
The Complexity of Ontology-Based Data Access with
OWL 2 QL and Bounded Treewidth Queries

Meghyn Bienvenu
CNRS & University of
Montpellier, France

Stanislav Kikot
Birkbeck

University of London, UK

Roman Kontchakov
Birkbeck

University of London, UK

Vladimir V. Podolskii
Steklov Mathematical

Institute, Moscow, Russia

Vladislav Ryzhikov
Free University of

Bozen-Bolzano, Italy

Michael Zakharyaschev
Birkbeck

University of London, UK

ABSTRACT
Our concern is the overhead of answering OWL2QL
ontology-mediated queries (OMQs) in ontology-based
data access compared to evaluating their underlying
tree-shaped and bounded treewidth conjunctive queries
(CQs). We show that OMQs with bounded-depth onto-
logies have nonrecursive datalog (NDL) rewritings that
can be constructed and evaluated in LOGCFL for com-
bined complexity, even in NL if their CQs are tree-
shaped with a bounded number of leaves, and so incur
no overhead in complexity-theoretic terms. For OMQs
with arbitrary ontologies and bounded-leaf CQs, NDL-
rewritings are constructed and evaluated in LOGCFL.
We show experimentally feasibility and scalability of our
rewritings compared to standard NDL-rewritings. On
the negative side, we prove that answering OMQs with
tree-shaped CQs is not fixed-parameter tractable if the
ontology depth or the number of leaves in the CQs is
regarded as the parameter, and that answering OMQs
with a fixed ontology (of infinite depth) is NP-complete
for tree-shaped and LOGCFL for bounded-leaf CQs.

CCS Concepts
•Information systems→Query languages •Theory
of computation → Complexity theory and logic;
Description logics •Computing methodologies→
Knowledge representation and reasoning

Keywords
Ontology-based data access; ontology-mediated query;
query rewriting; combined & parameterised complexity.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

PODS 2017 Raleigh, North Carolina, USA
c© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

1. INTRODUCTION
The main aim of ontology-based data access (OBDA)

[46, 39] is to facilitate access to complex data for non-
expert end-users. The ontology, given by a logical the-
ory T , provides a unified conceptual view of one or more
data sources, so the users do not have to know the actual
structure of the data and can formulate their queries
in the vocabulary of the ontology, which is connected
to the data schema by a mapping M. The instance
M(D) obtained by applyingM to a given dataset D is
interpreted under the open-world assumption, and ad-
ditional facts can be inferred using the domain knowl-
edge provided by the ontology. A certain answer to a
query q(x) over D is any tuple of constants a such that
T ,M(D) |= q(a). OBDA is closely related to querying
incomplete databases under (ontological) constraints,
data integration [17], and data exchange [2].

In the classical approach to OBDA [11, 46], the com-
putation of certain answers is reduced to standard data-
base query evaluation: given an ontology-mediated query
(OMQ) Q = (T , q(x)), one constructs a first-order
(FO) query q′(x), called a rewriting of Q, such that,
for all datasets D and mappings M,

T ,M(D) |= q(a) ⇐⇒ IM(D) |= q′(a), (1)

where IM(D) is the FO-structure comprised of the atoms
in M(D). When the form of M is appropriately re-
stricted (e.g., M is a GAV mapping), one can further
unfold q′(x) using M to obtain an FO-query that can
be evaluated directly over the original dataset D (so
there is no need to materialise M(D)).

For reduction (1) to hold for all OMQs, it is neces-
sary to restrict the expressivity of T and q. The DL-
Lite family of description logics [11] was specifically de-
signed to ensure (1) for OMQs with conjunctive queries
(CQs) q. Other ontology languages with this property
include linear and sticky tuple-generating dependencies
(tgds) [8, 9], and the OWL2QL profile [41] of the W3C-
standardised Web Ontology Language OWL2, the fo-
cus of this work. Like many other ontology languages,

o
n
to

lo
g
y

d
ep

th

0

1

2

. . .

d

∞

2 . . . ` ∞ 2 . . . t ∞
number of leaves

treewidthtrees

NL LOGCFL

NPLOGCFL

(a)

0

1

2

. . .

d

∞

2 . . . ` ∞ 2 . . . t ∞
number of leaves

treewidthtrees (treewidth 1)

poly NDL
no poly PE

poly FO
iff

NL/poly⊆ NC1

poly NDL
no poly PE

poly FO iff
LOGCFL/poly⊆NC1

no poly NDL&PE

poly
FO
iff

NP/poly⊆

NC1

poly Π2-PE

poly Π4-PE poly PE
poly NDL

no poly PE
poly FO

iff
NL/poly⊆NC1

(b)

Figure 1: OMQ answering in OWL2QL (a) combined complexity and (b) the size of rewritings.

OWL2QL admits only unary and binary predicates,
but arbitrary relational instances can be queried due
to the mapping. Various types of FO-rewritings q′(x)
have been developed and implemented for the preceding
languages [46, 43, 37, 49, 13, 18, 48, 34, 25, 40, 36], and
a few mature OBDA systems have emerged, including
pioneering MASTRO [10], commercial Stardog [44] and
Ultrawrap [50], and the Optique platform [21] with the
query answering engine Ontop [47, 38].

Our concern here is the overhead of OMQ answering—
i.e., checking whether the left-hand side of (1) holds—
compared to evaluating the underlying CQs. At first
sight, there is no apparent difference between the two
problems when viewed through the lens of computa-
tional complexity: OMQ answering is in AC0 for data
complexity by (1) and NP-complete for combined com-
plexity [11], which in both cases corresponds to the com-
plexity of evaluating CQs in the relational setting. Fur-
ther analysis revealed, however, that answering OMQs
is already NP-hard for combined complexity when the
underlying CQs are tree-shaped (acyclic) [33], which
sharply contrasts with the well-known LOGCFL-comple-
teness of evaluating bounded treewidth CQs [56, 12,
24]. This surprising difference motivated a systematic
investigation of the combined complexity of OMQ an-
swering along two dimensions: (i) the query topology
(treewidth t of CQs, and the number ` of leaves in tree-
shaped CQs), and (ii) the existential depth d of ontolo-
gies (i.e., the length of the longest chain of labelled nulls
in the chase on any data). The resulting landscape, dis-
played in Fig. 1 (a) (under the assumption that datasets
are given as RDF graphs andM is the identity) [11, 33,
31, 5], indicates three tractable cases:

OMQ(d, t,∞): ontologies of depth ≤ d coupled with
CQs of treewidth ≤ t (for fixed d, t);

OMQ(d, 1, `): ontologies of depth ≤ d with tree-shaped
CQs with ≤ ` leaves (for fixed d, `);

OMQ(∞, 1, `): ontologies of arbitrary depth and tree-
shaped CQs with ≤ ` leaves (for fixed `).

Observe in particular that when the ontology depth is
bounded by a fixed constant, the complexity of OMQ
answering is precisely the same as for evaluating the
underlying CQs. If we place no restriction on the on-

tology, then tractability of tree-shaped queries can be
recovered by bounding the number of leaves, but we
have LOGCFL rather than the expected NL.

While the results in Fig. 1(a) appear to answer the
question of the additional cost incurred by adding an
OWL2QL ontology, they only tell part of the story. In-
deed, in the context of classical rewriting-based OBDA
[46], it is not the abstract complexity of OMQ answering
that matters, but the cost of computing and evaluating
OMQ rewritings. Fig. 1(b) summarises what is known
about the size of positive existential (PE), nonrecursive
datalog (NDL) and FO-rewritings [32, 23, 31, 5]. Thus,
we see, for example, that PE-rewritings for OMQs from
OMQ(d, t,∞) can be of super-polynomial size, and so
are not computable and evaluable in polynomial time,
even though Fig. 1(a) shows that such OMQs can be
answered in LOGCFL. The same concerns OMQ(d, 1, `)
and OMQ(∞, 1, `), which can be answered in NL and
LOGCFL, respectively, but do not enjoy polynomial-
size PE-rewritings. Moreover, our experiments show
that standard rewriting engines exhibit exponential be-
haviour on OMQs drawn from OMQ(1, 1, 2) lying in the
intersection of the three tractable classes.

Our first aim is to show that the positive complexity
results in Fig. 1(a) can in fact be achieved using query
rewriting. To this end, we develop NDL-rewritings for
the three tractable cases that can be computed and eval-
uated by algorithms of optimal combined complexity.
In theory, such algorithms are known to be space effi-
cient and highly parallelisable. We demonstrate prac-
tical efficiency of our optimal NDL-rewritings by com-
paring them with the NDL-rewritings produced by Clip-
per [18], Presto [49] and Rapid [13], using a sequence of
OMQs from the class OMQ(1,1,2).

Our second aim is to understand the contribution of
the ontology depth and the number of leaves in tree-
shaped CQs to the complexity of OMQ answering. (As
follows from Fig. 1 (a), if these parameters are un-
bounded, this problem is harder than evaluating the
underlying CQs unless LOGCFL = NP.) Unfortunately,
it turns out that answering OMQs with ontologies of fi-
nite depth and tree-shaped CQs is not fixed-parameter
tractable if either the ontology depth or the number
of leaves in CQs is regarded as a parameter. More

precisely, we prove that the problem is W [2]-hard in
the former case and W [1]-hard in the latter. These re-
sults suggest that the ontology depth and the number
of leaves are inherently in the exponent of the size of
the input in any OMQ answering algorithm.

Finally, we revisit the NP- and LOGCFL-hardness re-
sults for OMQs with tree-shaped CQs. The known NP
and LOGCFL lower bounds have been established us-
ing sequences (Tn, qn) of OMQs, where the depth of Tn
grows with n [33, 5]. One might thus hope to make
answering OMQs with tree-shaped CQs easier by re-
stricting the ontology signature, size, or even by fixing
the whole ontology, which is very relevant for applica-
tions as a typical OBDA scenario has users posing dif-
ferent queries over the same ontology. Our third main
result is that this is not the case: we present ontolo-
gies T† and T‡ of infinite depth such that answering
OMQs (T†, q) with tree-shaped q and (T‡, q) with lin-
ear q is NP- and LOGCFL-hard for query complexity,
respectively. We also show that no algorithm can con-
struct FO-rewritings of the OMQs (T†, q) in polynomial
time unless P = NP, even though polynomial-size FO-
rewritings of these OMQs do exist.

The paper is organised as follows. We begin in Sec-
tion 2 by introducing the OWL2QL ontology language
and key notions like OMQ answering and query rewrit-
ing. In Section 3, we first identify fragments of NDL
which can be evaluated in LOGCFL or NL, and then we
use these results to develop NDL-rewritings of optimal
combined complexity for the three tractable cases. Sec-
tion 4 concerns the parameterised complexity of OMQ
answering with tree-shaped CQs. For ontologies of finite
depth, we show W [2]-hardness (resp. W [1]-hardness)
when the ontology depth (resp. number of leaves) is
taken as the parameter. For the infinite depth case, we
show in Section 5 that NP-hardness applies even for a
fixed ontology. The final section of the paper presents
preliminary experiments comparing our new rewritings
to those produced by existing rewriting engines and dis-
cusses possible directions for future work.

