlog
rules such as goal(x) ← A(x)∧ B(y) in (ALC, AQ). Multiple variable occurrences in EDB

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:15

relations have to be excluded because programs such as goal(x) ← A(x), ⊥ ← R(x, x)
(return all elements in A if the instance contains no reflexive R-edge, and return the
active domain otherwise) also cannot be expressed in (ALC, AQ).

We now observe that the blowup encountered in the translations from ontology-
mediated queries to MDDlog in Theorems 3.3 and 3.4 can probably not be avoided.

THEOREM 3.5. There is a family of queries (Qi)i≥0 from (ALC, AQ) with |Qi| ≤ p(i) for
all i ≥ 0, p a polynomial such that, unless EXPTIME ⊆ CONP/POLY, there is no family of
MDDlog programs (�i)i≥0 with:

(1) �i ≡ Qi for all i ≥ 0;
(2) |�i| ≤ p′(i) for all i ≥ 0, for some polynomial p′.

PROOF. Let M be a polynomially space-bounded alternating Turing machine (ATM)
with input alphabet
 that solves an EXPTIME-hard problem. The standard EXPTIME-
hardness proof for satisfiability in ALC shows that, for each i ≥ 0, there is an ontology-
mediated query Qi = (Si,Oi, Gi) from (ALC, AQ) with Si = {Aj,σ | j < i, σ ∈
}, such
that:

(i) the size of Qi is polynomial in i, and
(ii) on Si-instances of the form

Dw = {S(a), A0,σ0 (a), A1,σ1 (a), . . . An−1,σn−1 (a)} where w = σ0 · · · σn−1 ∈
∗,

we have a ∈ Qi(Dw) iff input w is accepted by M.4

Note that MDDlog programs � can be evaluated (uniformly) in CONP on instances Dw:
to check whether Dw �|= �, guess an extension of the IDBs that makes goal empty and
check that all rules are satisfied. The latter can be done in polytime since checking
homomorphisms into a singleton structure is trivial.

Assume, to the contrary of what we have to show, that there is a family of MDDLog
programs (�i)i≥0 that satisfies Properties (1) and (2) given before. Then the EXPTIME-
hard problem L(M) can be solved in CONP/POLY: given an input w ∈
∗ of length n,
give �i as an advice to the TM; the TM constructs Dw and checks in CONP whether
Dw |= �i.

Extensions of ALC. We consider several OBDA languages that can be obtained from
(ALC, UCQ) and (ALC, AQ) by replacing the ALC ontology language with one of its
standard extensions and show that some of the resulting languages still have the same
expressive power as MDDlog while others do not. We also analyze the succinctness of
the extended OBDA languages. Note that all extensions of ALC considered in this sec-
tion are fragments of the OWL2 DL profile of the W3C-standardized ontology language
OWL2 [OWL Working Group 2009]. Some of the translations used in this section are
folklore in the area of description logic, and when this is the case we usually confine
ourselves to a proof sketch.

We review the relevant extensions of ALC only briefly and refer to Baader et al.
[2003] for more details. ALCI is the extension of ALC with inverse roles, that is,
with the operators ∃R−.C and ∀R−.C whose semantics is defined by the FO formulas
∃y R(y, x) ∧ C∗(y) and ∀y R(y, x) → C∗(y), respectively (note the swap of x and y in
the R-atom). ALCH extends ALC by admitting role hierarchy statements R � S in
the ontology, where R and S are role names; the semantics of these statements is
∀xy(R(x, y) → S(x, y)). S extends ALC by allowing transitive role statements trans(R)
in the ontology, which require the role name R to be interpreted as a transitive relation.

4S stands for “start computation.”

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:16 M. Bienvenu et al.

ALCF is the extension of ALC with functional role statements func(R) that require the
role name R to be interpreted as a partial function. Finally, ALCU is the extension
with the universal role U that is interpreted as the total relation dom × dom in any
relational structure B with domain dom. Note that U should be regarded as a logical
symbol and is not a member of any schema.

We use the usual naming scheme to denote combinations of these extensions, for
example, ALCHI for the extension of ALC with both inverse roles and role hierar-
chies, and SHI for the extension of ALCHI with transitive roles. In ALCHI and its
extensions, the role hierarchy statements can also refer to inverse roles, as in R � S−,
with the obvious semantics. The following result identifies a relevant extension of
(ALC, UCQ) that still has the same expressive power as MDDlog.

THEOREM 3.6. (ALCHIU, UCQ) has the same expressive power as MDDlog. In fact,
there is a polynomial p such that:

(1) for every query (S,O, q) from (ALCHIU, UCQ), there is an equivalent query Q′ from
(ALCHU, UCQ) such that |Q′| ≤ p(|O|) · 2p(|q|);

(2) for every query (S,O, q) from (ALCHU, UCQ), there is an equivalent MDDlog pro-
gram � such that |�| ≤ 2p(|O|+|q|).

PROOF (SKETCH). To establish Point 1, we use a folklore technique for eliminating
inverse roles [De Giacomo and Lenzerini 1994]. Let Q = (S,O, q) be a query from
(ALCHIU, UCQ) and assume without loss of generality that:

(i) in concept inclusions, O uses only the operators ¬, �, and ∃, but neither � nor ∀;
(ii) the role hierarchy statements in O are closed under inverse, that is, R � S ∈ O

implies R− � S− ∈ O, where (R−)− := R.

Introduce a fresh role name Rinv for every role name R used in O (excluding the
universal role U). These fresh symbols are not included in the schema S. For each
concept C occurring in O, let C ′ be the concept obtained from C by replacing every
occurrence of an inverse role R− by Rinv. The ontology O′ consists of the following:

—all concept subsumptions C ′ � D′ for C � D in O;
—C ′ � ∀Rinv.∃R.C ′ for every existential restriction ∃R.C in sub(O) with R a role name;
—C ′ � ∀R.∃Rinv.C ′ for every existential restriction ∃R−.C in sub(O).

The UCQ q′ is obtained from q by replacing every atom R(x, y) with R(x, y) ∨ Rinv(y, x)
and then distributing conjunction over disjunction. It can be shown that the obtained
query Q′ = (S,O′, q′) from (ALCHU, UCQ) is equivalent to Q and of the required size.

Point 2 can be established by a straightforward extension of the proof of Theorem 3.3
from (ALC, UCQ) to (ALCHU, UCQ), which requires almost no changes.

Note that the elimination of inverse roles in Point 1 of Theorem 3.6 involves an expo-
nential blowup. We now show that such a blowup is unavoidable.

THEOREM 3.7. There is a family of queries (Qi)i≥0 from (ALCI, UCQ) with |Qi| ≤
p(i) for all i ≥ 0, p a polynomial such that there is no family of queries (Pi)i≥0 from
(ALCHU, UCQ) with Pi ≡ Qi and |Pi| < 2i/3 for all i ≥ 0.

PROOF. Without loss of generality, we can restrict our attention to a restricted class
of instances. Fix the schema S = {R, Y0, Y1, Y2} with R a role name and Y0, Y1, Y2
concept names. We use the composition R−; R of the inverse role R− with its base role
R to simulate a symmetric role, which is not available in the DLs considered here.
The counting instance of length k is the S-instance Ck that consists of an R−; R-path of
length k, that is, a sequence of elements a0, . . . , a2k such that, for 0 < i < 2k with i odd,

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:17

Fig. 1. Counting instance of length 3.

we have R(ai, ai−1), R(ai, ai+1) ∈ D. We additionally require that, for 0 ≤ i ≤ 2k with
i even, D contains the fact Yj(ai), where j = i/2 mod 3. An example can be found in
Figure 1. In the electronic appendix we show the following, which clearly establishes
Theorem 3.7: there is a polynomial p such that, for every k > 0:

(1) there is a query (Qk)k≥1 from (ALCI, UCQ) such that |Qk| ≤ p(k) and Qk(C�) = 1 for
all � ≥ k and

(2) for every query Q from (ALCHU, UCQ) such that Q(C�) = 1 iff � ≥ k, we have
|Q| > 2k/3.

The queries Qk = (S,Ok, qk) from Point 1 are constructed by realizing a counter with
exponentially many bits using a family of ontologies and CQs that was introduced in
Lutz [2007, 2008] to prove that query evaluation in (ALCI, UCQ) is 2EXPTIME-hard
regarding combined complexity. Point 2 is established using a pumping argument.

Also note that, when composing Points 1 and 2 of Theorem 3.6, we obtain a double-
exponential blowup for the translation from (ALCHIU, UCQ) to MDDlog. We believe
this is unavoidable and that the culprit is inverse roles, that is, every translation from
(ALCI, UCQ) to MDDlog necessarily incurs a double-exponential blowup. The following
observation provides some evidence, but leaves open whether the complexity lies in the
size of the MDDlog program or in the difficulty of computing it.

THEOREM 3.8. There is no algorithm that translates a given (ALCI, UCQ) query into
an equivalent MDDlog program and runs in single-exponential time, unless NEXPTIME =
2EXPTIME.

PROOF. A singleton instance is an instance that comprises exactly one element. The
combined complexity of deciding whether a Boolean query evaluates to true in a sin-
gleton instance is:

—in CONP for MDDlog programs (guess an extension of the IDB relations so that goal is
made false; due to the instance being singleton, it is then trivial to check in polytime
whether all non-goal rules are satisfied);

—2EXPTIME-complete for queries from (ALCI, UCQ) [Lutz 2008].

If the translation from Theorem 3.8 existed, then we could decide the query evaluation
problem in (ALCI, UCQ) by first translating to MDDlog and then using the CONP
procedure.

To prove that certain extensions of (ALC, UCQ) cannot be expressed in MDDlog, we
show the following sufficient condition for nonexpressibility. The statement refers to
the notion of a k-coloring, simply defined as a Ck-coloring, with Ck a fixed set of k colors
disjoint from the considered schema.

LEMMA 3.9. A Boolean query Q over schema S does not belong to MDDlog if, for all
k, n > 0, there exist S-instances D0 and D1 with Q(D0) = 0 and Q(D1) = 1 such that,
for every k-coloring B0 of D0, there exists a k-coloring B1 of D1 such that, from every
subinstance of B1 with at most n elements, there is a homomorphism to B0.

PROOF. Assume for a contradiction that the S-instances D0 and D1 described in
the lemma exist for all k, n > 0, but that Q is equivalent to some query in MDDlog.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:18 M. Bienvenu et al.

Then, by Proposition 3.2 there is a set F of C-colored S-structures such that, for all
S-instances D, we have Q(D) = 1 if and only if D �∈ Forb(F). Let k0 = |C|, and let n0 be
the maximal number of elements in the domain of any F ∈ F . We can assume without
loss of generality that C = Ck0 .

Take S-instances D0 and D1 satisfying the conditions of the lemma for k0, n0. Since
Q(D0) = 0, there exists a C-coloring B0 of D0 such that F �→ B0 for every F ∈ F . There
is thus a C-coloring B1 of D1 such that, from every subinstance of B1with at most n0
elements, there is a homomorphism to B0. Since Q(D1) = 1, we know there must exist
some F ∈ F such that F → B1. As F contains at most n0 elements, we can compose
this homomorphism with the previous one to obtain a homomorphism of F into B0,
contradicting the fact that D0 ∈ Forb(F).

We apply Lemma 3.9 to show that two standard extensions of (ALC, UCQ) have
expressive power beyond MDDlog.

THEOREM 3.10. (S, UCQ) and (ALCF, UCQ) are strictly more expressive than
MDDlog.

PROOF. To separate (S, UCQ) from (ALC, UCQ), we show that the following ontology-
mediated query Q = (S,O, q) cannot be expressed in (ALC, UCQ): S consists of two
role names R and S, O = {trans(R), trans(S)}, and q = ∃xy(R(x, y) ∧ S(x, y)). Thus, Q
expresses that there are two elements a and b such that b is reachable from a both via
an R-path and via an S-path.

We apply Lemma 3.9 to show that Q cannot be expressed in MDDlog. Assume that
k, n > 0 are given. Let m = n − 1 and m′ = km+2 + 1. Define D1 and D0 as follows.

—D1 has elements e, f and a1, . . . , am and b1, . . . , bm and the atoms R(e, a1), R(am, f)
and R(ai, ai+1) for 1 ≤ i < m, and S(e, b1), S(bm, f) and S(bi, bi+1) for 1 ≤ i < m.

—D0 has elements e1, . . . , em′
and f 1, . . . , f m′

as well as aj
1, . . . , aj

m for 1 ≤ j ≤ m′ and
bi, j

1 , . . . , bi, j
m for 1 ≤ j < i ≤ m′. The atoms of D0 consist of:

—R(ei, ai
1), R(ai

m, f i), and R(ai
j, ai

j+1) for 1 ≤ i ≤ m′ and 1 ≤ j < m;

—S(ei, bi, j
1) and S(bi, j

m , f j) for 1 ≤ j < i ≤ m′, and
S(bi, j

� , bi, j
�+1) for 1 ≤ � < m and 1 ≤ j < i ≤ m′.

It can be checked that Q(D0) = 0 and Q(D1) = 1, as required. Let B0 be a k-coloring
of D0. Since m′ = km+2 + 1, we can find i, i′ with i > i′ such that the colorings of
ei, ai

1, . . . , ai
m, f i and ei′

, ai′
1 , . . . , ai′

m, f i′
coincide. Define a k-coloring B1 of D1 by taking

the coloring of ei, ai
1, . . . , ai

m, f i for e, a1, . . . , am, f and the coloring of bi,i′
1 , . . . , bi,i′

m for
b1, . . . , bm.