2. PRELIMINARIES
An OWL2QL ontology (TBox in description logic),

T , is a finite set of sentences (axioms) of the forms

∀x(τ(x)→ τ ′(x)), ∀x(τ(x) ∧ τ ′(x)→ ⊥),

∀xy (%(x, y)→ %′(x, y)), ∀xy (%(x, y) ∧ %′(x, y)→ ⊥),

∀x %(x, x), ∀x (%(x, x)→ ⊥),

where τ(x) and %(x, y) are defined, using unary predi-
cates A and binary predicates P , by the grammars

τ(x) ::= > | A(x) | ∃y %(x, y),

%(x, y) ::= > | P (x, y) | P (y, x).

When writing ontology axioms, we omit the universal
quantifiers and denote by RT the set of binary predi-
cates P occurring in T and their inverses P−, assuming

that P−− = P . For every % ∈ RT , we take a fresh
unary predicate A% and add A%(x) ↔ ∃y %(x, y) to T .
The resulting ontology is said to be in normal form,
and we assume, without loss of generality, that all our
ontologies are in normal form.

A data instance, A, is a finite set of unary or binary
ground atoms (called an ABox in description logic). We
denote by ind(A) the set of individual constants in A
and write %(a, b) ∈ A if P (a, b) ∈ A and % = P , or
P (b, a) ∈ A and % = P−. We say that A is complete
for an ontology T if T ,A |= S(a) implies S(a) ∈ A, for
any ground atom S(a) with a ⊆ ind(A).1

A conjunctive query (CQ) q(x) is a formula of the
form ∃y ϕ(x,y), where ϕ is a conjunction of atoms S(z)
all of whose variables are among var(q) = x ∪ y. We
denote by avar(q) the answer variables x of q(x) and
assume, without loss of generality, that CQs contain no
constants. We often regard a CQ as the set of its atoms.
With every CQ q, we associate its Gaifman graph G
whose vertices are the variables of q and whose edges
are the pairs {u, v} such that P (u, v) ∈ q, for some P .
We call q connected if G is connected, tree-shaped if G
is a tree, and linear if G is a tree with two leaves.

An ontology-mediated query (OMQ) is a pair Q(x) =
(T , q(x)), where T is an ontology and q(x) a CQ. A
tuple a ⊆ ind(A) is a certain answer to Q(x) over a
data instance A if I |= q(a) for all models I of T and
A; in this case we write T ,A |= q(a). If x = ∅, then a
certain answer to Q over A is ‘yes’ if T ,A |= q and ‘no’
otherwise. The OMQ answering problem (for a class of
OMQs) is to decide whether T ,A |= q(a) holds, given
an OMQ Q(x) (in the class), A and a ⊆ ind(A). If
T , q(x), and A are regarded as input, we speak about
combined complexity of OMQ answering; if A and T are
regarded as fixed, we speak about query complexity.

Every consistent knowledge base (KB) (T ,A) has a
canonical model (or chase in database theory) [1] CT ,A
with the property that T ,A |= q(a) iff CT ,A |= q(a), for
all CQs q(x) and a ⊆ ind(A). In our constructions, we
use the following definition of CT ,A, where without loss
of generality we assume that T contains no binary pred-
icates P with T |= ∀xy P (x, y). The domain, ∆CT ,A ,
consists of ind(A) and the witnesses (or labelled nulls)
of the form w = a%1 . . . %n, for n ≥ 1, such that

– a ∈ ind(A) and T ,A |= ∃y %1(a, y);

– T 6|= %i(x, x), for 1 ≤ i ≤ n;

– T |= ∃x %i(x, y)→ ∃z %i+1(y, z)
but T 6|= %i(x, y)→ %i+1(y, x), for 1 ≤ i < n.

We denote by WT the set of words %1 . . . %n ∈ R∗T
satisfying the last two conditions. Every a ∈ ind(A)
is interpreted in CT ,A by itself, and unary and binary
predicates are interpreted as follows:

– CT ,A |= A(u) iff either u ∈ ind(A) and T ,A |= A(u),
or u = w% with T |= ∃y %(y, x)→ A(x);

1If the meaning is clear from the context, we use set-
theoretic notation for lists.

– CT ,A |= P (u, v) iff one of the 3 conditions holds:
(i) u, v ∈ ind(A) and T ,A |= P (u, v); (ii) u = v
and T |= P (x, x); (iii) T |= %(x, y)→ P (x, y) and
either v = u% or u = v%−.

T is of depth ∞ if WT is infinite, and of depth d <∞
if d is the maximum length of the words in WT . (Note
that the depth of T is computable in NL; cf. [22, 7] for
related results on chase termination for tgds.)

An FO-formula q′(x), possibly with equality, is an
FO-rewriting of an OMQ Q(x) = (T , q(x)) if, for any
data instance A and any tuple a ⊆ ind(A),

T ,A |= q(a) iff IA |= q′(a), (2)

where IA is the FO-structure over the domain ind(A)
such that IA |= S(a) iff S(a) ∈ A, for any ground atom
S(a). If q′(x) is a positive existential formula, we call it
a PE-rewriting of Q(x). A PE-rewriting whose matrix
is a Πk-formula (with respect to ∧ and ∨) is called a Πk-
rewriting. The size |q′| of q′ is the number of symbols
in it.

We also consider rewritings in the form of nonrecur-
sive datalog queries. A datalog program, Π, is a finite set
of Horn clauses ∀z (γ0 ← γ1∧· · ·∧γm), where each γi is
an atom Q(y) with y ⊆ z or an equality (z = z′) with
z, z′ ∈ z. (As usual, we omit ∀z from clauses.) The
atom γ0 is the head of the clause, and γ1, . . . , γm its
body. All variables in the head must occur in the body,
and = can only occur in the body. The predicates in
the heads of clauses in Π are IDB predicates, the rest
(including =) EDB predicates. A predicate Q depends
on P in Π if Π has a clause with Q in the head and P in
the body. Π is a nonrecursive datalog (NDL) program
if the (directed) dependence graph of the dependence
relation is acyclic.

An NDL query is a pair (Π, G(x)), where Π is an NDL
program and G(x) a predicate. A tuple a ⊆ ind(A) is
an answer to (Π, G(x)) over a data instance A if G(a)
holds in the first-order structure with domain ind(A)
obtained by closing A under the clauses in Π; in this
case we write Π,A |= G(a). The problem of checking
whether a is an answer to (Π, G(x)) over A is called
the query evaluation problem. The arity of Π is the
maximal arity, r(Π), of predicates in Π. The depth of
(Π, G(x)) is the length, d(Π, G), of the longest directed
path in the dependence graph for Π starting from G.
NDL queries are equivalent if they have exactly the
same answers over any data instance.

An NDL query (Π, G(x)) is an NDL-rewriting of an
OMQ Q(x) = (T , q(x)) over complete data instances
in case T ,A |= q(a) iff Π,A |= G(a), for any complete
A and any a ⊆ ind(A). Rewritings over arbitrary data
instances are defined by dropping the completeness con-
dition. Given an NDL-rewriting (Π, G(x)) of Q(x) over
complete data instances, we denote by Π∗ the result of
replacing each predicate S in Π with a fresh IDB pred-
icate S∗ of the same arity and adding the clauses

A∗(x)← τ(x), if T |= τ(x)→ A(x),

P ∗(x, y)← %(x, y), if T |= %(x, y)→ P (x, y),

P ∗(x, x)← >(x), if T |= P (x, x),

where >(x) is an EDB predicate for the active domain
[29]. Clearly, (Π∗, G(x)) is an NDL-rewriting of Q(x)
over arbitrary data instances and |Π∗| ≤ |Π|+ |T |2.

Finally, we remark that, in the definition of rewriting,
we can assume that A is consistent with T [8].

3. OPTIMAL NDL-REWRITINGS
To construct theoretically optimal NDL-rewritings for

OMQs in the three tractable classes, we first identify
two types of NDL queries whose evaluation problems
are in NL and LOGCFL for combined complexity.

3.1 NL and LOGCFL fragments of NDL
To simplify the analysis of non-Boolean NDL queries,

it is convenient to regard certain variables as parameters
to be instantiated with constants from the candidate
answer. Formally, an NDL query (Π, G(x1, . . . , xn)) is
called ordered if each of its IDB predicates Q comes
with fixed variables xi1 , . . . , xik (1 ≤ i1 < · · · < ik ≤ n),
called the parameters of Q, such that (i) every occur-
rence ofQ in Π is of the form Q(y1, . . . , ym, xi1 , . . . , xik),
(ii) the parameters of G are x1, . . . , xn, and (iii) pa-
rameters of the head of every clause include all the pa-
rameters of the predicates in the body. Observe that
Boolean NDL queries are trivially ordered. The width
w(Π, G) of an ordered (Π, G) is the maximal number of
non-parameter variables in a clause of Π.

Example 1. The NDL query (Π, G(x)), where

Π = {G(x)← R(x, y) ∧Q(x), Q(x)← R(y, x) },

is ordered with parameter x and width 1 (the conditions
do not restrict the EDB predicate R). Replacing Q(x)
by Q(y) in the first clause yields a query that is not
ordered in view of (i). A further swap of Q(x) in the
second clause with Q(y) would satisfy (i) but not (iii).

As all the NDL-rewritings we construct are ordered,
with their parameters being the answer variables, from
now on we only consider ordered NDL queries.

Given an NDL query (Π, G(x)), a data instance A
and a tuple a with |x| = |a|, the a-grounding ΠaA of Π
on A is the set of ground clauses obtained by first re-
placing each parameter in Π by the corresponding con-
stant from a, and then performing the standard ground-
ing [16] of Π using the constants from A. The size of
ΠaA is bounded by |Π| · |A|w(Π,G), and so we can check

whether Π,A |= G(a) holds in time poly(|Π|·|A|w(Π,G)).

3.1.1 Linear NDL in NL
An NDL program is linear [1] if the body of its every

clause contains at most one IDB predicate.

Theorem 2. For any w > 0, evaluation of linear
NDL queries of width ≤ w is NL-complete for combined
complexity.

Proof. Let (Π, G(x)) be a linear NDL query. Decid-
ing whether Π,A |= G(a) is reducible to finding a path
to G(a) from a certain set X in the grounding graph G
constructed as follows. The vertices of G are the IDB
atoms of ΠaA, and G has an edge from Q(c) to Q′(c′)
iff ΠaA contains Q′(c′) ← Q(c) ∧ S1(c1) ∧ · · · ∧ Sk(ck)
with Si(ci) ∈ A, for 1 ≤ i ≤ k (we assume A contains
all c = c, for c ∈ ind(A)). The set X consists of all ver-
tices Q(c) with IDB predicates Q being of in-degree 0 in
the dependency graph of Π for which there is a clause
Q(c) ← S1(c1) ∧ · · · ∧ Sk(ck) in ΠaA with Si(ci) ∈ A
(1 ≤ i ≤ k). Bounding the width of (Π, G) ensures that
G is of polynomial size and can be constructed by a de-
terministic Turing machine with read-only input, write-
once output and logarithmic-size work tapes. q

The transformation ∗ of NDL-rewritings over com-
plete data instances into NDL-rewritings over arbitrary
data instances does not preserve linearity. A more in-
volved construction is given in the proof of the following:

Lemma 3. Fix any w > 0. There is an LNL-transducer
that, for any linear NDL-rewriting (Π, G(x)) of an OMQ
Q(x) over complete data instances with w(Π, G) ≤ w,
computes a linear NDL-rewriting (Π′, G(x)) of Q(x)
over arbitrary data instances such that w(Π′, G) ≤ w+1.

3.1.2 Skinny NDL in LOGCFL
The complexity class LOGCFL can be defined in terms

of nondeterministic auxiliary pushdown automata
(NAuxPDAs) [14], which are nondeterministic Turing
machines with an additional work tape constrained to
operate as a pushdown store. Sudborough [53] proved
that LOGCFL coincides with the class of problems that
are solved by NAuxPDAs in logarithmic space and poly-
nomial time (the space on the pushdown tape is not
subject to the logarithmic bound). It is known that
LOGCFL can also be defined in terms of logspace-uniform
families of semi-unbounded fan-in circuits (where or-
gates have arbitrarily many inputs, and and-gates two
inputs) of polynomial size and logarithmic depth. More-
over, there is an algorithm that, given such a circuit C,
computes the output using an NAuxPDA in logarith-
mic space in the size of C and exponential time in the
depth of C [55, pp. 392–397].

We call an NDL query (Π, G) skinny if the body of
any clause in Π has at most two2 atoms.

Lemma 4. For any skinny (Π, G(x)) and data in-
stance A, query evaluation can be done by an NAuxPDA
in space log |Π|+ w(Π, G) · log |A| and time 2O(d(Π,G)).

Proof. Define a monotone Boolean circuit C as fol-
lows: its output is G(a); for every atom γ in the head
of a clause in ΠaA, we take an or-gate whose output is γ
and inputs are the bodies of the clauses with head γ;
for every such body, we take an and-gate whose inputs

2In fact, Lemma 4 holds for NDL queries with any
bounded number of atoms, not only two.

are the atoms in the body. We set input γ to 1 iff
γ ∈ A. Clearly, C is a semi-unbounded fan-in circuit
of depth O(d(Π, G)) with O(|Π| · |A|w(Π,G)) gates. Ob-
serving that our C can be computed by a deterministic
logspace Turing machine, we conclude that the query
evaluation problem can be solved by an NAuxPDA in
the required space and time. q

We use weight functions as a means of generalising
skinny programs. A function ν from the predicate names
in Π to N is a weight function for an NDL query (Π, G(x))
if ν(Q) > 0 and ν(Q) ≥ ν(P1) + · · · + ν(Pk), for any
clause Q(z)← P1(z1) ∧ · · · ∧ Pk(zk) in Π. First, using
the Huffman code, we show that any NDL query can be
transformed into an equivalent skinny NDL query whose
depth increases by a logarithm of the weight function.

Lemma 5. Any (Π, G(x)) with a weight function ν is
equivalent to a skinny (Π′, G(x)) with |Π′| = O(|Π|2),
w(Π′, G) ≤ w(Π, G) and d(Π′, G) ≤ d(Π, G) + log ν(G).

Proof. The proof is by induction on d(Π, G). We
take Π′ = Π if d(Π, G) = 0. Otherwise, let Π contain
a clause ψ of the form G(z) ← P1(z1) ∧ · · · ∧ Pk(zk).
Suppose that, for each i (1 ≤ i ≤ k), we have an NDL
query (Π′i, Pi) equivalent to (Π, Pi) and such that

d(Π′i, Pi) ≤ d(Π, Pi) + log ν(Pi)

≤ d(Π, G)− 1 + log ν(Pi). (3)

We construct the Huffman tree [27] for the alphabet
{1, . . . , k}, where the frequency of i is ν(Pi)/ν(G) (by
definition, ν(G) > 0). For example, for ν(G) = 39,
ν(P1) = 15, ν(P2) = 7, ν(P3) = 6, ν(P4) = 6 and
ν(P5) = 5, we obtain the following tree:

g 39

115 24

13 11

27 36 4 6 5 5

In general, the Huffman tree is a binary tree with k
leaves 1, . . . , k, a root g and k − 2 internal nodes and
such that the length of the path from g to any leaf
i is ≤ dlog(ν(G)/ν(Pi))e. For each internal node v
of the tree, we take a predicate Pv(zv), where zv is
the union of zu for all descendants u of v; for the
root g, we take Pg(zg) = G(z). Let Π′ψ be the ex-

tension of the union of the Π′i (1 ≤ i ≤ k) with clauses
Pv(zv) ← Pu1

(zu1
) ∧ Pu2

(zu2
), for each v with imme-

diate successors u1 and u2. The number of the new
clauses is k − 1. By (3), we have:

d(Π′ψ, G) ≤ maxi{dlog(ν(G)/ν(Pi))e+ d(Π′i, Pi)}
≤ maxi{log(ν(G)/ν(Pi)) + d(Π, G) + log ν(Pi)}

= d(Π, G) + log ν(G).

Let Π′ be the result of applying this transformation to
each clause in Π with head G(z). It is readily seen that
(Π′, G) is as required; in particular, |Π′| = O(|Π|2). q

We now use Lemmas 4 and 5 to obtain the following:

Theorem 6. For any c ≥ 1 and w ≥ 1, evaluation of
NDL queries (Π, G(x)) having a weight function ν such
that d(Π, G) + log ν(G) ≤ c log |Π| and w(Π, G) ≤ w is
in LOGCFL for combined complexity.

We say that a class of OMQs is skinny-reducible if,
for some fixed c ≥ 1 and w ≥ 1, there is an LLOGCFL-
transducer that, given any OMQQ(x) in the class, com-
putes its NDL-rewriting (Π, G(x)) over complete data
instances with a weight function ν such that d(Π, G) +
log ν(G) ≤ c log |Π| and w(Π, G) ≤ w. Theorem 6 and
the transformation ∗ give the following:

Corollary 7. Answering OMQs from any skinny-
reducible class is in LOGCFL for combined complexity.

We now use the preceding results to construct optimal
NDL-rewritings for our three classes of tractable OMQs.
Appendix A.6 gives concrete examples of our rewritings.

3.2 LOGCFL rewritings for OMQ(d, t, ∞)
Recall (see, e.g., [20]) that a tree decomposition of an

undirected graph G = (V,E) is a pair (T, λ), where T
is an (undirected) tree and λ a function from the nodes
of T to 2V such that

– for every v ∈ V , there exists a node t with v ∈ λ(t);

– for every e ∈ E, there exists a node t with e ⊆ λ(t);

– for every v ∈ V , the nodes {t | v ∈ λ(t)} induce a
connected subgraph of T (called a subtree of T).

We call the set λ(t) ⊆ V a bag for t. The width of (T, λ)
is maxt∈T |λ(t)| − 1. The treewidth of a graph G is the
minimum width over all tree decompositions of G. The
treewidth of a CQ is the treewidth of its Gaifman graph.

Example 8. Consider the CQ q(x0, x7) depicted be-
low (black nodes represent answer variables):

x0 x1 x2 x3 x4 x5 x6 x7

R S R R S R R

Its natural tree decomposition of treewidth 1 is based
on the chain T of 7 vertices shown as bags below:

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

R S R R S R R

In this section, we prove the following:

Theorem 9. For any fixed d ≥ 0 and t ≥ 1, the
class OMQ(d, t,∞) is skinny-reducible.

In a nutshell, we split recursively a given CQ q into
sub-CQs qD based on subtrees D of the tree decomposi-
tion of q, and combine their rewritings into a rewriting
of q. To guarantee compatibility of these rewritings, we
use ‘boundary conditions’ w that describe the types of
points on the boundaries of the qD and, for each possi-
ble boundary condition w, we define recursively a fresh
IDB predicate GwD. We now formalise the construction
and illustrate it using the CQ from Example 8.

Fix a connected CQ q(x) and a tree decomposition
(T, λ) of its Gaifman graph G = (V,E). Let D be a
subtree of T . The size of D is the number of nodes in it.
A node t of D is called boundary if T has an edge {t, t′}
with t′ /∈ D. The degree deg(D) of D is the number of
its boundary nodes (T itself is the only subtree of T of
degree 0). We say that a node t splits D into subtrees
D1, . . . , Dk if the Di partition D without t: each node
of D except t belongs to exactly one Di.

Lemma 10 ([5]). Let D be a subtree of T of size
n > 1. If deg(D) = 2, then there is a node t splitting D
into subtrees of size ≤ n/2 and degree ≤ 2 and, possibly,
one subtree of size < n−1 and degree 1. If deg(D) ≤ 1,
then there is t splitting D into subtrees of size ≤ n/2
and degree ≤ 2.

In Example 8, t splits T into D1 and D2 as follows:

D1 D2
t

x0

x1

x1

x2

x2

x3

x3

x4

x4

x5

x5

x6

x6

x7

R S R R S R R

We define recursively a set D of subtrees of T , a bi-
nary ‘predecessor’ relation ≺ on D, and a function σ on
D indicating the splitting node. We begin by adding T
to D. Take any D ∈ D that has not been split yet. If D
is of size 1, then σ(D) is the only node of D. Otherwise,
by Lemma 10, we find a node t in D that splits it into
D1, . . . , Dk. We set σ(D) = t and, for 1 ≤ i ≤ k, add
Di to D and set Di ≺ D; then, we apply the procedure
recursively to each of D1, . . . , Dk. In Example 8 with t
splitting T , we have σ(T) = t, D1 ≺ T and D2 ≺ T .

For each D ∈ D, we recursively define a set of atoms

qD =
{
S(z) ∈ q | z ⊆ λ(σ(D))

}
∪
⋃

D′≺D
qD′ .

By the definition of tree decomposition, qT = q. Denote
by xD the subset of x that occurs in qD. In Example 8,
xT = {x0, x7}, xD1

= {x0} and xD2
= {x7}. Let ∂D

be the union of all λ(t) ∩ λ(t′) for boundary nodes t of
D and its neighbours t′ in T outside D. In our example,
∂T = ∅, ∂D1 = {x3} and ∂D2 = {x4}.

Let T be an ontology of depth ≤ d. A type is a
partial map w from V to WT ; its domain is denoted by
dom(w). The unique partial type with dom(ε) = ∅ is
denoted by ε. We use types to represent how variables
are mapped into CT ,A, with w(z) = w indicating that
z is mapped to an element of the form aw (for some
a ∈ ind(A)), and with w(z) = ε that z is mapped to an
individual constant. We say that a type w is compatible
with a bag t if, for all y, z ∈ λ(t) ∩ dom(w), we have

– if z ∈ x, then w(z) = ε;

– if A(z) ∈ q, then either w(z) = ε or w(z) = w%
with T |= ∃y %(y, x)→ A(x);

– if P (y, z) ∈ q, then one of the three conditions
holds: (i) w(y) = w(z) = ε; (ii) w(y) = w(z)
and T |= P (x, x); (iii) T |= %(x, y)→ P (x, y) and
either w(z) = w(y)% or w(y) = w(z)%−.

In the sequel we abuse notation and use sets of vari-
ables in place of sequences assuming that they are or-
dered in some (fixed) way. For example, we use xD for
a tuple of variables in the set xD (ordered in some way).
Also, given a tuple a ∈ ind(A)|xD| and x ∈ xD, we write
a(x) to refer to the component of a that corresponds
to x (that is, the component with the same index).