Let B′
1 be a subset of B1 containing at most n elements. We define a function h from

adom(B′
1) to adom(B0) as follows.

—If e �∈ adom(B′
1), then let h be the restriction of the following mapping to adom(B′

1).
h(a�) = ai′

� , h(b�) = bi,i′
� and h(f) = f i′

.
—If f �∈ adom(B′

1), then let h be the restriction of the following mapping to adom(B′
1).

h(a�) = ai
�, h(b�) = bi,i′

� and h(e) = ei.
—Otherwise there exists ai0 �∈ adom(B′

1). Then let h be the restriction of the following
mapping to adom(B′

1): h(e) = ei, h(a�) = ai
� for all � < i0, h(a�) = ai′

� for all � > i0,
h(b�) = bi,i′

� for all 1 ≤ � ≤ k, and h(f) = f i′
.

It can be verified that h is a homomorphism from B′
1 to B0.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:19

To separate (ALCF, UCQ) from MDDlog, we first observe that every MDDlog pro-
gram � is preserved under homomorphisms, that is, when a ∈ q�(D) and h is a homo-
morphism from D into the instance D′, then h(a) ∈ q�(D′). However, this is not the case
for the query Q = (S,O, q) from (ALCF, UCQ), where S consists of a single binary rela-
tion symbol R, O = {func(R)}, and q = A(x). In fact, there trivially is a homomorphism
h from D = {R(a, b1), R(a, b2)} to D′ = {R(a, b)} with h(a) = a, but we have: (i) a ∈ Q(D)
since D is not consistent with O (that is, due to the standard names assumption, there
is no instance in Mod(O) that extends D) and (ii) D′ is consistent with O, thus obviously
a /∈ Q(D′).

We now reconsider the OBDA languages studied earlier, but replace UCQs as the
query language with AQs. The next result, in turn, is interesting when contrasted
with Theorem 3.10: when (ALC, UCQ) is replaced with (ALC, AQ), then the addition of
transitive roles no longer increases the expressive power (but the addition of functional
roles still does, since the relevant part of the proof of Theorem 3.10 uses only AQs).
Moreover, inverse roles do not lead to a double-exponential blowup.

THEOREM 3.11. (SHI, AQ) has the same expressive power as unary connected simple
MDDlog. In fact, there is a polynomial p such that, for every query Q = (S,O, q) from
(SHI, AQ), there is an equivalent unary connected simple MDDlog program � such that
|�| ≤ 2p(|O|).

PROOF (SKETCH). It is sufficient to give an equivalence-preserving translation from
(SHI, AQ) into (ALC, AQ) that runs in polynomial time. This amounts to recalling the
following folklore results.

—Every query Q = (S,O, q) from (SHI, AQ) can be converted into a query Q′ =
(S,O′, q) from (ALCHI, AQ) such that certq,O(D) = certq,O′ (D) for all S-instances D

and |Q′| ≤ poly(|Q|); in fact, O′ is obtained from O by replacing each transitivity
statement trans(R) with the concept inclusions ∀R.C � ∀R.∀R.C, for each C ∈ sub(O)
[Horrocks and Sattler 1999].

—Every query Q = (S,O, q) from (ALCHI, AQ) can be converted into a query Q′ =
(S,O′, q) from (ALC, AQ) such that certq,O(D) = certq,O′(D) for all S-instances D and
|Q′| ≤ poly(|Q|); for the elimination of inverse roles, see proof of Theorem 3.6. We
can then replace each role hierarchy statement R � S with the concept inclusions
∀S.C � ∀R.C, for each C ∈ sub(O) [Horrocks and Sattler 1999].

Using the techniques in Simancik [2012] one can show that, in Theorem 3.11, SHI
and SHIU can be extended with all complex role inclusions that are admitted in the
description logic SROIQ underlying OWL2 DL.

Note that, by Theorem 3.6, adding the universal role to (ALC, UCQ) does not increase
the expressive power beyond MDDlog. The situation is different when we consider AQs.
Specifically, while (ALC, AQ) has the same expressive power as unary simple connected
MDDlog, adding the universal role corresponds, on the MDDlog side, to dropping the
requirement that rule bodies must be connected. For example, the MDDlog query
goal(x) ← adom(x) ∧ A(y) is not connected and can be expressed in (ALCU, AQ) using
the ontology O = {∃U.A � goal} and the AQ goal(x).

THEOREM 3.12. (ALCU, AQ) and (SHIU, AQ) both have the same expressive power
as unary simple MDDlog. In fact, there is a polynomial p such that:

(1) for every query Q = (S,O, q) from (SHIU, AQ), there is an equivalent unary simple
MDDlog program � such that |�| ≤ 2p(|Q|);

(2) for every unary simple MDDlog program �, there is a query Q from (ALCU, AQ)
such that |Q′| ≤ p(|Q|).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:20 M. Bienvenu et al.

PROOF (SKETCH). For Point 1, we first note that the translations described in the
proof of Theorem 3.11 also work in the presence of the universal role (without any
modifications) and incur only a polynomial blowup. It thus suffices to establish Point 1
for queries from (ALCU, AQ). Assume that a query Q = (S,O, q) from this language is
given. We can translate Q into an MDDlog program as in the proof of Theorem 3.4 with
the only difference that diagrams can now also be of the (disconnected) form t1(x)∧t2(y).

For Point 2, let � be a unary simple MDDlog program. As shown in the proof of
Theorem 3.4, every connected rule in � can be translated into an equivalent ALC con-
cept inclusion. Rules with nonconnected bodies can be translated using the universal
role. For example,

P1(x) ∨ P2(y) ← A(x) ∧ B(y)

is rewritten into A� ∃U.(B� ¬P2) � ¬P1 � ⊥.

We briefly discuss Boolean atomic queries (BAQs), that is, queries of the form ∃x.A(x),
where A is a unary relation symbol. Such queries are relevant in the context of con-
straint satisfaction problems and will pop up naturally in Section 4.2. The following
result shows that BAQs behave very similarly to AQs.

THEOREM 3.13. Theorems 3.4 to Theorem 3.12 hold if AQs are replaced by BAQs and
unary goal relations by 0-ary goal relation, respectively.

PROOF. We show the required modifications to the proof of Theorem 3.4. The remain-
ing results are proved by similarly minor modifications and left to the reader. For the
translation from (ALC, BAQ) to Boolean connected simple MDDlog, the only differ-
ence to the program constructed in the proof of Theorem 3.4 is that rules of the form
goal(x) ← PA0 (x) are replaced by rules of the form goal ← PA0 (x). Conversely, for the
translation from Boolean connected simple MDDlog to (ALC, BAQ), we use goal as a
concept name, translating, for example, the rule goal() ← R(x, y) ∧ P(y) to the concept
inclusion ∃R.P � goal. As the BAQ, we then use ∃x.goal(x).

3.2. Ontologies Specified in First-Order Logic

Ontologies formulated in description logic are not able to speak about relation symbols
of arity greater than two.5 To address this issue, we consider fragments of first-order
logic as an ontology language that does not restrict the arity of relation symbols, namely
the unary negation fragment (UNFO), the guarded fragment (GFO), and the guarded
negation fragment (GNFO) [Bárány et al. 2010, 2012; ten Cate and Segoufin 2011].
Note that UNFO and GFO generalize the description logic ALC and several of its
extensions in different ways, and that GNFO is a common generalization of UNFO
and GFO. It turns out that (UNFO, UCQ) corresponds to MDDlog and in this sense
constitutes a natural counterpart of (ALC, UCQ) on schemas of unrestricted arity. In
contrast, both GFO and GNFO turn out to be equivalent in expressive power to a
version of guarded datalog. We start by considering the unary negation fragment.

The Unary Negation Fragment. The unary negation fragment of first-order logic
(UNFO) [ten Cate and Segoufin 2011] is the fragment of first-order logic that consists of
those formulas generated from atomic formulas, including equality, using conjunction,
disjunction, existential quantification, and unary negation, that is, negation applied to
a formula with at most one free variable. Thus, for example, ¬∃xyR(x, y) belongs to

5There are actually a few DLs that can handle relations of unrestricted arity. An example is the language
DLRreg presented in Calvanese et al. [1998]. DLRreg has constructors that cannot be captured by any of the
fragments of first-order logic we consider in this article (such as number restrictions and regular expressions),
and it would be of great interest to investigate this language within in our framework. But this is beyond
the scope of the present article.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:21

UNFO, whereas ∃xy¬R(x, y) does not. Note that the translation of ALC-ontologies into
FO formulas given in Table II actually produces UNFO formulas.

THEOREM 3.14. (UNFO, UCQ) has the same expressive power as MDDlog. In fact:

(1) there is a polynomial p such that, for every query (S,O, q) from (UNFO, UCQ), there
is an equivalent MDDlog program � such that |�| ≤ 22p(|O|+|q|)

;
(2) for every MDDlog program �, there is an equivalent query (S,O, q) from

(UNFO, UCQ) such that |q| ∈ O(|�|) and |O| ∈ O(|�|).
PROOF (SKETCH). Point (2) is a consequence of Theorem 3.3 and the fact that

(ALC, UCQ) is a fragment of (UNFO, UCQ). Here, we provide the translation from
(UNFO, UCQ) to MDDlog. Let Q = (S,O, q) ∈ (UNFO, UCQ) be given. Every UNFO
formula with at most one free variable is equivalent to a disjunction of formulas gen-
erated by the grammar

ϕ(x) ::= � | ¬ϕ(x) | ∃y(ψ1(x, y) ∧ · · · ∧ ψn(x, y)),

where each ψi(x, y) is either a relational atom or a formula with at most one free
variable generated by the same grammar. Note that all generated formulas have at
most one free variable and that no equality is used, although we allow it in the original
definition of UNFO. For the ontology O, we assume without loss of generality that it
is a single sentence generated by the previous grammar, rather than a disjunction of
such sentences, because certq,O1∨O2 (D) is the intersection of certq,O1 (D) and certq,O2 (D),
and MDDlog is closed under taking intersections of queries. Let k be the maximum of
the number of variables in O and the number of variables in q. We denote by clk(O, q)
the set of all formulas ϕ(x) of the form

∃y(ψ1(x, y) ∧ · · · ∧ ψn(x, y))

with y = (y1, . . . , ym), m ≤ k, n ≤ |O| + |q|, where each ψi is either a relational atom
that uses a symbol from q or is of the form χ (x) or χ (yi), for χ (z) ∈ sub(O). Note that
clk(O, q) contains all CQs that use only symbols from q and whose size is bounded by
the number of atoms in q. Also the length of each formula in clk(O, q) is polynomial in
|O| + |q|, and consequently the cardinality of clk(O, q) is single exponential in |O| + |q|.
A type τ is a subset of clk(O, q). We introduce a fresh unary relation symbol Pτ for each
type τ , and denote by S′ the schema that extends S with these additional symbols. As
in the proof of Theorem 3.3, we call a structure B over S′ ∪ sig(O) type coherent if, for
all types τ and elements d in the domain of B, we have Pτ (d) ∈ B just in the case that
τ is the (unique) type realized at d in B. Diagrams, realizability, and “implying q” are
defined as in the proof of Theorem 3.3. It follows from ten Cate and Segoufin [2011] that
it is decidable whether a diagram implies a query and whether a diagram is realizable.
The MDDlog program � is defined as in the proof of Theorem 3.3, repeated here for
sake of completeness.∨

τ⊆clk(O,q)

Pτ (x) ← adom(x)

⊥ ← δ(x) for all nonrealizable diagrams δ(x)
goal(x′) ← δ(x) for all diagrams δ(x) that imply q(x′)

In the electronic appendix, we prove that the resulting MDDlog query q� is equivalent
to Q.

By a straightforward extension of the translation in Table II, one can show that ev-
ery ALCI-ontology translates into an UNFO sentence with only a linear blowup. As
discussed after Theorem 3.7, there are reasons to believe that (ALCI, UCQ) is double

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:22 M. Bienvenu et al.

exponentially more succinct than MDDlog. Thus, the same holds for (UNFO, UCQ) and
MDDlog.

The Guarded Fragment and the Guarded Negation Fragment. The Guarded Fragment
of first-order logic (GFO) comprises all formulas built up from atomic formulas using
the Boolean connectives and guarded quantification of the form ∃x(α∧ϕ) and ∀x(α → ϕ),
where, in both cases, α is an atomic formula (a “guard”) that contains all free variables of
ϕ. To simplify the presentation of the results, we consider here the equality-free version
of the guarded fragment. We do allow one special case of equality, namely the use of
trivial equalities of the form x = x as guards, which is equivalent to allowing unguarded
quantifiers applied to formulas with at most one free variable. This restricted form of
equality is sufficient to translate every ALC-ontology into an equivalent sentence of
GFO.

We next use our forbidden patterns characterization of MDDlog to show that some
(GFO, UCQ) queries cannot be expressed in MDDlog.

PROPOSITION 3.15. The Boolean query

(†) there are a1, . . . , an, b, for some n ≥ 2, such that A(a1), B(an), and P(ai, b, ai+1) for all
1 ≤ i < n

is definable in (GFO, UCQ) and not in MDDlog.