We now define an NDL-rewriting ofQ(x) = (T , q(x)).
For any D ∈ D and type w with dom(w) = ∂D, let
GwD(∂D,xD) be a fresh IDB predicate with parame-
ters xD (note that ∂D and xD may be not disjoint).
For each type s with dom(s) = λ(σ(D)) such that s
is compatible with σ(D) and agrees with w on their
common domain, the NDL program ΠLog

Q contains

GwD(∂D,xD)← Ats ∧
∧

D′≺D
G

(s∪w)�∂D′

D′ (∂D′,xD′),

where (s∪w) � ∂D′ is the restriction of the union s ∪w
to ∂D′ (since dom(s∪w) covers ∂D′, the domain of the
restriction is ∂D′), and Ats is the conjunction of

(a) A(z), for A(z) ∈ q with s(z) = ε, and P (y, z), for
P (y, z) ∈ q with s(y) = s(z) = ε;

(b) y = z, for P (y, z) ∈ q with s(y) 6= ε or s(z) 6= ε;

(c) A%(z), for z with s(z) = %w, for some w.

The conjuncts in (a) ensure that atoms all of whose
variables are assigned ε hold in the data instance. The
conjuncts in (b) ensure that if one variable in a binary
atom is not mapped to ε, then the images of both its
variables share the same initial individual. Finally, the
conjuncts in (c) ensure that if a variable is to be mapped
to a%w, then a%w is indeed in the domain of CT ,A.

Example 11. With the query in Example 8, consider
now the following ontology T :

P (x, y)→ S(x, y), AP (x)↔ ∃y P (x, y),

P (x, y)→ R(y, x), AP−(x)↔ ∃y P (y, x)

(the remaining normalisation axioms are omitted). Since
λ(t) = {x3, x4}, there are two types compatible with t
that can contribute to the rewriting: s1 = {x3 7→ ε,
x4 7→ ε} and s2 = {x3 7→ ε, x4 7→ P−}. So we have
Ats1 = R(x3, x4) and Ats2 = AP−(x4) ∧ (x3 = x4).
Thus, the predicate GεT is defined by two clauses with
the head GεT (x0, x7) and the following bodies:

Gx3 7→ε
D1

(x3, x0) ∧R(x3, x4) ∧Gx4 7→ε
D2

(x4, x7),

Gx3 7→ε
D1

(x3, x0) ∧AP−(x4) ∧ (x3 = x4) ∧Gx4 7→P−
D2

(x4, x7),

for s1 and s2, respectively. Although {x3 7→ P, x4 7→ ε}
is also compatible with t, its predicate Gx3 7→P

D1
will have

no definition in the rewriting, and hence can be omit-
ted. The same is true of the other compatible types
{x3 7→ ε, x4 7→ R} and {x3 7→ R−, x4 7→ ε}.

By induction on≺, one can now show that (ΠLog
Q , GεT)

is a rewriting of Q(x); see Appendix A.3 for details.

Fix now d and t, and considerQ(x) = (T , q(x)) from
OMQ(d, t,∞). Let T be a tree decomposition of q of
treewidth ≤ t; we may assume w.l.o.g. that T has at
most |q| nodes. We take the following weight function:
ν(GwD) = |D|. Clearly, ν(GεT) ≤ |Q|. By Lemma 10,
w(ΠLog

Q , GεT) ≤ |∂D| ≤ 2(t + 1) and d(ΠLog
Q , GεT) ≤

2 log |T | = 2 log ν(GεT) ≤ 2 log |Q|. Since |D| ≤ |T |2
and there are at most |T |2d(t+1) options for w, there
are polynomially many predicates GwD, and so ΠLog

Q
is of polynomial size. Thus, by Corollary 7, the con-
structed NDL-rewriting over arbitrary data instances
can be evaluated in LOGCFL. Finally, we note that a
tree decomposition of treewidth ≤ t can be computed
using an LLOGCFL-transducer [24], and so the NDL-rewri-
ting can also be constructed by an LLOGCFL-transducer.

The obtained NDL-rewriting implies that answering
OMQs (T , q(x)) with T of finite depth d and q of tree-
width t over any data instance A can be done in time

poly(|T |dt, |q|, |A|t). (4)

3.3 NL rewritings for OMQ(d, 1, `)

Theorem 12. Let d ≥ 0 and ` ≥ 2 be fixed. There is
an LNL-transducer that, given an OMQ Q = (T , q(x))
in OMQ(d, 1, `), constructs its polynomial-size linear
NDL-rewriting of width ≤ 2`.

Let T be an ontology of finite depth d, and let q(x)
be a tree-shaped CQ with at most ` leaves. Fix one of
the variables of q as root, and let M be the maximal
distance to a leaf from the root. For 0 ≤ n ≤M , let zn

denote the set of all variables of q at distance n from
the root; clearly, |zn| ≤ `. We call the zn slices of q
and observe that they satisfy the following: for every
P (z, z′) ∈ q with z 6= z′, there exists n < M such that

either z ∈ zn and z′ ∈ zn+1 or z′ ∈ zn and z ∈ zn+1.

For 0 ≤ n ≤ M , let qn(zn∃ ,x
n) be the query consisting

of all atoms S(z) of q such that z ⊆
⋃
n≤k≤M z

k, where

xn is the subset of x that occurs in qn and zn∃ = zn \x.
By a type for slice zn, we mean a total map w from

zn to WT . Analogously to Section 3.2, we define the
notions of types compatible with slices. Specifically, we
call w locally compatible with zn if for every z ∈ zn:

– if z ∈ x, then w(z) = ε;

– if A(z) ∈ q, then either w(z) = ε or w(z) = w%
with T |= ∃y %(y, x)→ A(x);

– if P (z, z) ∈ q, then eitherw(z) = ε or T |=P (x, x).

If w, s are types for zn and zn+1, respectively, then we
say (w, s) is compatible with (zn, zn+1) if w is locally
compatible with zn, s is locally compatible with zn+1,

– for every P (z, z′) ∈ q with z ∈ zn and z′ ∈ zn+1,
one of the three condition holds: w(z) = s(z′) = ε,
or w(z) = s(z′) with T |= P (x, x), or
T |= %(x, y)→ P (x, y) with either s(z′) = w(z)%
or w(z) = s(z′)%−.

Consider the NDL program ΠLin
Q defined as follows.

For every 0 ≤ n < M and every pair of types (w, s) that
is compatible with (zn, zn+1), we include the clause

Gwn (zn∃ ,x
n)← Atw∪s(zn, zn+1) ∧Gsn+1(zn+1

∃ ,xn+1),

where xn are the parameters ofGwn and Atw∪s(zn, zn+1)
is the conjunction of atoms (a)–(c) as defined in Sec-
tion 3.2, for the union w ∪ s. For every type w locally
compatible with zM , we include the clause

GwM (zM∃ ,x
M)← Atw(zM).

(Recall that zM is a disjoint union of zM∃ and xM .)
We use G with parameters x as the goal predicate and
include G(x) ← Gw0 (z0

∃,x) for every predicate Gw0 oc-
curring in the head of one of the preceding clauses.

By induction on n, we show in Appendix A.4 that
(ΠLin
Q , G(x)) is a rewriting of (T , q(x)) over complete

data instances. It should be clear that ΠLin
Q is a linear

NDL program of width≤ 2` and containing≤ |q|·|T |2d`
predicates. Moreover, it takes only logarithmic space to
store a typew, which allows us to show that ΠLin

Q can be
computed by an LNL-transducer. We apply Lemma 3 to
obtain an NDL-rewriting for arbitrary data instances,
and then use Theorem 2 to conclude that the resulting
program can be evaluated in NL.

The obtained NDL-rewriting implies that answering
(T , q(x)) with T of finite depth d and tree-shaped q
with ` leaves over any data A can be done in time

poly(|T |d`, |q|, |A|`). (5)

3.4 LOGCFL rewritings for OMQ(∞, 1, `)
Unlike the previous two classes, answering OMQs in

OMQ(∞, 1, `) can be harder—LOGCFL-complete—than
evaluating their CQs, which can be done in NL.

Theorem 13. For any fixed ` ≥ 2, OMQ(∞, 1, `) is
skinny-reducible.

For OMQs with bounded-leaf CQs and ontologies of
unbounded depth, our rewriting uses the notion of tree
witness [34]. Consider an OMQ Q(x) = (T , q(x)). Let
t = (tr, ti) be a pair of disjoint sets of variables in q such
that ti 6= ∅ but ti ∩ x = ∅. Set

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z 6⊆ tr

}
.

If qt is a minimal subset of q containing every atom of q
with a variable from ti and such that there is a homo-
morphism h : qt → CT ,{A%(a)} with h−1(a) = tr, we call
t a tree witness for Q(x) generated by %. Intuitively, t
identifies a minimal subset of q that can be mapped to
the tree-shaped part of the canonical model consisting
of labelled nulls: the variables in tr are mapped to an
individual constant, say, a, at the root of a tree and
the ti are mapped to the labelled nulls of the form aw,
for some w ∈ WT that begins with %. Note that the
same tree witness can be generated by different %.

The logarithmic-depth NDL-rewriting for OMQs from
OMQ(∞, 1, `) is based on the following observation:

Lemma 14 ([31]). Every tree T of size n has a
node splitting it into subtrees of size ≤dn/2e.

Let Q(x0) = (T , q0(x0)) be an OMQ with a tree-
shaped CQ. We will repeatedly apply Lemma 14 to de-
compose the CQ into smaller and smaller subqueries.
Formally, for a tree-shaped CQ q, we denote by zq a
vertex in the Gaifman graph G of q that satisfies the
condition of Lemma 14; if |var(q)| = 2 and q has at
least one existentially quantified variable, then we as-
sume that zq is such. Let Q be the smallest set that con-
tains q0(x0) and the following CQs, for every q(x) ∈ Q
with existentially quantified variables:

– for each zi adjacent to zq in G, the CQ qi(xi)
comprising all binary atoms with both zi and zq,
and all atoms whose variables cannot reach zq in
G without passing by zi, where xi is the set of
variables in x ∪ {zq} that occur in qi;

– for each tree witness t for (T , q(x)) with tr 6= ∅
and zq ∈ ti, the CQs qt1(xt

1), . . . , qtk(xt
k) that cor-

respond to the connected components of the set of
atoms of q that are not in qt, where each xt

i is the
set of variables in x ∪ tr that occur in qti.

The two cases are depicted below:

q1

q2

q3
zq

z1

z2

z3

a tr

ti

qt
1 qt

2

zq

a

a%

Note that tr 6= ∅ ensures that part of the query without
qt is mapped onto individual constants.

The NDL program ΠTw
Q uses IDB predicates Gq(x),

for q(x) ∈ Q, whose parameters are the variables in x0

that occur in q(x). For each q(x) ∈ Q, if it has no
existentially quantified variables, then we include the
clause Gq(x)← q(x). Otherwise, we include the clause

Gq(x) ←
∧

S(z)∈q, z⊆{zq}

S(z) ∧
∧

1≤i≤n

Gqi(xi),

where q1(x1), . . . , qn(xn) are the subqueries induced by
the neighbours of zq in G, and, for each tree witness t
for (T , q(x)) with tr 6= ∅ and zq ∈ ti and for every %
generating t, the following clause

Gq(x) ← A%(z0) ∧
∧

z∈tr\{z0}

(z = z0) ∧
∧

1≤i≤k

Gqti (x
t
i),

where z0 is any variable in tr and qt1, . . . , q
t
k are the

connected components of q without qt. Finally, if q0

is Boolean, then we include clauses Gq0 ← A(x) for all
unary predicates A such that T , {A(a)} |= q0.

The program ΠTw
Q is inspired by a similar construc-

tion from [31]. By adapting the proof, we can show that
(ΠTw
Q , Gq0(x0)) is indeed a rewriting; see Appendix A.5.

Now fix ` > 1 and consider Q(x) = (T , q(x)) from
the class OMQ(∞, 1, `). The size of ΠTw

Q is polynomi-

ally bounded in |Q| since q has O(|q|`) tree witnesses

and tree-shaped subqueries. It is readily seen that the
function ν defined by setting ν(Gq) = |q| is a weight
function for (ΠTw

Q , Gq0) with ν(Gq0) ≤ |Q|. Moreover,

by Lemma 14, d(Π, Gq) ≤ log ν(Gq) + 1; and clearly,
w(ΠTw

Q , Gq0) ≤ ` + 1. By Corollary 7, the obtained
NDL-rewritings can be evaluated in LOGCFL. Finally,
we note that since the number of leaves is bounded, it
is in NL to decide whether a vertex satisfies the condi-
tions of Lemma 14, and in LOGCFL to decide whether
T , {A(a)} |= q0 [5] or whether a (logspace) representa-
tion of a possible tree witness is indeed a tree witness.
This allows us to show that (ΠTw

Q , Gq0) can be gener-
ated by an LLOGCFL-transducer. It also follows that an-
swering OMQs (T , q(x)) with a tree-shaped CQ with `
leaves over any data instance A can be done in time

poly(|T |, |q|`, |A|`). (6)

4. PARAMETERISED COMPLEXITY
The upper bounds (4) and (6) for the time required to

evaluate NDL-rewritings of OMQs from OMQ(d, 1,∞)
and OMQ(∞, 1, `) contain d and ` in the exponent of
|T | and |q|. Moreover, if we allow d and ` to grow
while keeping CQs tree-shaped, the combined complex-
ity of OMQ answering will jump to NP; see Fig. 1(a).
In this section, we regard d and ` as parameters and
show that answering tree-shaped OMQs is not fixed-
parameter tractable.

4.1 Ontology Depth
Consider the following problem pDepth-TreeOMQ:

Instance: an OMQ Q = (T , q) with T of finite
depth and tree-shaped Boolean CQ q.

Parameter: the depth of T .
Problem: decide whether T , {A(a)} |= q.

Theorem 15. pDepth-TreeOMQ is W [2]-hard.

Proof. The proof is by reduction of the problem p-
HittingSet, which is known to be W [2]-complete [20]:

Instance: a hypergraph H = (V,E) and k ∈ N.
Parameter: k.
Problem: decide whether there is A ⊆ V such that

|A| = k and e ∩A 6= ∅, for every e ∈ E.
(Such a set A of vertices is called a hitting set of size k.)
Suppose that H = (V,E) is a hypergraph with vertices
V = {v1, . . . , vn} and hyperedges E = {e1, . . . , em}.
Let T kH be the (normal form of an) ontology with the
following axioms, for 1 ≤ l ≤ k:

V l−1
i (x)→ ∃z

(
P (z, x) ∧ V li′(z)

)
, for 0 ≤ i < i′ ≤ n,

V li (x)→ Elj(x), for vi ∈ ej , ej ∈ E,
Elj(x)→ ∃z

(
P (x, z) ∧ El−1

j (z)
)
, for 1 ≤ j ≤ m.

Let qkH be a tree-shaped Boolean CQ with the following
atoms, for 1 ≤ j ≤ m:

P (y, zk−1
j), P (zlj , z

l−1
j) for 1 ≤ l < k, and E0

j (z0
j).

The first axiom of T kH generates a tree of depth k, with
branching ranging from n to 1, such that the points w
of level k are labelled with subsets X ⊆ V of size k
that are read off the path from the root to w. The
CQ qkH is a star with rays corresponding to the hy-
peredges of H. The second and third axioms generate
‘pendants’ ensuring that, for any hyperedge e, the cen-
tral point of the CQ can be mapped to a point with
a label X iff X and e have a common vertex. The
canonical model of (T 2

H , {V 0
0 (a)}) and the CQ q2

H , for
H = (V, {e1, e2, e3}) with V = {1, 2, 3}, e1 = {1, 3},
e2 = {2, 3} and e3 = {1, 2}, is shown below:

CT 2
H

,{V 0
0 (a)}

q2
H

level

0

1

2

a

1 2 3

2 3 3

E1
E3E2 E3

E1 E2 E1 E2E1 E2E3E2

y

E2 E3 E1

Points i at level l belong to V li . In Appendix B.1 we
prove that T kH , {V 0

0 (a)} |= qkH iff H has a hitting set of
size k. In the example above, {1, 2} is a hitting set of
size 2, which corresponds to the homomorphism from
q2
H into the part of CT 2

H ,{V 0
0 (a)} shown in black. q

By Theorem 9, OMQs (T , q) from OMQ(d, 1,∞) can
be answered (via NDL-rewriting) over a data instance
A in time poly(|T |d, |q|, |A|). Theorem 15 shows that
no algorithm can do this in time f(d) ·poly(|T |, |q|, |A|),
for any computable function f , unless W [2] = FPT.

4.2 Number of Leaves
Next we consider the problem pLeaves-TreeOMQ:

Instance: an OMQ Q = (T , q) with T of finite
depth and tree-shaped Boolean CQ q.

Parameter: the number of leaves in q.
Problem: decide whether T , {A(a)} |= q.

Theorem 16. pLeaves-TreeOMQ is W [1]-hard.

Proof. The proof is by reduction of the following
W [1]-complete PartitionedClique problem [19]:

Instance: a graph G = (V,E) whose vertices are
partitioned into p sets V1, . . . , Vp.

Parameter: p, the number of partitions.
Problem: decide whether G has a clique of size p

containing one vertex from each Vi.

Consider a graph G = (V,E) with V = {v1, . . . , vM}
partitioned into V1, . . . , Vp. The ontology TG will create
a tree rooted at A(a) whose every branch corresponds
to selecting one vertex from each Vi. Each branch has
length (p · 2M) + 1 and consists of p ‘blocks’ of length
2M , plus an extra edge at the end (used for padding).
Each block corresponds to an enumeration of V , with
positions 2j and 2j + 1 being associated with vj . In
the ith block of a branch, we will select a vertex vji
from Vi by marking the positions 2ji and 2ji + 1 with
the binary predicate S; we also mark the positions of

the neighbours of vji in G with the predicate Y . We
use the unary predicate B to mark the end of the pth
block (square nodes in the picture below). The left side
of the picture illustrates the construction for p = 3,
where V1 = {v1, v2}, V2 = {v3}, V3 = {v4, v5}, and
E = {{v1, v3}, {v3, v5}}.

a

1 2

3

4 5

3

54

Y Y1

2

SS3

4

Y Y5

V1

V2

V3

2
M

a
rr
o
w
s

CTG,{A(a)} qGy

SS

z2

SSj

z1

j⊕1

j⊕2

j⊕3

j⊕4

Y Yj

2
M

a
rro

w
s

Since vertices are enumerated in the same order in every
block, to check whether the selected vertex vji for Vi is
a neighbour of the vertices selected from Vi+1, . . . , Vp, it
suffices to check that positions 2ji and 2ji + 1 in blocks
i+ 1, . . . , p are marked Y Y . Moreover, the distance be-
tween the positions of a vertex in consecutive blocks is
always 2M − 2. The idea is thus to construct a CQ
qG (right side of the picture) which, starting from a
variable labelled B (mapped to the end of a pth block),
splits into p− 1 branches, with the ith branch checking
for a sequence of i evenly-spaced Y Y markers leading
to an SS marker. The distance from the end of the pth
block (marked B) to the positions 2ji and 2ji+1 in the
pth block (where the first Y Y should occur) depends on
the choice of vji . We thus add an outgoing edge at the
end of the pth block, which can be navigated in both
directions, to be able to ‘consume’ any even number of
query atoms preceding the first Y Y .

The Boolean CQ qG looks as follows (for readability,
we use atoms with star-free regular expressions):

B(y) ∧
∧

1≤i<p

(
U2M−2 · (Y Y · U2M−2)i · SS

)
(y, zi),

and the ontology TG contains the following axioms:

A(x)→ ∃y L1
j (x, y), for vj ∈ V1,

∃z Lkj (z, x)→ ∃y Lk+1
j (x, y), for 1 ≤ k < 2M, vj ∈ V,

∃z L2M
j (z, x)→ ∃y L1

j′(x, y), for vj ∈ Vi, vj′ ∈ Vi+1,

Lkj (x, y)→ S(y, x), for k ∈ {2j, 2j + 1},
Lkj (x, y)→ Y (y, x), for {vj , vj′} ∈ E

and k ∈ {2j′, 2j′ + 1},
Lkj (x, y)→ U(y, x), for 1 ≤ k ≤ 2M, vj ∈ V,

∃z L2M
j (z, x)→ B(x), for vj ∈ Vp,

B(x)→ ∃y
(
U(x, y) ∧ U(y, x)

)
.

We prove in the appendix that TG, {A(a)} |= qG iff G
has a clique containing one vertex from each set Vi. q

By (6), OMQs (T , q) from OMQ(∞, 1, `) can be an-
swered (via NDL-rewriting) over a data instance A in
time poly(|T |, |q|`, |A|`). Theorem 16 shows that no al-
gorithm can do this in time f(`) · poly(|T |, |q|, |A|), for
any computable function f , unless W [1] = FPT.

One may consider various other types of parameters
that can hopefully reduce the complexity of OMQ an-
swering. Obvious candidates are the size of ontology,
the size of ontology signature or the number of role in-
clusions in ontologies. (Indeed, it is shown in [6] that
in the absence of role inclusions, tree-shaped OMQ an-
swering is tractable.) Unfortunately, bounding any of
these parameters does not make OMQ answering easier,
as we establish in Section 5 that already one fixed on-
tology makes the problem NP-hard for tree-shaped CQs
and LOGCFL-hard for linear ones.

5. OMQS WITH A FIXED ONTOLOGY
In a typical OBDA scenario [30], users are provided

with an ontology in a familiar signature (developed by a
domain expert) with which they formulate their queries.
Thus, it is of interest to identify the complexity of an-
swering tree-shaped OMQs (T , q) with a fixed T of in-
finite depth (see Fig. 1). Surprisingly, we show that the
problem is NP-hard even when both T and A are fixed
(in the database setting, answering tree-shaped CQs is
in LOGCFL for combined complexity).

Theorem 17. There is an ontology T† such that an-
swering OMQs of the form (T†, q) with Boolean tree-
shaped CQs q is NP-hard for query complexity.

Proof. The proof is by reduction of SAT. Given a
CNF ϕ with variables p1, . . . , pk and clauses χ1, . . . , χm,
take a Boolean CQ qϕ with A(y) and, for 1 ≤ j ≤ m,

the following atoms with zkj = y:

P+(zlj , z
l−1
j), if pl occurs in χj positively,

P−(zlj , z
l−1
j), if pl occurs in χj negatively,

P0(zlj , z
l−1
j), if pl does not occur in χj ,

B0(z0
j).