PROOF. Let S consist of unary relation symbols A, B and a ternary relation symbol
P, and let Q be the S-query defined by (†). It is easy to check that Q can be expressed
by the (GFO, UCQ) query qS,O,∃xU (x), where

O = ∀xyz (P(x, z, y) → (A(x) → R(z, x)))
∧ ∀xyz (P(x, z, y) → (R(z, x) → R(z, y)))
∧ ∀xy (R(x, y) → (B(y) → U (y))).

It thus remains to show that Q cannot be expressed in MDDlog. We make use of
Lemma 3.9. Assume k, n are given and let m = k2n + 2n. Define S-instances D1 and D0
as follows.

—D1 has elements d1, . . . , dm, e and the atoms A(d1), B(dm), and P(di, e, di+1) for 1 ≤ i <
m.

—D0 has elements d1, . . . , dm, and e1, . . . , em−1 and the following atoms: A(d1), B(dm),
and P(di, e j, di+1) whenever 1 ≤ i < m, 1 ≤ j < m, and j �= i.

It can be checked that Q(D1) = 1 and Q(D0) = 0, as required. Let B0 be a k-coloring of
D0. Define a k-coloring B1 of D1 by giving all elements of {d1, . . . , dm} the same color as
in B0. Choose i with n < i < m− n in such a way that, for every sequence d�+1, . . . , d�+n
with � ≥ 0 and � + n < m, there exists a sequence d�′+1, . . . , d�′+n with �′ ≥ 0 and
�′ + n < m such that the coloring of d�+1, . . . , d�+n coincides with that of d�′+1, . . . , d�′+n
and i �∈ {�′ + 1, �′ + 2, . . . , �′ + n− 1}. Such an i exists since m ≥ k2n + 2n. Finally, give e
the color of ei.

To show that B1 has the required properties, let B′
1 be any subset of B1 having at

most n elements. We define a function h from adom(B′
1) to adom(B0) as follows.

—If e ∈ adom(B′
1), then h(e) = ei.

—If d1 ∈ adom(B′
1), then h(d1) = d1.

—If dm ∈ adom(B′
1), then h(dm) = dm.

—If d�+1, . . . , d�+p is a maximal sequence of elements from adom(B′
1) with � + p < m,

then let �′ be such that the coloring of d�+1, . . . , d�+p coincides with the coloring of
d�′+1, . . . , d�′+p and i �∈ {�′ + 1, �′ + 2, . . . , �′ + n − 1}. Set h(d�+ j) = d�′+ j for every
1 ≤ j ≤ p.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:23

It is easily verified that h defines a homomorphism from adom(B′
1) to adom(B0). Ap-

plying Lemma 3.9, we can conclude that Q is not equivalent to any MDDlog query.

COROLLARY 3.16. (GFO, UCQ) is strictly more expressive than MDDlog.

As fragments of first-order logic, the unary negation fragment and the guarded
fragment are incomparable in expressive power. They have a common generalization,
known as the guarded negation fragment (GNFO) [Bárány et al. 2011]. This fragment
is defined in the same way as UNFO except that, besides unary negation, we allow
guarded negation of the form α ∧ ¬ϕ, where the guard α is an atomic formula that
contains all the variables of ϕ. Again, for simplicity, we consider here the equality-free
version of the language, except that we allow the use of trivial equalities of the form
x = x as guards. As we will see, for the purpose of OBDA, GNFO is no more powerful
than GFO. Specifically, (GFO, UCQ) and (GNFO, UCQ) are expressively equivalent
to a natural generalization of MDDlog, namely frontier-guarded DDlog. Recall that a
datalog rule is guarded if its body includes an atom that contains all variables which
occur in the rule [Gottlob et al. 2002]. A weaker notion of guardedness, that we call
here frontier guardedness, inspired by Baget et al. [2011] and Bárány et al. [2012],
requires that, for each atom α in the head of the rule, there is an atom β in the rule
body such that all variables that occur in α occur also in β. We define a frontier-guarded
DDlog query to be a query defined by a DDlog program in which every rule is frontier
guarded. Observe that frontier-guarded DDlog subsumes MDDlog because the head of
a rule in MDDlog contains at most one variable that has to occur in the body of the
rule. We now show that both (GFO, UCQ) and (GNFO, UCQ) have the same expressive
power as frontier-guarded DDlog. For understandng the following theorem, it is useful
to recall that every sentence of GFO can be translated into an equivalent sentence of
GNFO with only a polynomial blowup [Bárány et al. 2011].

THEOREM 3.17. (GFO, UCQ) and (GNFO, UCQ) have the same expressive power as
frontier-guarded DDlog. In fact, there is a polynomial p such that:

(1) for every query (S,O, q) from (GNFO, UCQ), there is an equivalent frontier-guarded
DDlog program � such that |�| ≤ 22p(|O|+|q|)

;
(2) for every frontier-guarded DDlog program �, there is an equivalent query (S,O, q)

from (GNFO, UCQ) such that |q| ∈ O(|�|) and |O| ∈ O(|�|);
(3) for every query (S,O, q) from (GNFO, UCQ), there is an equivalent query (S,O′, q′)

from (GFO, UCQ) such that |q′| ≤ |q| + 2p(|O|) and |O′| ≤ p(|O|).
PROOF. We start with item (2) by describing the translation from frontier-guarded

DDlog to (GNFO, UCQ). Let � be a frontier-guarded DDlog query. It is easily verified
that, if we write out the implication symbol in a frontier-guarded DDlog rule using
conjunction and negation, the resulting formula belongs to GNFO. Thus, we can take
O to be the set of all non-goal rules of �, viewed as a GNFO sentence, and let q be the
UCQ that consists of all bodies of rules whose conclusion contains the IDB relation goal.
It is easy to check that the ontology-mediated query (S,O, q), where S is the schema
consisting of all EDB relations, is equivalent to the frontier-guarded DDlog query q�.

For item (3), we make use of a result from Bárány et al. [2011] which states that,
for every GNFO sentence φ over a schema S′ ⊇ S, we can construct in polynomial
time a GFO sentence ψ and a positive-existential first-order sentence χ , both over a
possibly larger schema T = S′ ∪ {T1, . . . , Tn}, such that φ is logically equivalent to the
existential second-order sentence ∃T1 . . . Tn(ψ ∧ ¬χ). By applying this translation to O
and using the fact that a positive-existential FO sentence can be translated to a UCQ
in exponential time, we obtain a GFO sentence O′ and a Boolean UCQ q′′, both over
schema T = S′ ∪ {T1, . . . , Tn}, such that O is logically equivalent to ∃T1 . . . Tn(O′ ∧ ¬q′′).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:24 M. Bienvenu et al.

Note that, even though the size of q′′ may be exponential in the size of O, this is only
because q′′ may consist of exponentially many CQs, and each CQ is itself of polynomial
size. If q is Boolean, it now follows that the (GNFO, UCQ) query (S,O, q) is equivalent
to the (GFO, UCQ) query (S,O′, q′) where q′ = q ∨ q′′. If, on the other hand, q is an
n-ary UCQ with n > 0, then one final step is needed: we turn the Boolean UCQ q′′ into
an n-ary UCQ by adding, for each free variable of q, an atom to the body of each CQ
in q′′ in all possible ways, thereby expressing that the variable takes a value from the
active domain. Note that modification of q′′ may involve an exponential blowup, but
the resulting UCQ is still only single exponential in the size of O since each of its CQs
is only of polynomial size.

Finally, for item (1), we show in the electronic appendix how to translate
(GNFO, UCQ) to frontier-guarded DDlog. The translation is very much along the same
lines as the translation from (UNFO, UCQ) to MDDlog, but with a more sophisticated
notion of types. Note that, since every sentence of GFO is equivalent to a sentence of
GNFO [Bárány et al. 2011] (which can be constructed in polynomial time), the trans-
lations from (GNFO, UCQ) to frontier-guarded DDlog apply to (GFO, UCQ) queries as
well.

Note that the translation from frontier-guarded DDlog to (GFO, UCQ) in Theorem 3.17
involves an exponential blowup, unlike all the translations of MDDlog versions to
OBDA languages that we have seen before. We leave it open whether this blowup can
be avoided.

4. CORRESPONDENCES TO MMSNP AND CSP

We first show that MDDlog captures coMMSNP and thus, by the results obtained in
the previous section, the same is true for many OBDA languages based on UCQs. We
also propose GMSNP, an extension of MMSNP inspired by frontier-guarded DDlog,
and show that (GFO, UCQ) and (GNFO, UCQ) capture coGMSNP and that GMSNP
has the same expressive power as a previously proposed extension of MMSNP called
MMSNP2. Then we turn to fragments of MDDlog that correspond to OBDA languages
based on AQs and show that they capture CSPs (and generalizations thereof).

4.1. Correspondences to MMSNP

An MMSNP formula over schema S has the form ∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ with X1, . . . , Xn
monadic second-order (SO) variables, x1, . . . , xm FO variables, and ϕ a conjunction of
quantifier-free formulas of the form

ψ = α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨ βm with n, m ≥ 0,

where each αi is of the form Xi(xj), R(x) (with R ∈ S), or xj = xk, and each βi is of the
form Xi(xj). Note that this presentation is syntactically different from, but semantically
equivalent to, the original definition from Feder and Vardi [1998] that does not use the
implication symbol and instead restricts the allowed polarities of atoms.

In order to use MMSNP as a query language, and in contrast to the standard defini-
tion, we admit free FO variables and speak of sentences to refer to MMSNP formulas
without free variables. To connect with the query languages studied thus far, we are
interested in queries obtained by the complements of MMSNP formulas: each MMSNP
formula � over schema S with n free variables gives rise to a query

q�(D) = {a ∈ adom(D)n | (adom(D),D) �|= �[a]},
where we set (adom(D),D) |= � to true when D is the empty instance (that is,
adom(D) = ∅) and � is a sentence. We call the resulting query language coMMSNP.
Note that the equality atoms in MMSNP allow us to express queries that require some

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:25

of the answer variables to be bound to the same domain element. This is needed for
the following observation that coMMSNP has the same expressive power as MDDlog.
We remark that equality atoms are not present in the original definition of MMSNP in
Feder and Vardi [1998], but can easily be eliminated in MMSNP formulas without free
variables by identifying variables that co-occur in an equality atom.

PROPOSITION 4.1. coMMSNP and MDDlog have the same expressive power.

PROOF. We start with the translation from coMMSNP to MDDlog. Let � =
∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ be an MMSNP formula over schema S with free variables
y1, . . . , yk, and let q� ∈ coMMSNP be the corresponding query. We can assume without
loss of generality that all implications ψ = α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨ βm in � satisfy
the following properties: (i) every free variable yj appears in some atom αi or βi; and
(ii) if αi is an equality atom, then it takes the form yj = y�. In fact, we can achieve (i) by
replacing violating implications ψ with the set of implications ψ ′ that can be obtained
from ψ by adding, for each variable yj that is not present in ψ , a body atom S(x), where
S is a relation symbol that occurs in � and x is a tuple of variables that contains yj
once and otherwise only fresh variables that do not occur in �. To enforce condition
(ii), for every equality atom z1 = z2 in which z2 is not a free variable, we replace all
occurrences of z2 by z1 and delete the atom.

We construct an MDDlog program ��, in which the Xi are treated as IDB relations,
and additional IDB relations Xi are used to simulate the complements of the Xi. We
include in �� the following rules that ensure each domain element is assigned to either
Xi or its complement, but not both.

Xi(z) ∨ Xi(z) ← adom(z) (1 ≤ i ≤ n)

⊥ ← Xi(z) ∧ Xi(z) (1 ≤ i ≤ n)

To translate the implications in � into datalog rules, we first rewrite each implication
ψ in � with a nonempty head by adding Xi(z) to the body of ψ for every head atom
Xi(z), and then replacing the head by ⊥. We thus have a set of implications of the form
ϑ → ⊥. For each such implication ψ , we let ∼ψ be the smallest equivalence relation
on {y1, . . . , yk} such that yj ∼ψ y� whenever ψ contains an equality atom yj = y�,
and we denote by [yj]ψ the equivalence class under ∼ψ containing yj . Then, for every
implication ϑ → ⊥, we include in �� the rule

goal([y1]ψ, . . . , [yk]ψ) ← ϑ ′,

where ϑ ′ is obtained from ϑ by replacing each yj by [yj]ψ and deleting all equality atoms.
Note that, because of assumption (i) given before, every head variable [yj]ψ occurs in
some body atom, and by (ii), ϑ ′ contains no equality atoms. It is straightforward to
show that q� ≡ q��

.
Conversely, let � be a k-ary MDDlog program whose set of EDB relations is S. Reserve

fresh variables y1, . . . , yk as free variables for the desired MMSNP formula, and let
X1, . . . , Xn be the IDB relations in � and x1, . . . , xm the FO variables in � that do not
occur in the goal relation. Set �� = ∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ, where ϕ is the conjunction
of all non-goal rules in � plus the implication ϑ ′ → ⊥ for each rule goal(x) ← ϑ in �.
Here, ϑ ′ is obtained from ϑ by replacing each variable x ∈ x whose leftmost occurrence
in the rule head is in the ith position with yi, and then conjunctively adding yi = yj
whenever the ith and jth positions in the rule head have the same variable. It can be
verified that, for all S-instances D, we have q�(D) = q��

(D).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:26 M. Bienvenu et al.

Thus, the characterizations of OBDA languages in terms of MDDlog provided in
Section 3 also establish the descriptive complexity of these languages by identifying
them with (the complement of) MMSNP.

We now consider OBDA languages based on the guarded fragment and GNFO. By
Proposition 3.15, (GFO, UCQ) and (GNFO, UCQ) are strictly more expressive than
MDDlog and we cannot use Proposition 4.1 to relate these query languages to the Feder-
Vardi conjecture. Theorem 3.17 suggests it would be useful to have a generalization
of MMSNP that is equivalent to frontier-guarded DDlog. Such a generalization is
introduced next.

A formula of guarded monotone strict NP (GMSNP) has the form ∃X1 · · · ∃Xn∀x1 · · ·
∀xmϕ with X1, . . . , Xn SO variables of any arity, x1, . . . , xn FO variables, and ϕ a con-
junction of formulas

ψ = α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨ βm with n, m ≥ 0,

where each αi is of the form Xi(x), R(x) (with R ∈ S), or x = y, and each βi is of
the form Xi(x). Additionally, we require that, for every head atom βi, there is a body
atom α j such that α j contains all variables from βi. GMSNP gives rise to a query
language coGMSNP in analogy with the definition of coMMSNP. It can be shown by a
straightforward syntactic transformation that every MMSNP formula is equivalent to
some GMSNP formula. Together with Proposition 3.15 and Theorem 3.17, this yields
the second statement of the following lemma; the first statement can be proved similarly
to Proposition 4.1.

THEOREM 4.2. coGMSNP has the same expressive power as frontier-guarded DDlog
and is strictly more expressive than coMMSNP.

PROOF. The proof of the first part follows the lines of the proof of Proposition 4.1. The
only notable difference is that, in place of the rules Xi(z) ∨ Xi(z) ← adom(z), we have
rules of the form

Xi(z) ∨ Xi(z) ← R(u),

where R ∈ S and all variables in z appear also in u.
It thus remains to show that coGMSNP is strictly more expressive than coMMSNP.

Note first that it is at least as expressive: we can convert any MMSNP formula into an
equivalent one satisfying conditions (i) and (ii) from the proof of Proposition 4.1, and
clearly every such MMSNP formula is also a GMSNP formula. To see that coGMSNP
is indeed strictly more expressive than coMMSNP, note that, by Proposition 3.15, there
is a (GFO, UCQ) query q that is not expressible in MDDlog. By Proposition 4.1, q is
not expressible in coMMSNP; by Theorem 3.17 and the first part of Theorem 4.2, q is
expressible in coGMSNP.

Although defined in a different way, GMSNP is essentially the same logic as
MMSNP2, which is studied in Madelaine [2009]. Specifically, MMSNP2 is the exten-
sion of MMSNP in which monadic SO variables range over sets of domain elements
and facts, and where atoms of the form X(R(x)) are allowed in place of atoms X(x)
with X an SO variable and R from the data schema S. Additionally, a guardedness
condition is imposed requiring that, whenever an atom X(R(x)) occurs in a rule head,
then the atom R(x) must occur in the rule body. Formally, the SO variables Xi are
interpreted in an instance D as sets π (Xi) ⊆ adom(D) ∪ D and D |=π X(R(x1, . . . , xn)) if
R(π (x1), . . . , π (xn)) ∈ π (X). We observe the following.

THEOREM 4.3. GMSNP and MMSNP2 have the same expressive power.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:27

Details for the proof of Theorem 4.3 can be found in the electronic appendix. In
Madelaine [2009], it was left as an open question whether MMSNP2 is more expressive
than MMSNP, which is resolved by the preceding results.

COROLLARY 4.4. MMSNP2 is strictly more expressive than MMSNP.

4.2. Correspondences to CSPs

We show that OBDA languages based on atomic queries capture CSPs (and general-
izations thereof). The proofs employ the equivalences between OBDA languages and
fragments of MDDlog that have already been established in Section 3. Recall that each
instance B over a schema S gives rise to a constraint satisfaction problem, that is, to
decide, given an instance D over S, whether there is a homomorphism from D to B

(written D → B). In this context, the instance B is also called the template of the CSP.
CSPs give rise to a query language coCSP in the spirit of the query language coMM-

SNP introduced in the previous section. In its basic version, this language is Boolean
and turns out to have exactly the same expressive power as (ALC, BAQ), where BAQ
is the class of Boolean atomic queries of the form ∃x A(x). To also cover non-Boolean
AQs (that take the form A(x)), we consider two natural generalizations of CSPs. First,
a generalized CSP is defined by a finite set F of templates, rather than a single tem-
plate [Foniok et al. 2008]. The problem then consists in deciding, given an instance
D, whether there is a template B ∈ F such that D → B. Second, in a (generalized)
CSP with marked elements, both the template(s) and the input instance are endowed
with a tuple of distinguished domain elements [Feder et al. 2004; Alexe et al. 2011].
More precisely, we define an n-ary marked S-instance as a tuple (D, d1, . . . , dn), where
D is an S-instance and each di belongs to adom(D). Let (D, d) and (B, b) be n-ary
marked S-instances. A mapping h is a homomorphism from (D, d) to (B, b), written
(D, d) → (B, b), if it is a homomorphism from D to B and h(di) = bi for 1 ≤ i ≤ n.
A (generalized) CSP with marked elements is then defined like a (generalized) CSP
based on this extended notion of homomorphism.

We now introduce the query languages obtained from the different versions of CSPs,
where generalized CSPs with marked elements constitute the most general case.
Specifically, each finite set F of n-ary marked S-instances gives rise to an n-ary query
coCSP(F) that maps every S-instance D to{

d ∈ adom(D)n |∀(B, b)∈ F : (D, d) �→ (B, b)
}
.

The query language that consists of all such queries is called generalized coCSP with
marked elements. The fragment of this query language that is obtained by admitting
only sets of templates F without marked elements is called generalized coCSP, and the
fragment induced by singleton sets F without marked elements is called coCSP.

Example 4.5. Selecting an illustrative fragment of Examples 2.1 and 2.2, let

O = {∃HasParent.HereditaryPredisposition � HereditaryPredisposition}, and
S = {HereditaryPredisposition, HasParent}.

Moreover, let q2(x) = HereditaryPredisposition(x) be the query from Example 2.2. To
identify a query in coCSP with marked elements that is equivalent to the ontology-
mediated query (S,O, q2), let B be the following template.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:28 M. Bienvenu et al.

We claim that, for all instances D over S and for all d ∈ adom(D), we have
d ∈ certq2,O(D) iff (D, d) �→ (B, a) and thus the query coCSP(B, a) is as re-
quired. To see why, first observe that, if (D, d) → (B, a), then D cannot contain
HereditaryPredisposition(d) nor contain a chain of HasParent that starts with d and ends
at some HereditaryPredisposition fact. It follows that we can construct a model D′ ⊇ D

of O in which HereditaryPredisposition(d) �∈ D′, and so d �∈ certq2,O(D). Conversely, if d �∈
certq2,O(D), then there exists a model D′ ⊇ D of O in which HereditaryPredisposition(d) �∈
D′. We can use this model to construct the desired homomorphism from (D, d) to (B, a).

The following theorem summarizes the connections between OBDA languages with
(Boolean) atomic queries, MDDlog, and CSPs. Note that we consider binary schemas
only.

THEOREM 4.6. The following are lists of query languages that have the same expres-
sive power:

(1) (ALCU, AQ), (SHIU, AQ), unary simple MDDlog, and generalized coCSP with one
marked element;

(2) (ALC, AQ), (SHI, AQ), unary connected simple MDDlog, and generalized coCSPs
with one marked element such that all templates have the same instance;

(3) (ALCU, BAQ), (SHIU, BAQ), Boolean simple MDDlog, and generalized coCSP;
(4) (ALC, BAQ), (SHI, BAQ), Boolean connected simple MDDlog, and coCSP.

Moreover, given the ontology-mediated query or monadic datalog program, the corre-
sponding CSP template(s) can be constructed in exponential time.

PROOF. The equivalences between OBDA languages and fragments of MDDlog have
already been proved in Section 3. We establish the remaining equivalences.

We treat Points 1–4 in reverse order starting with Point 4 and proving that Boolean
connected simple MDDlog and coCSP are equally expressive. Let � be a Boolean
connected simple MDDlog program. A type for � is a set τ of IDBs and unary EDBs
from �. By tp(�) we denote the set of all types for �. We say τ ∈ tp(�) is realizable
if there is a model of � in which some element d satisfies exactly the unary relation
symbols from τ . Note this is equivalent to the singleton instance {A(d) | A ∈ τ } being
a model of �. For binary R ∈ S, we call a pair (τ1, τ2) of types R-coherent if there is a
model D of � and two elements d1, d2 from D such that R(d1, d2) ∈ D and di satisfies
exactly the unary relation symbols from τi, i ∈ {1, 2}. Note this is equivalent to the
two-element instance {R(d1, d2)}∪⋃

i∈{1,2}{A(di) | A ∈ τi} being a model of �. Given a set
T of realizable types, we define the canonical model BT for T and � by setting

BT = {P(τ) | τ ∈ T , P ∈ S ∩ τ } ∪ {R(τ1, τ2) | τ1, τ2 ∈ T , (τ1, τ2) is R-coherent, R ∈ S}.
Let T be the set consisting of all realizable τ ∈ tp(�) such that goal �∈ τ . One can show
that, for every S-instance D, we have D → BT iff q�(D) = 0. Thus, the query defined
by � is equivalent to the query coCSP(BT).6

Conversely, we associate with every S-instance B the simple connected MDDlog
program

�B = {⊥ ← Pd(x) ∧ Pd′ (x) | d �= d′}
∪ {⊥ ← Pd(x) ∧ Pd′ (y) ∧ R(x, y) | R(d, d′) �∈ B, R ∈ S}
∪ {⊥ ← Pd(x) ∧ B(x) | B(d) �∈ B, B ∈ S},

6In the limit case where � is such that q�(D) = 1 for all instances D, then the statement holds for all
nonempty S-instances.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:29

where Pd, d ∈ adom(B) are IDBs. For a CSP template B over schema S, the program

� = �B ∪ { ∨
d∈dom(B)

Pd(x) ← adom(x)
}

then defines a query equivalent to the query coCSP(B).

For Point 3, we must show that Boolean simple MMDlog and generalized coCSP are
equally expressive. The construction is similar to that of Point 4, except that we must
deal with disconnected MDDlog programs and admit more than one CSP template. For
the first direction, let � be a Boolean simple MMDlog program. By introducing IDB
relations that represent maximal connected components of rule bodies, we can rewrite
� into an equivalent program in which the only nonconnected rules are of the form
P(y) ← P(x) ∧ adom(y) with P an IDB relation. We assume � has this property. Let C
be the set of IDB relations that occur in a rule of this form in �. For any subset D of C,
which intuitively represents a choice of disconnected rule bodies that homomorphically
embed into a given instance, let T (D) be the set of all realizable τ ∈ tp(�) such that
goal �∈ τ and τ ∩ C = D. We define F as the set of templates BT (D) with D ⊆ C. It can
be shown that, for every S-instance D, we have D → B for some B ∈ F iff q�(D) = 0.
Consequently, � is equivalent to coCSP(F).

For the other direction, let F be a set of S-instances. Consider the programs �B

introduced earlier, and let � be the union of �B, for all B ∈ F , and the following
additional rules:{ ∨

B∈F
PB(x) ← adom(x)

}
∪{ ∨

d∈adom(B)

Pd(x) ← PB(x), PB(y) ← PB(x) ∧ adom(y) | B ∈ F
}
.

Again, it can be shown that � is equivalent to the query coCSP(F).
For Point 2 we must show that unary connected simple MDDlog has the same expres-

sive power as generalized coCSPs with one marked element such that all templates
have the same instance. The construction is again similar to that of Point 4, except that
we now have unary instead of Boolean MDDlog programs, templates that are marked
instances instead of unmarked ones, and coCSP queries defined by a set of templates
(based on the same instance) instead of a single one. For the first direction, assume �
is a unary connected simple MDDlog program. Let T be the set of all realizable types
for � and define

F = {(BT , τ) | τ ∈ T , goal �∈ τ }.
One can show that, for every S-instance D and d ∈ adom(D), we have (D, d) → (BT , τ)
for some (BT , τ) ∈ F iff d �∈ q�(D). Thus, the query defined by � is equivalent to that
defined by F .

Conversely, assume F is a finite set of unary marked S-instances based upon the
S-instance B. Define the program � by setting

� = �B ∪ {
goal(x) ← Pd(x) | d �= b for all b with (B, b) ∈ F

}
∪ { ∨

d∈dom(B)

Pd(x) ← adom(x)
}
.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:30 M. Bienvenu et al.

One can show that, for every S-instance D and d ∈ adom(D), we have (D, d) → (B, b)
for some (B, b) ∈ F iff d �∈ q�(D). Thus � expresses the same query as F .

For Point 1, we must show that unary simple MDDlog and generalized coCSP with
one marked element are equally expressive. We start with the direction from MDDlog
to CSP. The construction combines features of the constructions for Point 2 and Point 3.
Assume that a unary simple MDDlog program � is given. We may again assume that
the only nonconnected rules in � are of the form P(y) ← P(x)∧adom(y), where P is an
IDB relation. Let C be the set of IDB relations that occur in a rule of this form in �. For
any subset D of C, let T ′(D) be the set of all realizable τ ∈ tp(�) such that τ ∩ C = D.
Define the set F of templates as follows.