Thus, qϕ is a star with centre A(y) and m rays encoding
the χj by the binary predicates P+, P− and P0. Let T†
be an ontology with the axioms

A(x)→ ∃y
(
P+(y, x) ∧ P0(y, x) ∧B−(y) ∧A(y)

)
,

B−(y)→ ∃x′
(
P−(y, x′) ∧B0(x′)

)
,

A(x)→ ∃y
(
P−(y, x) ∧ P0(y, x) ∧B+(y) ∧A(y)

)
,

B+(y)→ ∃x′
(
P+(y, x′) ∧B0(x′)

)
,

B0(x)→ ∃y
(
P+(x, y) ∧ P−(x, y) ∧ P0(x, y) ∧B0(y)

)
.

Intuitively, (T†, {A(a)}) generates an infinite binary tree
whose nodes of depth n represent all 2n truth assign-
ments to n propositional variables. The CQ qϕ can only
be mapped along a branch of this tree towards its root
a, with the image of y, the centre of the star, giving a

satisfying assignment for ϕ. Each non-root node of the
tree also starts an infinite ‘sink’ branch of B0-nodes,
where the remainder of the ray for χj can be mapped
as soon as one of its literals is satisfied. We show in
Appendix C.1 that T†, {A(a)} |= qϕ iff ϕ is satisfiable.
To illustrate, the CQ qϕ for ϕ = (p1 ∨ p2) ∧ ¬p1 and
a fragment of the canonical model CT†,{A(a)} are shown
below:

p2

p1

y A

z11 z12

z01 z02

+

+

0

−

p1∨p2 ¬p1
a

+
0

−
0

+
0

−
0

+
0

−

− + −

CT†,{A(a)}qϕ

Here, are the points in B0 and the labels on arrows
indicate the subscripts of the binary predicates P (the
empty label means all three: +, − and 0); predicates
A, B+, B− are not shown in CT†,{A(a)}. q

The proof above uses OMQs Qϕ = (T†, qϕ) over a
data instance with a single individual constant. Thus:

Corollary 18. No polynomial-time algorithm can
construct FO- or NDL-rewritings for the OMQs Qϕ un-
less P = NP.

Proof. Indeed, if a polynomial-time algorithm could
find a rewriting q′ϕ of Qϕ, then we would be able to
check whether ϕ is satisfiable in polynomial time by
evaluating q′ϕ over the data instance {A(a)}. q

Curiously enough, Corollary 18 can be complemented
with the following theorem:

Theorem 19. The Qϕhave polynomial FO-rewritings.

Proof. Define q′ϕ as the FO-sentence

∀xy
(
(x = y) ∧A(x) ∧ ϕ∗

)
∨ ∃xy

(
(x 6= y) ∧ q∗ϕ(x, y)

)
,

where ϕ∗ is > if ϕ is satisfiable and ⊥ otherwise, and
q∗ϕ(x, y) is the polynomial-size FO-rewriting of Qϕ over
data with at least 2 constants [23, Corollary 14]. Recall
that the proof of Theorem 17 shows that, if A has a
single constant, a, and there is a homomorphism from
qϕ to CT†,A, then A(a) ∈ A and ϕ is satisfiable. Thus,
the first disjunct of q′ϕ is an FO-rewriting of Qϕ over
data instances with a single constant; the case of at
least 2 constants follows from [23, Corollary 14]. q

Whether the OMQs Qϕ have a polynomial-size PE-
or NDL-rewritings remains open. We have only man-
aged to construct a modification q̄ϕ(x) of qϕ with the
following interesting properties (details are given in Ap-
pendix C.2). Let T be the class of data instances rep-
resenting finite binary trees with root a whose edges
are labelled with P+ and P−, and some of whose leaves
are labelled with B0. Let QL be any query language
such that, for every QL-query Φ(x) and every A ∈ T,

the answer to Φ(a) over A can be computed in time
polynomial in |Φ| and |A|. Typical examples of QL
are modal-like languages such as certain fragments of
XPath [35] or description logic instance queries [4].

Theorem 20. The OMQs (T†, q̄ϕ(x)) do not have
polynomial-size rewritings in QL unless NP ⊆ P/poly.

To our surprise, Theorem 20 is not applicable to PE.3

Theorem 21. Evaluating PE-queries over trees in T
is NP-hard.

Finally, we consider bounded-leaf CQs (whose evalu-
ation is NL-complete in the database setting) with fixed
ontology and data.

Theorem 22. There is an ontology T‡ such that an-
swering OMQs of the form (T‡, q) with Boolean linear
CQs q is LOGCFL-hard for query complexity.

The proof is by reduction of the recognition prob-
lem for the hardest LOGCFL language L [26, 52]. We
construct an ontology T‡ and a logspace transducer that
converts the words w in the alphabet of L to linear CQs
qw such that w ∈ L iff T‡, {A(a)} |= qw.

6. EXPERIMENTS & CONCLUSIONS
The main positive result of this paper is the develop-

ment of theoretically optimal NDL-rewritings for three
classes OMQ(d, t,∞), OMQ(d, 1, `), OMQ(∞, 1, `) of
OMQs. It was known that answering such OMQs is
tractable, but the proofs employed elaborate algorithms
tailored for each of the three cases. We have shown
that the optimal complexity can be achieved via NDL-
rewriting, thus reducing OMQ answering to standard
query evaluation. This result is practically relevant as
many user queries are tree-shaped (see, e.g., [45] for
evidence in the RDF setting), and indeed, recent tools
for query formulation over ontologies (like [51]) produce
tree-shaped CQs. Moreover, the majority of impor-
tant real-world OWL2 ontologies are of finite depth; see
[15] for statistics. In the context of OBDA, OWL2QL
ontologies are often built starting from the database
schemas (bootstrapping [28]), which typically do not
contain cycles such as ‘every manager is managed by
a manager.’ For example, the NPD FactPages ontol-
ogy,4 designed to facilitate querying the datasets of the
Norwegian Petroleum Directorate, is of depth 5.

The starting point of our research was the observa-
tion that standard query rewriting systems tend to pro-
duce suboptimal rewritings of the OMQs in these three
classes. This is obviously so for UCQ-rewriters [46, 43,
13, 25, 40, 36]. However, this is also true of more elab-
orate PE-rewriters (which use disjunctions inside con-
junctions) [47, 54] whose rewritings in theory can be

3This result might be known but we could not find it in
the literature, and so provide a proof in Appendix C.3.
4http://sws.ifi.uio.no/project/npd-v2/

RRSRSRSRRSRRSSR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
25

50

100

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
25

50

100

SRRSSRSRSRRSRRS

SRRRRRSRSRRRRRR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
25

50

100

Tw Lin Log Rapid Clipper Presto

Figure 2: The size of NDL-rewritings produced by different algorithms.

of superpolynomial size; see Fig. 1(b). Surprisingly,
even NDL-rewriters such as Clipper [18], Presto [49]
and Rapid [13] do not fare much better in practice.
To illustrate, we generated three sequences of OMQs
in the class OMQ(1, 1, 2) (lying in the intersection of
OMQ(d, t,∞), OMQ(d, 1, `) and OMQ(∞, 1, `)) with
the ontology from Example 11 and linear CQs of up
to 15 atoms as in Example 8 (which are associated with
words from {R,S}∗). By Fig. 1(a), answering these
OMQs can be done in NL. The barcharts in Fig. 2
show the number of clauses in their NDL-rewritings pro-
duced by Clipper, Presto and Rapid, as well as by our
algorithms Lin, Log and Tw from Sections 3.2–3.4,
respectively. The first three NDL-rewritings display a
clear exponential growth, with Clipper and Rapid fail-
ing to produce rewritings for longer CQs. In contrast,
our rewritings grow linearly in accord with theory.

We evaluated the rewritings over a few randomly gen-
erated data instances using off-the-shelf datalog engine
RDFox [42]. The experiments (details are in the ap-
pendix) show that our rewritings are usually executed
faster than those produced by Clipper, Presto and Rapid.

The version of RDFox we used did not seem to take
advantage of the structure of the NL/LOGCFL rewrit-
ings by simply materialising all the predicates without
using magic sets or optimising programs before execu-
tion. It would be interesting to see whether the nonre-
cursiveness and parallelisability of our rewritings can be
utilised to produce efficient execution plans. One could
also investigate whether our rewritings can be efficiently
implemented using views in standard DBMSs.

Our rewriting algorithms are based on the same idea:
pick a point splitting the given CQ into sub-CQs, rewrite
the sub-CQs recursively, and then formulate rules that

combine the resulting rewritings. The difference be-
tween the algorithms is in the choice of the splitting
points, which determines the execution plans for OMQs
and has a big impact on their performance. The exper-
iments show that none of the three splitting strategies
systematically outperforms the others. This suggests
that execution times may be dramatically improved by
employing an ‘adaptable’ splitting strategy that would
work similarly to query execution planners in DBMSs
and use statistical information about the relational ta-
bles to generate efficient NDL programs. Integrity con-
straints should also be exploited to optimise rewritings.

Having observed that (i) the ontology depth and (ii)
the number of leaves in tree-shaped CQs occur in the
exponent of our upper bounds for the complexity of
OMQ answering algorithms, we regarded (i) and (ii)
as parameters and investigated the parameterised com-
plexity of the OMQ answering problem. We proved
that the problem is W [2]-hard in the former case and
W [1]-hard in the latter (it remains open whether these
lower bounds are tight). Furthermore, we established
that answering OMQs with a fixed ontology (of infi-
nite depth) is NP-complete for tree-shaped CQs and
LOGCFL-complete for linear CQs, which dashed hopes
of taming intractability by restricting the ontology size,
signature, etc. One remaining open problem is whether
answering OMQs with a fixed ontology and tree-shaped
CQs is fixed-parameter tractable if the number of leaves
is regarded as the parameter.

A more general avenue for future research is to extend
the study of succinctness and optimality of rewritings to
suitable ontology languages with predicates of higher-
arity, such as linear and sticky tgds.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations

of Databases. Addison-Wesley, 1995.

[2] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.
Foundations of Data Exchange. Cambridge
University Press, 2014.

[3] S. Arora and B. Barak. Computational
Complexity: A Modern Approach. Cambridge
University Press, New York, NY, USA, 1st
edition, 2009.

[4] F. Baader, D. Calvanese, D. McGuinness,
D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook: Theory,
Implementation and Applications. Cambridge
University Press, 2003.

[5] M. Bienvenu, S. Kikot, and V. V. Podolskii.
Tree-like queries in OWL 2 QL: succinctness and
complexity results. In Proc. of the 30th Annual
ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, pages 317–328. IEEE
Computer Society, 2015.

[6] M. Bienvenu, M. Ortiz, M. Simkus, and G. Xiao.
Tractable queries for lightweight description
logics. In Proc. of the 23nd Int. Joint Conf. on
Artificial Intelligence (IJCAI 2013), pages
768–774. IJCAI/AAAI, 2013.

[7] M. Calautti, G. Gottlob, and A. Pieris. Chase
termination for guarded existential rules. In Proc.
of the 34th ACM Symposium on Principles of
Database Systems, PODS 2015, pages 91–103,
2015.

[8] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A
general datalog-based framework for tractable
query answering over ontologies. Journal of Web
Semantics, 14:57–83, 2012.