F = {(BT ′(D), τ) | D ⊆ C and τ ∈ T ′(D) and goal �∈ τ }
One can show that, for every S-instance D and d ∈ adom(D), there exists (BT ′(D), τ) ∈ F
with (D, d) → (BT ′(D), τ) iff d �∈ q�(D). Thus, the program � is equivalent to the query
defined by F .

Conversely, assume F is a finite set of unary marked S-instances. Define for every
(B, b) ∈ F a program �B,b by adding {goal(x) ← Pd(x) | d �= b} to �B. Finally introduce
fresh IDBs P(B,b), (B, b) ∈ F , and let � be the union of all �B,b and{ ∨

(B,b)∈F
PB,b(x) ← adom(x)

}

∪{ ∨
d∈adom(B)

Pd(x) ← PB,b(x), PB,b(y) ← PB,b(x) ∧ adom(y) | (B, b) ∈ F
}
.

One can show that, for every S-instance D and d ∈ adom(D), we have (D, d) → (B, b)
for some (B, b) ∈ F iff d �∈ q�(D). Thus � is equivalent to the query coCSP(F).

Finally, we show that, in all four cases given the ontology-mediated query or monadic
datalog program, the corresponding CSP template(s) can be constructed in exponen-
tial time. This is clear from the previous construction if the monadic datalog program
is given. To prove the exponential upper bound for ontology-mediated queries it is
sufficient to observe the following two points: (i) in the construction of MDDlog pro-
grams from ontology-mediated queries in the proofs of Theorems 3.4, 3.11, and 3.12,
the number of IDBs in the constructed program is polynomial in the size of the in-
put ontology-mediated query; (ii) the construction of CSP template(s) from MDDlog
programs as described before is exponential only in the size of the schema S and the
number of IDBs (but not in the size or number of rules).

5. APPLICATIONS

We apply the correspondence results of the previous section to obtain results about the
complexity of query evaluation, query containment, and FO and datalog rewritability
for OBDA languages with UCQs and atomic queries. Since more is known about CSPs
than about MMSNP, we obtain a richer set of results for OBDA languages based on
atomic queries than for OBDA languages based on UCQs.

5.1. Query Evaluation and Dichotomies

For an n-ary query q, the evaluation problem is to decide, given an instance D and an
n-tuple a of elements from D, whether a ∈ q(D). Our first result is that the Feder-Vardi
dichotomy conjecture for CSPs is true if and only if there is a dichotomy between PTIME

and CONP for query evaluation in (ALC, UCQ), and the same is true for several other

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:31

OBDA languages. For brevity, we say that a query language has a dichotomy between
PTIME and CONP, referring only implicitly to the evaluation problem.

Theorem 4.6 allows us to transfer dichotomy results from CSP to query evaluation
for OBDA languages with atomic queries.

THEOREM 5.1. (ALC, BAQ) has a dichotomy between PTIME and CONP iff the Feder-
Vardi conjecture holds. The same is true for (SHIU, AQ), and (SHIU, BAQ).

PROOF. Since SHIU ontologies can be replaced by ALCU ontologies in ontology-
mediated queries due to Theorem 3.12, the “if” direction of (all cases mentioned in)
Theorem 5.1 actually follows from Theorem 5.3. The “only if” direction is a consequence
of Theorem 4.6.

To extend Theorem 5.1 to OBDA languages with UCQs we exploit the fact that the
Feder-Vardi dichotomy conjecture can equivalently be stated for MMSNP sentences
[Feder and Vardi 1998; Kun 2007]. We also require that every MMSNP formula is
polynomially equivalent to an MMSNP sentence.

PROPOSITION 5.2. Every MMSNP formula is polynomially equivalent to an MMSNP
sentence.

Proposition 5.2 is proved in the electronic appendix using an extension of forbidden
pattern problems characterizing MMSNP formulas. Now the following result follows
from Proposition 4.1 and Theorems 3.3, 3.6, and 3.14.

THEOREM 5.3. (ALC, UCQ) has a dichotomy between PTIME and CONP iff the Feder-
Vardi conjecture holds. The same is true for (ALCHIU, UCQ) and (UNFO, UCQ).

Recall that (ALCF, UCQ) is an extension of (ALC, UCQ) that was shown in Section 3 to
be more expressive than (ALC, UCQ) itself. It was already proved in Lutz and Wolter
[2012, Theorem 27] that, compared to ontology-mediated queries based on ALC, the
functional roles of ALCF dramatically increase the computational power. This is true
even for atomic queries.

THEOREM 5.4 ([LUTZ AND WOLTER 2012]). For every NP-Turing machine M, there is
a query Q from (ALCF, AQ) such that the complement of the word problem of M has
the same complexity as evaluating Q, up to polynomial-time reductions. Consequently,
(ALCF, AQ) does not have a dichotomy between PTIME and CONP (unless PTIME = NP).

(S, UCQ) is another extension of (ALC, UCQ) that was identified in Section 3 to be
more expressive than (ALC, UCQ) itself. We leave it as an interesting open question
whether (S, UCQ) has a dichotomy between PTIME and CONP if the Feder-Vardi conjec-
ture holds. Another open question of interest is whether Theorem 5.3 can be extended
to (GFO, UCQ) and (GNFO, UCQ), that is, whether GMSNP (equivalently, MMSNP2)
has a dichotomy between PTIME and NP if the Feder-Vardi conjecture holds. While this
question is implicit already in Madelaine [2009], the results established in this article
underline its significance from a different perspective.

5.2. Query Containment

We apply the correspondence results from earlier to obtain results about the query con-
tainment problem for OBDA languages. Specifically, the following general containment
problem was proposed in Bienvenu et al. [2012] as a powerful tool for OBDA: given
ontology-mediated queries (S,Oi, qi), i ∈ {1, 2}, decide whether, for all S-instances D,

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:32 M. Bienvenu et al.

we have certq1,O1 (D) ⊆ certq2,O2 (D).7 Applications include the optimization of ontology-
mediated queries and managing the effects on query answering of replacing an ontology
with a new, updated version. In terms of OBDA languages such as (ALC, UCQ), the
preceding problem corresponds to query containment in the standard sense: an S-query
q1 is contained in an S-query q2, written q1 ⊆ q2, if, for every S-instance D, we have
q1(D) ⊆ q2(D). Note that there are also less general (and computationally simpler) no-
tions of query containment in OBDA that do not fix the data schema [Calvanese et al.
1998].

It was proved in Feder and Vardi [1998] that containment of MMSNP sentences is
decidable. In the electronic appendix, we prove the following extension of this result to
MMSNP formulas.

PROPOSITION 5.5. The containment problem for MMSNP formulas is polynomial-time
reducible to the containment problem for MMSNP sentences.

We thus obtain the following result for OBDA languages.

THEOREM 5.6. Query containment is decidable for the OBDA languages (ALC, UCQ),
ALCHIU, UCQ), and (UNFO, UCQ).

Note this result is considerably stronger than those in Bienvenu et al. [2012] that
considered only containment of ontology-mediated queries (S,O, q) with q an atomic
query, since already this basic case turned out to be technically intricate. The treatment
of CQs and UCQs was left open, including all cases stated in Theorem 5.6.

We established decidability results for query containment in OBDA languages based
on UCQs. For OBDA languages based on AQs and BAQs, we even obtain a tight com-
plexity bound. It is easy to see that query containment in coCSP is characterized by
homomorphisms between templates, that is, the answers to coCSP(F) are contained in
those to coCSP(F ′) just in the case that, for every (B, b) ∈ F , there is some (B′, b′) ∈ F ′
such that (B, b) → (B′, b′). Consequently, it is straightforward to show that query
containment for generalized coCSP with marked elements is NP-complete. Thus, The-
orem 4.6 yields the following NEXPTIME upper bound for query containment in OBDA
languages. We obtain a matching lower bound by a reduction from a NEXPTIME-complete
tiling problem; details are given in the electronic appendix.

THEOREM 5.7. Query containment in (SHIU, AQ) and (SHIU, BAQ) is in NEXPTIME.
It is NEXPTIME-hard already for (ALC, AQ) and for (ALC, BAQ).

Undecidability of query containment forALCF is proved in Bienvenu et al. [2012] under
the slightly different definition of query containment used there (see Footnote 7). The
following undecidability result is proved in the electronic appendix, where we show
how the gap between the definitions of query containment can be bridged.

THEOREM 5.8. Query containment is undecidable for (ALCF, BAQ) and for
(ALCF, AQ).

5.3. FO and Datalog Rewritability

One prominent approach to answering ontology-mediated queries is to make use of
existing relational database systems or datalog engines, eliminating the ontology by
query rewriting [Calvanese et al. 2007; Eiter et al. 2012; Grau et al. 2013]. Formally, a
query over a schema S is said to be FO rewritable if equivalent to some FO-query over

7In fact, this definition is slightly different from the one used in Bienvenu et al. [2012]. There, containment
is defined only over instances D that are consistent with respect to both O1 and O2.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:33

S, and is datalog rewritable if equivalent to some datalog query over S.8 We observe
that, for ontology-mediated queries, FO rewritability implies datalog rewritability.

PROPOSITION 5.9. If Q = (S,O, q) is an ontology-mediated query with O formulated in
equality-free FO and q a UCQ, then qQ is preserved by homomorphisms. Consequently,
it follows from Rossman [2008] that if qQ is FO rewritable, then qQ is rewritable into a
UCQ (thus into datalog).

PROOF. Let D1 and D2 be two instances over the same schema such that there exists
a homomorphism h : D1 → D2. Suppose for the sake of contradiction that a ∈ qQ(D1)
but h(a) �∈ qQ(D2). Then there is a finite relational structure (dom2,D

′
2) |= O such that

D2 ⊆ D′
2 and h(a) �∈ q(D′

2). Let (dom1,D
′
1) be the inverse image of (dom2,D

′
2) under

h. More precisely, dom1 = adom(D1) ∪ (dom2 \ adom(D2)), and D′
1 contains all facts

whose ĥ-image is a fact of D′
2, where ĥ is the map that extends h by sending every

element of adom(D′
2)\adom(D2) to itself. Clearly D1 ⊆ D′

1. Furthermore, a �∈ q(D′
1)

because ĥ : D′
1 → D′

2 is a homomorphism and q is preserved by homomorphisms.
To obtain a contradiction against a ∈ qQ(D1), it therefore only remains to show that
(dom1,D

′
1) |= O. It is known that equality-free first-order sentences are preserved

by passing from a structure to its quotient under an equivalence relation that is a
congruence. By construction, the kernel of the map ĥ is a congruence relation on the
structure (dom1,D

′
1) and its quotient is isomorphic to (dom2,D

′
2).

Example 2.2 illustrates that ontology-mediated queries are not always rewritable
into an FO-query, and the same holds for datalog rewritability. It is a central problem
to decide, given an ontology-mediated query, whether it is FO rewritable and whether
it is datalog rewritable (and to construct a rewriting when it exists). By leveraging
the CSP connection, we show that both problems are decidable and pinpoint their
complexities.

On the CSP side, FO rewritability corresponds to FO definability, and datalog
rewritability to datalog definability. These notions have been extensively investigated,
culminating in the following results (that are rephrased in terms of coCSP queries).

THEOREM 5.10. Deciding, for a given instance B, whether coCSP(B) is FO rewritable
is NP-complete [Larose et al. 2007]. The same is true for datalog rewritability [Freese
et al. 2009].9

By combining the preceding theorem with Theorem 4.6, we obtain NEXPTIME up-
per bounds for deciding FO rewritability and datalog rewritability of queries from
(SHI, BAQ).

To capture the more important AQs rather than only BAQs, we show that Theo-
rem 5.10 can be lifted, in a natural way, to queries based on generalized CSPs with
marked elements. The general idea is to eliminate constants by replacing them with
fresh unary relation symbols, as made precise in the following. For every n > 0 and
schema S, we fix a sequence P1, . . . , Pn of unary relation symbols that do not appear in
S. We then associate to every n-ary marked S-instance (B, b1, . . . , bn) the (unmarked) in-
stance (B, b1, . . . , bn)c = B∪{P1(b1), . . . , Pn(bn)}. Given a set F = {(B1, b1), . . . , (Bm, bm)}
of n-ary marked instances, we use F c to denote the set {(B1, b1)c, . . . , (Bm, bm)c}. The
following central proposition relates each query coCSP(F) to the queries coCSP((B, b)c)
with (B, b) ∈ F , thus transitioning from constants to unary relation symbols and from

8By datalog query, we mean a DDLog query defined by a disjunction-free DDLog program, that is, a DDLog
program in which the head of each rule is a single atom.
9An NP algorithm for datalog definability is implicit in Freese et al. [2009], based on results from Barto and
Kozik [2009]; see also Bulatov [2009]. We thank Benoit Larose and Libor Barto for pointing this out.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:34 M. Bienvenu et al.

multiple templates to a single template. Note that the queries coCSP((B, b)c) are over
the schema S ∪ {P1, . . . , Pn}. We call n-ary marked S-instances (B1, b1) and (B2, b2) ho-
momorphically incomparable if there are no homomorphisms from (B1, b1) to (B2, b2)
and from (B2, b2) to (B1, b1).