[9] A. Cal̀ı, G. Gottlob, and A. Pieris. Towards more
expressive ontology languages: The query
answering problem. Artificial Intelligence,
193:87–128, 2012.

[10] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, M. Ruzzi, and D. F. Savo. The
MASTRO system for ontology-based data access.
Semantic Web, 2(1):43–53, 2011.

[11] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics:
the DL-Lite family. Journal of Automated
Reasoning, 39(3):385–429, 2007.

[12] C. Chekuri and A. Rajaraman. Conjunctive query
containment revisited. Theoretical Computer
Science, 239(2):211–229, 2000.

[13] A. Chortaras, D. Trivela, and G. Stamou.
Optimized query rewriting for OWL 2 QL. In
Proc. of CADE-23, volume 6803 of LNCS, pages
192–206. Springer, 2011.

[14] S. A. Cook. Characterizations of pushdown

machines in terms of time-bounded computers.
Journal of the ACM, 18(1):4–18, 1971.

[15] B. Cuenca Grau, I. Horrocks, M. Krötzsch,
C. Kupke, D. Magka, B. Motik, and Z. Wang.
Acyclicity notions for existential rules and their
application to query answering in ontologies.
Journal of Artificial Intelligence Research (JAIR),
47:741–808, 2013.

[16] E. Dantsin, T. Eiter, G. Gottlob, and
A. Voronkov. Complexity and expressive power of
logic programming. ACM Computing Surveys,
33(3):374–425, 2001.

[17] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles
of Data Integration. Morgan Kaufmann, 2012.

[18] T. Eiter, M. Ortiz, M. Šimkus, T.-K. Tran, and
G. Xiao. Query rewriting for Horn-SHIQ plus
rules. In Proc. of the 26th AAAI Conf. on
Artificial Intelligence (AAAI 2012), pages
726–733. AAAI, 2012.

[19] M. R. Fellows, D. Hermelin, F. A. Rosamond, and
S. Vialette. On the parameterized complexity of
multiple-interval graph problems. Theoretical
Computer Science, 410(1):53–61, 2009.

[20] J. Flum and M. Grohe. Parameterized Complexity
Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2006.

[21] M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler,
P. Haase, E. Jiménez-Ruiz, D. Lanti, M. Rezk,
G. Xiao, Ö. Özçep, and R. Rosati. Optique:
Zooming in on big data. IEEE Computer,
48(3):60–67, 2015.

[22] T. Gogacz and J. Marcinkowski. All-instances
termination of chase is undecidable. In Proc. of
the 41st Int. Colloquium Automata, Languages,
and Programming (ICALP 2014), Part II, volume
8573 of Lecture Notes in Computer Science, pages
293–304. Springer, 2014.

[23] G. Gottlob, S. Kikot, R. Kontchakov, V. V.
Podolskii, T. Schwentick, and M. Zakharyaschev.
The price of query rewriting in ontology-based
data access. Artificial Intelligence, 213:42–59,
2014.

[24] G. Gottlob, N. Leone, and F. Scarcello.
Computing LOGCFL certificates. In Proc. of the
26th Int. Colloquium on Automata, Languages
and Programming (ICALP-99), volume 1644 of
Lecture Notes in Computer Science, pages
361–371. Springer, 1999.

[25] G. Gottlob, G. Orsi, and A. Pieris. Ontological
queries: Rewriting and optimization. In Proc. of
ICDE 2011, pages 2–13. IEEE Computer Society,
2011.

[26] S. A. Greibach. The hardest context-free
language. SIAM J. Comput., 2(4):304–310, 1973.

[27] D. A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the

Institute of Radio Engineers, 40(9):1098–1101,
1952.

[28] E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov,
I. Horrocks, C. Pinkel, M. G. Skjæveland,
E. Thorstensen, and J. Mora. Bootox:
Bootstrapping OWL 2 ontologies and R2RML
mappings from relational databases. In Proc. of
the ISWC 2015 Posters & Demonstrations Track
at the 14th Int. Semantic Web Conf.
(ISWC-2015), volume 1486 of CEUR Workshop
Proceedings. CEUR-WS, 2015.

[29] M. Kaminski, Y. Nenov, and B. Cuenca Grau.
Datalog rewritability of Disjunctive Datalog
programs and non-Horn ontologies. Artificial
Intelligence, 236:90–118, 2016.

[30] E. Kharlamov, D. Hovland, E. Jiménez-Ruiz,
D. Lanti, H. Lie, C. Pinkel, M. Rezk, M. G.
Skjæveland, E. Thorstensen, G. Xiao,
D. Zheleznyakov, and I. Horrocks. Ontology based
access to exploration data at Statoil. In Proc. of
the 14th Int. Semantic Web Conf. (ISWC 2015),
Part II, volume 9367 of Lecture Notes in
Computer Science, pages 93–112. Springer, 2015.

[31] S. Kikot, R. Kontchakov, V. Podolskii, and
M. Zakharyaschev. On the succinctness of query
rewriting over shallow ontologies. In Proc. of the
Joint Meeting of the 23rd EACSL Annual Conf.
on Computer Science Logic (CSL 2014) and the
29th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2014), pages 57:1–57:10.
ACM, 2014.

[32] S. Kikot, R. Kontchakov, V. V. Podolskii, and
M. Zakharyaschev. Exponential lower bounds and
separation for query rewriting. In Proc. of the
39th Int. Colloquium on Automata, Languages
and Programming (ICALP 2012), volume 7392 of
Lecture Notes in Computer Science, pages
263–274. Springer, 2012.

[33] S. Kikot, R. Kontchakov, and M. Zakharyaschev.
On (in)tractability of OBDA with OWL 2 QL. In
Proc. of the 24th Int. Workshop on Description
Logics (DL 2011), volume 745, pages 224–234.
CEUR-WS, 2011.

[34] S. Kikot, R. Kontchakov, and M. Zakharyaschev.
Conjunctive query answering with OWL 2 QL. In
Proc. of the 13th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR
2012), pages 275–285. AAAI, 2012.

[35] C. Koch. Processing queries on tree-structured
data efficiently. In Proc. of the 25th ACM
SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS 2006),
pages 213–224. ACM, 2006.

[36] M. König, M. Leclère, M.-L. Mugnier, and
M. Thomazo. Sound, complete and minimal
UCQ-rewriting for existential rules. Semantic
Web, 6(5):451–475, 2015.

[37] R. Kontchakov, C. Lutz, D. Toman, F. Wolter,
and M. Zakharyaschev. The combined approach
to query answering in DL-Lite. In Proc. of the
12th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2010), pages
247–257. AAAI Press, 2010.

[38] R. Kontchakov, M. Rezk, M. Rodriguez-Muro,
G. Xiao, and M. Zakharyaschev. Answering
SPARQL queries over databases under OWL 2
QL entailment regime. In Proc. of the 13th Int.
Semantic Web Conf. (ISWC 2014), Part I,
volume 8796 of Lecture Notes in Computer
Science, pages 552–567. Springer, 2014.

[39] M. Lenzerini. Ontology-based data management.
ACM SIGMOD Blog, May 2013.

[40] J. Mora, R. Rosati, and Ó. Corcho. Kyrie2: query
rewriting under extensional constraints in ELHIO.
In Proc. of the 13th Int. Semantic Web Conf.
(ISWC 2014), volume 8796 of Lecture Notes in
Computer Science, pages 568–583. Springer, 2014.

[41] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu,
A. Fokoue, and C. Lutz. OWL 2 Web Ontology
Language Profiles. W3C Recommendation, 2012.
Available at
http://www.w3.org/TR/owl2-profiles/.

[42] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu,
and J. Banerjee. RDFox: A highly-scalable RDF
store. In Proc. of the 14th Int. Semantic Web
Conf. (ISWC 2015), Part II, volume 9367 of
Lecture Notes in Computer Science, pages 3–20.
Springer, 2015.

[43] H. Pérez-Urbina, B. Motik, and I. Horrocks. A
comparison of query rewriting techniques for
DL-Lite. In Proc. of the 22nd Int. Workshop on
Description Logics (DL 2009), volume 477 of
CEUR Workshop Proceedings. CEUR-WS, 2009.

[44] H. Pérez-Urbina, E. Rodŕıguez-Dı́az, M. Grove,
G. Konstantinidis, and E. Sirin. Evaluation of
query rewriting approaches for OWL 2. In Proc.
of SSWS+HPCSW 2012, volume 943 of CEUR
Workshop Proceedings. CEUR-WS, 2012.

[45] F. Picalausa and S. Vansummeren. What are real
SPARQL queries like? In Proc. of the Int.
Workshop on Semantic Web Information
Management (SWIM). ACM, 2011.

[46] A. Poggi, D. Lembo, D. Calvanese,
G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. Journal on Data
Semantics, X:133–173, 2008.

[47] M. Rodriguez-Muro, R. Kontchakov, and
M. Zakharyaschev. Ontology-based data access:
Ontop of databases. In Proc. of the 12th Int.
Semantic Web Conf. (ISWC 2013), volume 8218
of Lecture Notes in Computer Science, pages
558–573. Springer, 2013.

[48] R. Rosati. Prexto: Query rewriting under
extensional constraints in DL-Lite. In Proc. of the

9th Extended Semantic Web Conf. (EWSC 2012),
volume 7295 of Lecture Notes in Computer
Science, pages 360–374. Springer, 2012.

[49] R. Rosati and A. Almatelli. Improving query
answering over DL-Lite ontologies. In Proc. of the
12th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2010), pages
290–300. AAAI Press, 2010.

[50] J. F. Sequeda, M. Arenas, and D. P. Miranker.
OBDA: query rewriting or materialization? In
practice, both! In Proc. of the 13th Int. Semantic
Web Conf. (ISWC 2014), Part I, volume 8796 of
Lecture Notes in Computer Science, pages
535–551. Springer, 2014.

[51] A. Soylu, M. Giese, E. Jimenez-Ruiz,
G. Vega-Gorgojo, and I. Horrocks. Experiencing
optiquevqs: A multi-paradigm and ontology-based
visual query system for end users. Universal
Access in the Information Society, 15(1):129–152,
2016.

[52] I. H. Sudborough. A note on tape-bounded
complexity classes and linear context-free
languages. Journal of the ACM, 22(4):499–500,
Oct. 1975.

[53] I. H. Sudborough. On the tape complexity of
deterministic context-free languages. Journal of
the ACM, 25(3):405–414, 1978.

[54] M. Thomazo. Compact rewritings for existential
rules. In Proc. of the 23rd Int. Joint Conf. on
Artificial Intelligence (IJCAI 2013).
IJCAI/AAAI, 2013.

[55] H. Venkateswaran. Properties that characterize
LOGCFL. Journal of Computer and System
Sciences, 43(2):380–404, 1991.

[56] M. Yannakakis. Algorithms for acyclic database
schemes. In Proc. of the 7th Int. Conf. on Very
Large Data Bases (VLDB), pages 82–94. IEEE
Computer Society, 1981.

APPENDIX
A. PROOFS FOR SECTION 3

A.1 Lemma 3
Lemma 3. Fix any w > 0. There is an LNL-transducer

that, for any linear NDL-rewriting (Π, G(x)) of an OMQ
Q(x) over complete data instances with w(Π, G) ≤ w,
computes a linear NDL-rewriting (Π′, G(x)) of Q(x)
over arbitrary data instances such that w(Π′, G) ≤ w+1.