PROPOSITION 5.11. For every finite set F of mutually homomorphically incomparable
n-ary marked S-instances:

(1) coCSP(F) is FO rewritable iff coCSP((B, b)c) is FO rewritable for every (B, b) ∈ F ;
(2) coCSP(F) is datalog rewritable iff coCSP((B, b)c) is datalog rewritable for every

(B, b) ∈ F .

We split the proof of Point 1 of Proposition 5.11 into two parts, first showing how
FO rewritability of generalized coCSP with marked elements can be reduced to FO
rewritability of generalized coCSP without marked elements, and next giving the re-
duction from generalized to plain coCSP.

LEMMA 5.12. Let F be a finite set of n-ary marked S-instances. Then coCSP(F) is FO
rewritable iff coCSP(F c) is FO rewritable.

PROOF. Let F be a finite set of n-ary marked S-instances, and suppose that coCSP(F c)
is equivalent to the FO sentence ϕ. Let x1, . . . , xn be distinct variables not appearing
in ϕ, and let ϕ′ be the formula obtained from ϕ by replacing every subformula of the
form Pi(x) by x = xi, and if no such subformula exists, conjoining the atom xi = xi (such
conjuncts merely ensure that xi appears in ϕ′). It can be checked that the FO-query ϕ′
is equivalent to coCSP(F).

For the converse, we make use of a characterization of FO rewritability of generalized
coCSPs with marked elements using finite obstruction sets. Let F be a finite set of n-ary
marked S-instances. A set � of n-ary marked S-instances is an obstruction set for F if,
for all n-ary marked S-instances (D, d), the following conditions are equivalent:

—there exists (B, b) ∈ F such that (D, d) → (B, b);
—there does not exist (G, g) ∈ � such that (G, g) → (D, d).

It is known that, for any finite set of instances F , coCSP(F) is FO rewritable if and
only if F has a finite obstruction set. This was shown in Atserias [2005] for (unmarked)
instances, and follows easily from results in Rossman [2008] even for the case of marked
instances. Finally, it was shown in Alexe et al. [2011, Proposition A.2 (1)] that if F has
a finite obstruction set, then so does F c.

LEMMA 5.13. Let F be a finite set of S-instances.

—If coCSP(B) is FO rewritable for all B ∈ F , then coCSP(F) is FO rewritable.
—Conversely, if all instances in F are mutually homomorphically incomparable and

coCSP(F) is FO rewritable, then coCSP(B) is FO rewritable for every B ∈ F .

PROOF. For the first statement, choose for every B ∈ F an FO-sentence ϕB such that
D |= ϕB iff D �→ B for all S-instances D. Let ϕ be the conjunction over all ϕB with
B ∈ F . Then, for all S-instances D, we have D |= ϕ iff D �→ B for every B ∈ F , as
required.

To prove the other direction, we require the notion of a critical obstruction: an S-
instance A is called a critical obstruction for a finite set of S-instances G iff A �→ B

for every B ∈ G but for any proper subinstance A′ � A there exists B ∈ F such that
A′ → B. It can be verified that G has a finite obstruction set iff it has only finitely many
critical obstructions (up to isomorphism).

Let F be a finite set of mutually homomorphically incomparable S-instances such
that coCSP(F) is FO rewritable. Assume for a contradiction that coCSP(B0) is not

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:35

FO rewritable for some B0 ∈ F . Then B0 possesses an infinite set C of (pairwise
nonisomorphic) critical obstructions. Let B′

0 ⊆ B0 be such that B′
0 �→ B for every

B ∈ F \{B0} but, for every proper subinstance B′′
0 � B′

0, there is some B ∈ F \{B0} with
B′′

0 → B. Note that such a subinstance B′
0 must exist because of our assumption that

the instances in F are mutually homomorphically incomparable. It is easily verified
that the infinitely many instances obtained by taking the disjoint union of B′

0 and some
A ∈ C are all critical obstructions for F . Thus coCSP(F) is not FO rewritable, and we
have derived a contradiction.

Point 2 of Proposition 5.11 is a consequence of the following lemma.

LEMMA 5.14. Let F be a finite set of n-ary marked S-instances.

—If coCSP((B, b)c) is datalog rewritable for all (B, b) ∈ F , then coCSP(F) is datalog
rewritable.

—Conversely, if all (B, b) ∈ F are mutually homomorphically incomparable and
coCSP(F) is datalog rewritable, then coCSP((B, b)c) is datalog rewritable for every
(B, b) ∈ F .

PROOF. For the first statement, let F be a finite set of n-ary marked S-instances,
and suppose that each coCSP((B, b)c) is datalog rewritable. Since datalog queries are
known to be closed under conjunction, coCSP(F c) must also be datalog rewritable. Let
� be a datalog program whose corresponding query q� is equivalent to coCSP(F c). We
construct a new datalog program �′ that uses the same IDB relations from �, except
that the arity of each relation symbol (included the goal relation) is increased by n. The
rules of �′ are obtained by applying the following operations to each rule in �.

—Fix a sequence of distinct fresh variables y = y1, . . . , yn and replace each IDB atom
R(x) by R(x, y).

—Let ∼ be the least equivalence relation over the rule variables satisfying the following
property: if Pi(z) appears in the rule body, then z ∼ yi. Drop all Pi atoms and merge
all variables appearing in the same equivalence class under ∼.

—For each variable yi that appears only in the head, add adom(yi) to the rule body.

It can be verified that, for every S-instance D and tuple d ∈ adom(D)n: d ∈ q�′(D) iff
q�((D, d)c) = 1. From this and the fact that � defines coCSP(F c), we can show that
d ∈ q�′(D) iff (D, d) �→ (B, b) for all (B, b) ∈ F .

For the second statement, we make use of a known characterization of datalog
rewritability in terms of obstruction sets of bounded treewidth [Feder and Vardi 1998].
Recall from the proof of Lemma 5.12 the notion of an obstruction set for a set of in-
stances. We also recall (cf. Hell et al. [1996]) that an (unmarked) instance has treewidth
(at most) k, if it admits a tree decomposition such that each bag of the tree decompo-
sition has size at most k + 1. We extend this definition to marked instances by saying
that a marked instance (D, d) has treewidth (at most) k if D has a tree decomposition
in which every bag contains the elements d and at most k + 1 other elements.

Let F be a finite set of n-ary marked S-instances, and suppose that coCSP(F) is
equivalent to a datalog program whose rules contain at most k variables. Then, by a
standard argument (refer to Feder and Vardi [1998]), we have that F has an obstruction
set of treewidth k. Indeed, consider any marked instance (D, d) ∈ coCSP(F). Then, by
definition of the semantics of datalog, there exists some finite derivation of goal(d).
From this derivation (viewed in a top-down fashion), we can read off a conjunctive
query that is satisfied by d in D, and that implies the truth of the datalog query.
The canonical instance of this conjunctive query is then an obstruction for F that can
be shown to have treewidth at most k (here, by the canonical instance of a conjunctive
query we mean the instance whose elements are the variables in the CQ and whose

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:36 M. Bienvenu et al.

facts are the atoms of the CQ). Rather than spelling out the details, we illustrate the
construction with an example. Let D = {R(a, b), R(b, a), P(a)}, and consider the datalog
� program consisting of the following rules.

EvenDist(x) ← P(x)
EvenDist(x) ← R(x, y) ∧ OddDist(y)
OddDist(x) ← R(x, y) ∧ EvenDist(y)
goal(x) ← EvenDist(x)

Clearly a ∈ Q�(D). There are many witnessing derivations, each giving rise to a cor-
responding conjunctive query. The conjunctive queries in question are of the form
qi(x) = ∃y1 . . . y2k+1(R(x, y1) ∧ R(y1, y2) ∧ · · · ∧ R(y2k−1, y2k), P(y2k)). Note that, in this
example, the canonical instances of these conjunctive queries all have treewidth 1. In
general, the treewidth is bounded by the maximum number of variables occurring in
a rule of the datalog program. By constructing in this way an obstruction for each
(D, d) ∈ coCSP(F), we obtain a (possibly infinite) obstruction set of bounded treewidth.

By Alexe et al. [2011, Proposition A.2 (1)], we have that F has an obstruction set of
bounded treewidth if and only if F c has an obstruction set of bounded treewidth (al-
though it is not explicitly stated, it can easily be verified that the relevant construction
used there preserves bounded treewidth). Thus, we have that F c has an obstruction
set of some bounded treewidth, say k.

From the fact that the marked instances in F are pairwise homomorphically in-
comparable, it follows that also the instances in F c are pairwise homomorphically
incomparable. We can use this, together with the fact that F c has an obstruction set
of treewidth k, to show that in fact, each B ∈ F c has an obstruction set of treewidth k:
for the sake of contradiction, suppose that B ∈ F c does not have an obstruction set of
treewidth k. Then, in particular, the set of all instances of treewidth at most k that do
not admit a homomorphism into B is not an obstruction set for B. It follows that there
is an instance D such that D �→ B and, for all instances A of treewidth at most k, if
A → D then A → B. Now consider the disjoint union D � B. Clearly D � B �→ B.
Furthermore, since F c consists of pairwise homomorphically incomparable instances,
also D � B �→ B′ for all other B′ ∈ F c. Since F c has an obstruction set of treewidth k,
there is an instance C of treewidth at most k such that C → D�B and such that, for all
B′ ∈ F c, C �→ B′. In particular, C �→ B. However, since C has treewidth at most k, each
connected component of C that homomorphically maps to D (being also of treewidth at
most k) homomorphically maps to B and, therefore, since C → D � B, we have that
C → B, a contradiction.

To summarize, we have that, for each (B, b) ∈ F , (B, b)c has an obstruction set of
bounded treewidth. It was shown in Feder and Vardi [1998] that, for any (unmarked)
instance A, coCSP(A) is datalog rewritable if and only if A has an obstruction set of
bounded treewidth. Therefore, we have that for each (B, b) ∈ F , coCSP((B, b)c) is
datalog rewritable.

Note that every set of marked instances F = {(B1, b1), . . . , (Bn, bn)} has a subset
F ′ = {(B′

1, b′
1), . . . , (B′

m, b′
m)} that consists of homomorphically incomparable marked

instances and is such that coCSP(F) is equivalent to coCSP(F ′). We use this observation
to establish the announced lifting of Theorem 5.10.

THEOREM 5.15. FO rewritability and datalog rewritability are NP-complete for gen-
eralized CSPs with marked elements.

PROOF. To decide whether a generalized CSP with marked elements given as a set of
templates F = {(B1, b1), . . . , (Bn, bn)} is FO rewritable, it suffices to first guess a subset
F ′ ⊆ F and then to verify that: (i) coCSP((B, b)c) is FO rewritable for each (B, b) ∈ F ′;

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:37

and (ii) for each (B, b) ∈ F there is a (B′, b′) ∈ F ′ such that (B, b) → (B′, b′). By
Theorem 5.10, this can be done in NP. To see why this procedure is correct, suppose
first that there is a subset F ′ ⊆ F that satisfies conditions (i) and (ii). By the previous
observation, there exists a subset F ′′ ⊆ F ′ of homomorphically incomparable instances
such that coCSP(F ′′) is equivalent to coCSP(F ′) which, by (ii), is also equivalent to
coCSP(F). Because of condition (i), we know that, for every instance (B, b) ∈ F ′′,
coCSP((B, b)c) is FO rewritable. We can thus apply Proposition 5.11 to conclude that
coCSP(F ′′) or, equivalently, coCSP(F), is FO rewritable. Conversely, if coCSP(F) is
FO rewritable, then we may guess a subset F ′ ⊆ F of homomorphically incomparable
instances such that coCSP(F ′) is equivalent to coCSP(F). Condition (i) must be satisfied
because of Proposition 5.11, and condition (ii) holds because coCSP(F ′) and coCSP(F)
are equivalent. datalog rewritability can be decided analogously.

From Theorems 4.6 and 5.15, we obtain a NEXPTIME upper bound for deciding FO
rewritability and datalog rewritability of ontology-mediated queries based on DLs and
(B)AQs. The corresponding lower bounds are proven in the electronic appendix by
reduction from the same NEXPTIME-hard tiling problem as used for the lower bound for
query containment.

THEOREM 5.16. FO rewritability and datalog rewritability can be decided in
NEXPTIME for (SHIU, AQ) and (SHIU, BAQ). Both problems are NEXPTIME-hard for
(ALC, AQ) and (ALC, BAQ).

In the prior exposition, we have concentrated on deciding the existence of FO rewrit-
ings and datalog rewritings. In practice, it is often also important to actually construct
such rewritings, if they exist. We briefly survey known results and then argue that the
proof of Theorem 5.16 together with the existing algorithms for deciding FO rewritabil-
ity and datalog rewritability of CSPs yield an approach to effectively construct FO
rewritings.

For the inexpressive fragment DL-Lite of ALCIH which underpins the OWL 2 profile
OWL2 QL and for which FO rewritings always exist, efficient FO rewriting algorithms
have been developed and implemented in a number of tools [Calvanese et al. 2007;
Pérez-Urbina et al. 2010; Rosati and Almatelli 2010; Chortaras et al. 2011; Rodriguez-
Muro and Calvanese 2012; Kikot et al. 2012a]. Note that DL-Lite is a Horn logic, that
is, it does not include any form of disjunction. For more expressive Horn ontology lan-
guages, FO rewritings and datalog rewritings are studied, for example, in Gottlob and
Schwentick [2012], Eiter et al. [2012], Bienvenu et al. [2013a], and Bárány et al. [2013].
In contrast, for non-Horn ontology languages such as ALC and its extensions consid-
ered in this article, we are not aware of any decidability results for FO rewritability or
datalog rewritability, or any approach that aims at constructing FO rewritings. A first
significant step towards practical algorithms that compute datalog rewritings for such
logics is presented in Grau et al. [2013].

We now sketch how our results yield an approach for effectively computing FO
rewritings and datalog rewritings. For simplicity, we concentrate on the OBDA lan-
guage (ALC, BAQ). Let Q be a query from (ALC, BAQ) that has an FO rewriting. Then
we can construct a concrete such rewriting by first generating a template B such that
Q and coCSP(B) are equivalent, using the construction from the proof of Theorem 4.6.
Next, we construct a finite obstruction set G for CSP(B) using Larose et al. [2007].
Every instance A ∈ G can be viewed as a Boolean conjunctive query Aq in an obvious
way, replacing the elements of adom(A) with FO variables. It can be verified that the
union of all CQs Aq, A ∈ G, is an FO rewriting of Q. Using our results for generalized
CSPs with marked instances, the sketched procedure can be generalized to queries
from (SHIU, BAQ ∪ AQ).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:38 M. Bienvenu et al.

Now let Q be a query from (ALC, BAQ) that has a datalog rewriting. We again start
with constructing the corresponding template B. It is implicit in Barto and Kozik
[2009] that, if the complement of a CSP is rewritable into a datalog program, then it
is rewritable into a datalog program in which each rule comprises at most max{3, r}
distinct variables, where r is the maximum arity of relations in the template. Conse-
quently and since B uses only relations of arity at most two, coCSP(B) can be rewritten
into a datalog program whose IDB relations have arity at most three and where each
rule body has at most three distinct variables. It is shown in Feder and Vardi [1998]
how to construct a concrete such program, called the canonical (3,3)-datalog program
for B. Again, this procedure can be generalized to queries from (SHIU, BAQ ∪ AQ).

Implemented naively, the aforesaid rewriting constructions can probably not be ex-
pected to perform well in practice since the template B associated with Q can be of
exponential size, even for simple ALC-ontologies. It is an interesting open research
question whether the approach can be improved to yield an algorithm for constructing
FO rewritings that performs well on real-world ontologies.

Modulo a minor difference in the treatment of instances that are not consistent (see
Footnote 7), it follows from a result in Lutz and Wolter [2012] that FO rewritability
is undecidable for (ALCF, AQ) and (ALCF, BAQ). In the electronic appendix, we
show how to bridge the difference and further prove the undecidability of datalog
rewritability.

THEOREM 5.17. FO rewritability and datalog rewritability are undecidable for
(ALCF, AQ) and (ALCF, BAQ).

6. SCHEMA-FREE ONTOLOGY-MEDIATED QUERIES

To investigate the relationship between ontology-mediated queries and other database
query languages, we have until now adopted from the database world the assumption
that every query comes with a fixed finite data schema S. In applications of ontology-
based data access, this is not always realistic because the instances to be queried tend
to not be under the control of the user. Therefore, it is of interest to also study the
case where queries have to be answered without fixing a data schema in advance. In
particular, this means it is not possible to exclude certain symbols that are used in the
ontology and the query from occurring in the data.

In the following, we assume a countably infinite set S∞ of relation symbols is fixed
once and for all, that instances consist of finite sets of facts over S∞, and that ontolo-
gies as well as queries can use symbols from S∞ only. For FO ontologies, S∞ contains
infinitely many relation symbols of any arity. For DL ontologies, it contains infinitely
many concept and role names (unary and binary relation symbols). A schema-free
ontology-mediated query is an ontology-mediated query (S∞,O, q), where the signa-
tures of O and q are contained in S∞. For a given ontology-mediated query language
(L,Q), we now distinguish between the schema-free queries in (L,Q) that take the form
(S∞,O, q) with O an ontology in L and q a query in Q, and the fixed-schema queries in
(L,Q), based on a fixed finite schema S as investigated so far.

We investigate the extent to which the decidability and complexity results of the
previous sections still hold for schema-free ontology-mediated queries. Clearly, all de-
cidability results for query containment and all complexity upper bound results for
query containment, FO rewritability, and datalog rewritability still hold since the
schema-free query (S∞,O, q) behaves in exactly the same way as the fixed-schema
query (S,O, q), where S = sig(O) ∪ sig(q). For the same reason, if for a language (L,Q)
there is no dichotomy between PTIME and NP for schema-free queries in (L,Q), then
there is no such dichotomy for fixed-schema queries in (L,Q). More work is required,
however, to transfer complexity lower bound proofs and to prove the converse direction

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:39

for dichotomies: if there is no dichotomy between PTIME and NP for fixed-schema
queries in (L,Q), then there is no such dichotomy for schema-free queries in (L,Q).

Regarding dichotomies, we prove that Theorem 5.1 still holds for schema-free
ontology-mediated queries in (ALC, BAQ), that is, there is a dichotomy between PTIME

and CONP for such queries if and only if there is such a dichotomy for fixed-schema
queries from (ALC, BAQ) which, by Theorem 5.1, is the case if and only if the Feder-
Vardi conjecture holds. Using the same approach, we can also show for more expressive
schema-free OBDA languages that there is a dichotomy between PTIME and CONP if
and only if such a dichotomy holds for the corresponding fixed-schema language.

THEOREM 6.1. (ALC, BAQ) has a dichotomy between PTIME and CONP for schema-free
queries iff the Feder-Vardi conjecture holds.

PROOF. As observed earlier, if (ALC, BAQ) has no dichotomy between PTIME and
CONP for schema-free queries, then it does not have such a dichotomy for fixed-schema
queries. Therefore, by Theorem 5.1, it remains to prove that every query in coCSP
is polynomially equivalent to some schema-free query (S∞,O, ∃x.A(x)). Assume a CSP
template B over schema S is given. To construct a polynomially equivalent schema-free
query, we first construct an equivalent fixed-schema query (S,O, q) from (ALC, BAQ)
and then modify the construction to obtain a polynomially equivalent schema-free
query. The construction of (S,O, q) is virtually identical to the translation of a CSP
template into an MDDlog program in the proof of Theorem 4.6. Take for every d ∈
adom(B) a fresh concept name Ad �∈ S and a fresh concept name A �∈ S, set q = ∃x.A(x),
and let

O = {Ad � Ad′ � A | d �= d′}{Ad � ∃R.Ad′ � A | R(d, d′) �∈ B, R ∈ S} ∪
∪ {Ad � B � A | B(d) �∈ B, B ∈ S} ∪

{
� � �

d∈adom(B)
Ad

}
.

It is straightforward to show that the query defined by B is equivalent to that defined
by (S,O, q). However, O and q cannot be used without modification in the schema-free
case since now the symbols Ad, d ∈ adom(B) and Ahave to be from S∞ and can therefore
occur in the input instances D. To resolve this issue, we replace the unary relations Ad
by compound concepts. In detail, take, for every d ∈ adom(B), a fresh binary relation
symbol Rd and a unary relation symbol Ad, all from S∞. Set Hd = ∀Rd.Ad and let O′ be
the result of replacing every Ad in O by Hd, for d ∈ adom(B). For any instance D, the
concepts Hd can take arbitrary values in some model D′ ⊇ D, independently from the
values of Rd and Ad in D. This observation is formalized as follows.

Fact 1. For all S∞-instances D and all subsets Ud of adom(D), d ∈ adom(B), there
exists a model D′ ⊇ D such that D′ |= Hd(a) iff a ∈ Ud holds for all d ∈ adom(B) and all
a ∈ dom(D′).

We now show that deciding qS∞,O′,∃x.A(x)(D) = 0 for S∞-instances D is polynomi-
ally equivalent to deciding D → B for S-instances D. First assume that an S-
instance D is given and that we want to decide D → B. By Fact 1, this is the
case iff qS∞,O′,∃x.A(x)(D) = 0. Conversely, assume that an S∞-instance D is given and
we want to decide qS∞,O′,∃x.A(x)(D) = 0. If there exists a fact A(a) ∈ D, then output
qS∞,O′,∃x.A(x)(D) �= 0. Otherwise, again by Fact 1, qS∞,O′,∃x.A(x)(D) = 0 iff D′ → B for the
S-reduct D′ of D.

Next we consider query containment for schema-free ontology-mediated queries. Re-
call that complexity upper bounds and decidability results transfer from fixed-schema
query languages, to schema-free query languages, since (S∞,O, q) behaves in exactly
the same way as the fixed-schema query (S,O, q), where S = sig(O) ∪ sig(q). For the

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:40 M. Bienvenu et al.

converse direction, we prove a general polynomial reduction of query containment for
fixed-schema OBDA languages to query containment for the corresponding schema-
free languages. We say that an ontology language L can express emptiness if, for every
relation symbol R, there exists a sentence ϕR=∅ in L which states that R is empty.
Clearly, all DLs introduced in this article, UNFO, GFO, and GNFO namely, can ex-
press emptiness.

THEOREM 6.2. Assume L is a fragment of FO that can express emptiness. Then
query containment for fixed-schema queries in (L, UCQ) and (L, AQ) can be polyno-
mially reduced to query containment for schema-free queries in (L, UCQ) and (L, AQ),
respectively.

PROOF. Assume queries Q1 = (S,O1, q1) and Q2 = (S,O2, q2) are given. By renaming
relation symbols in O1, q1,O2, q2 that are not from S, we can achieve that (sig(O1) ∪
sig(q1)) ∩ (sig(O2) ∪ sig(q2)) ⊆ S. Let

O′
2 = {ϕR=∅ | R ∈ (sig(O1) ∪ sig(q1)) \ S}.

The theorem follows if we can show that Q1 is contained in Q2 iff (S′,O1, q1) is contained
in (S′,O′

2, q2), where S′ = S∪sig(O1)∪sig(q1)∪sig(O2)∪sig(q2). First assume (S′,O1, q1)
is not contained in (S′,O′

2, q2) and D is an S′-instance with a ∈ certq1,O1 (D) and a �∈
certq2,O′

2
(D). Then the signature of D does not contain any symbols from (sig(O1) ∪

sig(q1)) \ S since D is consistent with O′
2. Obtain D′ from D by removing all facts that

involve a non-S-symbol. Clearly, we still have a ∈ certq1,O1 (D
′) and a �∈ certq2,O2 (D

′)
and so (S,O1, q1) is not contained in (S,O2, q2), as required. The converse direction is
trivial.

It follows that Theorems 5.6 and 5.7 hold for the corresponding schema-free OBDA
languages as well. We close this section by considering FO rewritability and datalog
rewritability and proving an analog of Theorem 5.16 for schema-free queries.

THEOREM 6.3. FO rewritability and datalog rewritability can be decided in NEXPTIME

for schema-free queries in (SHIU, AQ ∪ BAQ). Both problems are NEXPTIME-hard for
(ALC, AQ) and (ALC, BAQ).

We also remark that, in general, the complexity of FO rewritability is not robust
under moving from fixed-schema queries to schema-free queries. A concrete example
is provided by the description logic EL, which is a fragment of ALC and the logical
underpinning of the OWL 2 profile OWL 2 EL [Baader et al. 2005]. The complexity
of deciding FO rewritability of fixed-schema queries in (EL, AQ) is EXPTIME-complete,
but deciding FO rewritability of schema-free queries in (EL, AQ) is PSPACE-complete
[Bienvenu et al. 2013a]. Note that the reduction given before cannot be applied to EL
since the concepts ∀R.G are not EL concepts.

7. CONCLUSION

We have introduced a new framework for studying ontology-based data access, resting
on the observation that ontology-mediated queries are closely related to disjunctive
datalog, to MMSNP, and to CSP. We have shown that many fundamental questions
about OBDA can be addressed within the framework, including the complexity of
query containment, the complexity of FO rewritability, and of datalog rewritability,
and PTIME/NP dichotomies for the data complexity of query evaluation.

There are many remaining research problems that can be explored within our frame-
work. Immediate problems that arise from the results presented in this article include
the following.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:41

—Are FO rewritability and datalog rewritability decidable for standard OBDA lan-
guages based on UCQs such as (ALC, UCQ)? It follows from the results in Sections 3
and 4 that this problem is equivalent to the question whether FO rewritability and
datalog rewritability are decidable for monadic disjunctive datalog and, equivalently,
MMSNP.

—What is the computational complexity of deciding query containment for OBDA
languages based on UCQs? For (ALC, UCQ), decidability follows from the decidability
of query containment for MMSNP, but tight complexity bounds do not appear to be
known.

—Is a PTIME/NP dichotomy for query evaluation in (GFO, UCQ) equivalent to the
Feder-Vardi conjecture, or is it possible to prove a nondichotomy result? Is query con-
tainment decidable for (GFO, UCQ)? Are FO rewritability and datalog rewritability
decidable for (GFO, UCQ)? As explained in Section 4, resolving these questions is
equivalent to answering them for GMSNP and MMSNP2.

—What is the status of OBDA languages such as (S, UCQ) and of OBDA languages
based on ontology languages with nominals? Do they have the same expressive power
as natural fragments of disjunctive datalog?

—There are several open questions regarding the succinctness of OBDA languages. For
example, is there really a double-exponential succinctness gap beween (ALCI, UCQ)
(respectively, (UNFO, UCQ)) and MDDlog as well as between (GNFO, UCQ) and
frontier-guarded DDlog, or can the translations be improved by one exponential? Is
the exponential blowup in the translation of frontier-guarded DDlog to (GFO, UCQ)
avoidable?

—In this article, we have focused on ontology-mediated queries based on atomic queries
and UCQs. Other query languages frequently used in OBDA are conjunctive queries
(CQs) and positive existential queries (PEQs). Since every PEQ is equivalent to a
UCQ, all expressivity, decidability, and data complexity results trivially transfer from
UCQs to PEQs. However, PEQs could well behave differently regarding succinctness.
For CQs, the results in this article imply a dichotomy between PTIME and CONP
for (ALC, CQ) if and only if the Feder-Vardi conjecture holds. It is an interesting
open problem whether there is a natural characterization of (ALC, CQ) in terms of
disjunctive datalog.

Another interesting research direction is to depart from monotonic OBDA languages by
admitting some form of nonmonotonic negation in the ontology language or the query
language. This typically requires replacing the certain answers semantics used in this
article with a semantics tailored specifically towards nonmonotonicity; see Hernich
et al. [2013] for a recent example. In particular, it would be interesting to investigate
whether the resulting OBDA languages correspond to fragments of disjunctive datalog
with negation [Eiter et al. 1997] in the same way as monotonic OBDA languages
correspond to fragments of disjunctive datalog without negation.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

We thank Benoit Larose and Libor Barto for discussions on datalog definability of CSPs, Florent Madeleine
and Manuel Bodirsky for discussions on MMSNP, and Thomas Eiter for discussions on disjunctive datalog.

REFERENCES

Bogdan Alexe, Balder Ten Cate, Phokion G. Kolaitis, and Wang Chiew Tan. 2011. Characterizing schema
mappings via data examples. ACM Trans. Database Syst. 36, 4.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:42 M. Bienvenu et al.

Albert Atserias. 2005. On digraph coloring problems and treewidth duality. In Proceedings of the 20th Annual
IEEE Symposium on Logic in Computer Science (LICS’05). 106–115.

Franz Baader, Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. 2010. Query and predicate emptiness
in description logics. In Proceedings of the 12th International Conference on the Principles of Knowledge
Representation and Reasoning (KR’10).

Franz Baader, Sebastian Brandt, and Carsten Lutz. 2005. Pushing the EL envelope. In Proceedings of the
19th International Joint Conference on Artificial Intelligence (IJCAI’05). 364–369.

Franz Baader, Deborah, Diego Calvanese, Deborah L. McGuiness, Daniele Nardi, and Peter F. Patel-
Schneider, Eds. 2003. The Description Logic Handbook. Cambridge University Press.

Jean-Francois Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michael Thomazo. 2011. Walking the
complexity lines for generalized guarded existential rules. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI’11).

Vince Bárány, Michael Benedikt, and Balder Ten Cate. 2013. Rewriting guarded negation queries. In Proceed-
ings of the 38th International Symposium on Mathematical Foundations of Computer Science (MFCS’13).
Springer, 98–110.

Vince Barany, Georg Gottlob, and Martin Otto. 2010. Querying the guarded fragment. In Proceedings of the
25th Annual IEEE Symposium on Logic in Computer Science (LICS’110). 1–10.

Vince Barany, Balder Ten Cate, and Martin Otto. 2012. Queries with guarded negation. Proc. VLDB Endow.
5, 11, 1328–1339.

Vince Barany, Balder Ten Cate, and Luc Segoufin. 2011. Guarded negation. In Proceedings of the 38th

International Colloquium on Automata, Languages, and Programming (ICALP’11). 356–367.
Libor Barto and Marcin Kozik. 2009. Constraint satisfaction problems of bounded width. In Proceedings of

the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09). 595–603.
Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. 2012. Query containment in description logics reconsid-

ered. In Proceedings of the 13th International Conference on the Principles of Knowledge Representation
and Reasoning (KR’12).

Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. 2013a. First-order rewritability of atomic queries in
horn description logics. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI’13). 754–760.

Meghyn Bienvenu, Balder Ten Cate, Carsten Lutz, and Frank Wolter. 2013b. Ontology-based data access: A
study through disjunctive datalog, CSP, and MMSNP. In Proceedings of the Symposium on Principles of
Database Systems (PODS’13). ACM Press, New York, 213–224.

Manuel Bodirsky, Hubie Chen, and Tomás Feder. 2012. On the complexity of MMSNP. SIAM J. Discr. Math.
26, 1, 404–414.

Andrei A. Bulatov. 2009. Bounded relational width. http://www.cs.sfu.ca/∼abulatov/papers/relwidth.pdf.
Andrei A. Bulatov. 2011. On the CSP dichotomy conjecture. In Proceedings of the 6th International Conference

on Computer Science: Theory and Applications (CSR’11). 331–344.
Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz. 2009. A general datalog-based framework for tractable

query answering over ontologies. In Proceedings of the Symposium on Principles of Database Systems
(PODS’09). 77–86.

Andrea Calı̀, Georg Gottlob, and Andreas Pieris. 2012. Towards more expressive ontology languages: The
query answering problem. Artif. Intell. 193, 87–128.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. 2006.
Data complexity of query answering in description logics. In Proceedings of the International Conference
on the Principles of Knowledge Representation and Reasoning (KR’06). 260–270.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. 2007.
Tractable reasoning and efficient query answering in description logics: The DL-lite family. J. Autom.
Reason. 39, 3, 385–429.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. 1998. On the decidability of query con-
tainment under constraints. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’98). 149–158.

Balder Ten Cate and Luc Segoufin. 2011. Unary negation. In Proceedings of the Symposium on Theoretical
Aspects of Computer Science (STACS’11). 344–355.

Alexandros Chortaras, Despoina Trivela, and Giorgos B. Stamou. 2011. Optimized query rewriting for OWL
2 QL. In Proceedings of the 23rd International Conference on Automated Deduction (CADE’11). 192–206.

Giuseppe De Giacomo and Maurizio Lenzerini. 1994. Boosting the correspondence between description
logics and propositional dynamic logics. In Proceedings of the 12th National Conference on Artificial
Intelligence (AAAI’94). 205–212.

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

Ontology-Based Data Access: A Study through Disjunctive Datalog, CSP, and MMSNP 33:43

Thomas Eiter, Wolfgang Faber, Michael Fink, and Stefan Woltran. 2007. Complexity results for answer set
programming with bounded predicate arities and implications. Ann. Math. Artif. Intell. 51, 2–4, 123–165.

Thomas Eiter, Georg Gottlob, and Heikki Mannila. 1997. Disjunctive datalog. ACM Trans. Database Syst.
22, 3, 364–418.

Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and Guohui Xiao. 2012. Query rewriting
for horn-shiq plus rules. In Proceedings of the National Conference on Artificial Intelligence (AAAI’12).

Tomás Feder, Florent R. Madelaine, and Iain A. Stewart. 2004. Dichotomies for classes of homomorphism
problems involving unary functions. Theor. Comput. Sci. 314, 1–2, 1–43.

Tomás Feder and Moshe Y. Vardi. 1998. The computational structure of monotone monadic snp and constraint
satisfaction: A study through datalog and group theory. SIAM J. Comput. 28, 1, 57–104.

Jan Foniok, Jaroslav Nesetril, and Claude Tardif. 2008. Generalised dualities and maximal finite antichains
in the homomorphism order of relational structures. Euro. J. Combinator. 29, 4, 881–899.

Ralph Freese, Marcin Kozik, Andrei Krokhin, Miklós Maróti, Ralph Mckenzie, and Ross Willard. 2009. On
maltsev conditions associated with omitting certain types of local structures. http://www.math.hawaii.
edu/∼ralph/Classes/619/OmittingTypesMaltsev.pdf.

Georg Gottlob, Erich Grädel, and Helmut Veith. 2002. Datalog lite: A deductive query language with linear
time model checking. ACM Trans. Comput. Logics 3, 1, 42–79.

Georg Gottlob and Thomas Schwentick. 2012. Rewriting ontological queries into small nonrecursive datalog
programs. In Proceedings of the International Conference on the Principles of Knowledge Representation
and Reasoning (KR’12).

Bernardo Cuenca Grau, Boris Motik, Giorgos Stoilos, and Ian Horrocks. 2013. Computing datalog rewritings
beyond horn ontologies. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI’13). 832–838.

Pavol Hell, Jaroslav Nešetřil, and X. Zhu. 1996. Duality and polynomial testing of tree homomorphisms.
Trans. Amer. Math. Soc. 348, 4, 1281–1297.

André Hernich, Clemens Kupke, Thomas Lukasiewicz, and Georg Gottlob. 2013. Well-founded semantics
for extended datalog and ontological reasoning. In Proceedings of the 32nd Symposium on Principles of
Database Systems (PODS’13). Richard Hull and Wenfei Fan, Eds., ACM Press, New York, 225–236.

Ian Horrocks and Ulrike Sattler. 1999. A description logic with transitive and inverse roles and role hierar-
chies. J. Logic Comput. 9, 3, 385–410.

Ullrich Hustadt, Boris Motik, and Ulrike Sattler. 2007. Reasoning in description logics by a reduction to
disjunctive datalog. J. Autom. Reason. 39, 3, 351–384.

David S. Johnson. 1990. A catalog of complexity classes. In Handbook of Theoretical Computer Science, MIT
Press, 67–161.

Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev. 2012a. Conjunctive query answering with
OWL 2 QL. In Proceedings of the 13th International Conference on Principles of Knowledge Representation
and Reasoning (KR’12).

Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, and Michael Zakharyaschev. 2012b. Exponential
lower bounds and separation for query rewriting. In Proceedings of the 39th International Colloquium of
Automata, Languages, and Programming (ICALP’12). 263–274.

Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev. 2010. The
combined approach to query answering in DL-lite. In Proceedings of the 12th International Conference
on Principles of Knowledge Representation and Reasoning (KR’12).

Adila Krisnadhi and Carsten Lutz. 2007. Data complexity in the EL family of DLS. In Proceedings of the 14th

International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’07).
333–347.

Gábor Kun. 2007. Constraints, MMSNP, and expander structures. http://arxiv.org/abs/0706.1701v1.
Gábor Kun and Jaroslav Nesetril. 2008. Forbidden lifts (NP and CSP for combinatorialists). Euro. J. Comb.

29, 4, 930–945.
Benoit Larose, Cynthia Loten, and Claude Tardif. 2007. A characterisation of first-order constraint satisfac-

tion problems. Logical Methods Comput. Sci. 3, 4.
Carsten Lutz. 2007. Inverse roles make conjunctive queries hard. In Proceedings of the International Work-

shop on Description Logics (DL’07).
Carsten Lutz. 2008. The complexity of conjunctive query answering in expressive description logics. In

Proceedings of the 4th International Joint Conference on Automated Reasoning (IJCAR’08). 179–193.
Carsten Lutz and Frank Wolter. 2012. Non-uniform data complexity of query answering in description

logics. In Proceedings of the 13th International Conference on Principles of Knowledge Representation
and Reasoning (KR’12).

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

33:44 M. Bienvenu et al.

Florent R. Madelaine. 2009. Universal structures and the logic of forbidden patterns. Logical Methods
Comput. Sci. 5, 2.

Florent R. Madelaine and Iain A. Stewart. 2007. Constraint satisfaction, logic and forbidden patterns. SIAM
J. Comput. 37, 1, 132–163.

Boris Motik. 2006. Reasoning in description logics using resolution and deductive databases. https://www.
cs.ox.ac.uk/boris.motik/pubs/motik06PhD.pdf.

Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. 2010. Tractable query answering and rewriting under
description logic constraints. J. Appl. Logic 8, 2,186–209.

Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. 2008. Linking data to ontologies. J. Data Semant. 10, 133–173.

Mariano Rodriguez-Muro and Diego Calvanese. 2012. High performance query answering over DL-lite on-
tologies. In Proceedings of the 13th International Conference on Principles of Knowledge Representation
and Reasoning (KR’12). 308–318.

Riccardo Rosati and Alessandro Almatelli. 2010. Improving query answering over DL-lite ontologies. In
Proceedings of the 12th International Conference on thePrinciples of Knowledge Representation and
Reasoning (KR’10). 290–300.

Benjamin Rossman. 2008. Homomorphism preservation theorems. J. ACM 55, 3.
Sebastian Rudolph, Markus Krotzsch, and Pascal Hitzler. 2012. Type-elimination-based reasoning for the

description logic shiqbs using decision diagrams and disjunctive datalog. Logical Methods Comput. Sci.
8, 1.

Frantisek Simancik. 2012. Elimination of complex RIAS without automata. In Proceedings of the 25th Inter-
national Workshop on Description Logics (DL’12).

W3C. 2009. OWL 2 web ontology language: Document overview. W3C recommendation. http://www.w3.org/
TR/owl2-overview/.

Received October 2013; revised June 2014; accepted August 2014

ACM Transactions on Database Systems, Vol. 39, No. 4, Article 33, Publication date: December 2014.