Proof. Let (Π, G(x)) be a linear NDL-rewriting of
the OMQ Q(x) = (T , q(x)) over complete data in-
stances such that w(Π, G) ≤ w. We will replace every
clause λ in Π by a set of clauses λ∗ defined as follows.
Suppose λ is of the form

Q(z)← I ∧ EQ ∧ E1 ∧ . . . ∧ En,

where I is the only IDB body atom in λ, EQ contains
all equality body atoms, and E1, . . . , En are the EDB
body atoms not involving equality. For every atom Ei,
we define a set υ(Ei) of atoms by taking

υ(Ei) =
{
B(z) | T |= B(x)→ A(x)

}
∪{

%(yi, z) | T |= ∃y %(y, x)→ A(x)
}
,

if Ei = A(z),

υ(Ei) =
{
%(z, z′) | T |= %(x, y)→ P (x, y)

}
,

if Ei = P (z, z′),

where yi is a fresh variable not occurring in λ; we as-
sume P−(z, z′) coincides with P (z′, z), for all binary
predicates P . Intuitively, υ(Ei) captures all atoms that
imply Ei with respect to T . Then λ∗ consists of the
following clauses:

Q0(z0)← I,

Qi+1(zi)← Hi(zi) ∧ E′i, for 1 ≤ i ≤ n and E′i ∈ υ(Ei),

Q(z)← Hn+1(zn) ∧ EQ,

where zi is the restriction of z to variables occurring in I
if i = 0 and in Qi(zi) and E′i except for yi if i > 0 (note
that zn = z). Let Π′ be the program obtained from Π
by replacing each clause λ by the set of clauses λ∗. By
construction, Π′ is a linear NDL program and its width
cannot exceed w(Π, G) + 1 (the possible increase of 1 is
due to the replacement of unary atoms A(z) by binary
atoms %(yi, z)).

We now argue that (Π′, G(x)) is a rewriting of Q(x)
over arbitrary data instances. It can be easily verified
that (Π′, G(x)) is equivalent to (Π′′, G(x)), where NDL
program Π′′ is obtained from Π by replacing each clause
Q(z)← I ∧ EQ ∧ E1 ∧ . . . ∧ En by the (possibly expo-
nentially larger) set of clauses of the form

Q(z)← I ∧ EQ ∧ E′1 ∧ . . . ∧ E′n,

for all E′i ∈ υ(Ei) and 1 ≤ i ≤ n. It thus suffices
to show that (Π′′, G(x)) is a rewriting of Q(x) over
arbitrary data instances.

First suppose that T ,A |= q(a), where A is an ar-
bitrary data instance. Let A′ be the complete data
instance obtained from A by adding the ground atoms:

P (a, b) if %(a, b) ∈ A and T |= %(x, y)→ P (x, y);

A(a) if B(a) ∈ A and T |= B(x)→ A(x);

A(a) if %(a, b) ∈ A and T |= ∃y %(y, x)→ A(x).

(We write %(a, b) ∈ A for P (a, b) ∈ A if % = P and
for P (b, a) if % = P−.) Clearly, T ,A′ |= q(a), so we
must have Π,A′ |= G(a). A simple inductive argu-
ment (on the order of derivation of ground atoms) shows
that whenever a clause Q(z)← I ∧ EQ ∧ E1 ∧ . . . ∧ En
is applied using a substitution c for the variables in the
body to derive Q(c(z)) using Π, we can find a corre-
sponding clause Q(z)← I ∧ EQ ∧ E′1 ∧ . . . ∧ E′n and a
substitution c′ extending c (on the fresh variables yi)
that allows us to derive Q(c′(z)) using Π′′. Indeed,

– if Ei = A(z), then A(c(z)) ∈ A′, so there must
exist either a unary ground atom B(c(z)) ∈ A
such that T |= B(x)→ A(x) or a binary ground
atom %(a, c(z)) ∈ A, for some a ∈ ind(A), such that
T |= ∃y %(y, x)→ A(x); in the latter case, we set
c′(yi) = a;

– similarly, if Ei = P (z, z′), then there must exist a
binary ground atom %(c(z), c(z′)) ∈ A such that
T |= %(x, y)→ P (x, y).

It then suffices to chooseQ(z)← I ∧ EQ ∧ E′1 ∧ . . . ∧ E′n
with atoms E′i whose form match that of the ground
atoms in A corresponding to Ei.

For the converse direction, it suffices to observe that
Π ⊆ Π′′.

To complete the proof, we note that it is in NL to
decide whether an atom belongs to υ(Ei), and thus
we can construct the program Π′ by means of an LNL-
transducer. q

A.2 Theorem 6
Next, we combine the transformation in Lemma 5

with the established complexity in Lemma 4 to obtain
the combined complexity upper bound:

Theorem 6. For any c ≥ 1 and w ≥ 1, evaluation of
NDL queries (Π, G(x)) having a weight function ν such
that d(Π, G) + log ν(G) ≤ c log |Π| and w(Π, G) ≤ w is
in LOGCFL for combined complexity.

Proof. By Lemma 5, (Π, G) is equivalent to a skinny
(Π′, G) such that |Π′| = O(|Π|2), w(Π′, G) ≤ w, and
d(Π′, G) ≤ d(Π, G) + log ν(G). By Lemma 4, query
evaluation for (Π′, G) over A is done by an NAuxPDA
in space log |Π′|+w(Π′, G)·log |A| = O(log |Π|+log |A|)
and time 2O(d(Π′,G)) ≤ |Π|O(1). q

A.3 Log-rewritings

Lemma 23. For any complete data instance A, any
D ∈ D, any type w with dom(w) = ∂D and any
tuples b ∈ ind(A)|∂D| and a ∈ ind(A)|xD|, we have

ΠLog
Q ,A |= GwD(b,a) iff there is a homomorphism

h : qD → CT ,A such that

h(x) = a(x), for x ∈ xD,
and h(z) = b(z)w(z), for z ∈ ∂D. (7)

Proof. (⇒) The proof is by induction on ≺. For the
basis of induction, let D be of size 1. By the definition of
ΠLog
Q , there exists a type s such that dom(s) = λ(σ(D))

and w agrees with s on ∂D and a respective tuple
c ∈ ind(A)|λ(σ(D))| such that c(z) = b(z), for all z ∈ ∂D,
and c(x) = a(x), for all x ∈ xD, and ΠLog

Q ,A |= Ats(c).

Then, for any atom S(z) ∈ qD, we have z ⊆ λ(σ(D)),
whence CT ,A |= S(h(z)) as w agrees with s on ∂D.

For the inductive step, suppose that we have
ΠLog
Q ,A |= GwD(b,a). By the definition of ΠLog

Q , there

exists a type s such that dom(s) = λ(σ(D)) and w
agrees with s on their common domain and a respec-
tive tuple c ∈ ind(A)|λ(σ(D))| such that c(z) = b(z), for
all z ∈ ∂D, and c(x) = a(x), for all x ∈ xD, and

ΠLog
Q ,A |= Ats(c) ∧

∧
D′≺D

G
(s∪w)�∂D′

D′ (bD′ ,aD′),

where bD′ and aD′ are the restrictions of b ∪ c to ∂D′

and of a to xD′ , respectively. By the induction hy-
pothesis, for any D′ ≺ D, there is a homomorphism
hD′ : qD′ → CT ,A such that (7) is satisfied.

Let us show that the hD′ agree on common variables.
Suppose that z is shared by qD′ and qD′′ for D′ ≺ D
and D′′ ≺ D. By the definition of tree decomposition,
for every z ∈ V , the nodes {t | z ∈ λ(t)} induce a con-
nected subtree of T , and so z ∈ λ(σ(D)) ∩ λ(t′) ∩ λ(t′′),
where t′ and t′′ are the unique neighbours of σ(D) lying
in D′ and D′′, respectively. Since w′ = (w ∪ s) � ∂D′

and w′′ = (w ∪ s) � ∂D′′ are the restrictions of w ∪ s,
we have w′(z) = w′′(z). This implies that

hD′(z) = c(z)w′(z) = c(z)w′′(z) = hD′′(z).

Now we define h on every z in qD by taking

h(z) =


hD′(z) if z ∈ λ(t),

for t ∈ D′ and D′ ≺ D,
c(z) · (w ∪ s)(z), if z ∈ λ(σ(D)).

If follows that h is well defined, h satisfies (7) and that
h is a homomorphism from qD to CT ,A. Indeed, take
an atom S(z) ∈ qD. Then either z ⊆ λ(σ(D)), in
which case CT ,A |= S(h(z)) since w is compatible with
σ(D) and ΠLog

Q ,A |= Ats(c), or S(z) ∈ qD′ for some

D′ ≺ D, in which case we use the fact that h extends a
homomorphism hD′ .

(⇐) The proof is by induction on ≺. Fix D and w
such that |w| = |∂D|. Take tuples b ∈ ind(A)|∂D| and
a ∈ ind(A)|xD|, and a homomorphism h : qD → CT ,A
satisfying (7). Define a type s and a tuple
c ∈ ind(A)|λ(σ(D))| by taking, for all z ∈ λ(σ(D)),

s(z) = w and c(z) = a, if h(z) = aw, for a ∈ ind(A).

By definition, dom(s) = λ(σ(D)) and, by (7), s and w
agree on the common domain. For the inductive step,
for each D′ ≺ D, let hD′ be the restriction of h to qD′
and let bD′ and and aD′ be the restrictions of b ∪ c
to ∂D′ and of a to xD′ , respectively. By the inductive
hypothesis, ΠLog

Q ,A |= Gw
′

D′(bD′ ,aD′). (This argument

is not needed for the basis of induction.) Since h is
a homomorphism, we have ΠLog

Q ,A |= Ats(c), whence,

ΠLog
Q ,A |= GwD(b,a). q

It follows that answering OMQs Q(x) = (T , q(x))
with T of finite depth d and q of treewidth t over any
data instance A can be done in time

poly(|T |dt, |q|, |A|t). (4)

Indeed, we can evaluate (ΠLog
Q , GεT (x)) in time polyno-

mial in |ΠLog
Q | and |A|w(ΠLog

Q ,GεT), which are bounded by

a polynomial in |T |2d(t+1), |q| and |A|2(t+1).

A.4 Lin-rewritings

Lemma 24. For any complete data instance A, any
predicate Gwn , any a ∈ ind(A)|x

n| and b ∈ ind(A)|z
n
∃ |,

we have ΠLin
Q ,A |= Gwn (b,a) iff there is a homomor-

phism h : qn → CT ,A such that

h(x) = a(x), for x ∈ xn,
and h(z) = b(z)w(z), for z ∈ zn∃ . (8)

Proof. The proof is by induction on n.

For the base case (n = M), first suppose that we
have ΠLin

Q ,A |= GwM (b,a). The only rule in ΠLin
Q with

head predicate GwM is GwM (zM∃ ,x
M) ← Atw(zM) with

zM = zM∃] xM , which is equivalent to

GwM (zM∃ ,x
M)←

∧
z∈zM

(∧
A(z)∈q
w(z)=ε

A(z) ∧
∧

P (z,z)∈q
w(z)=ε

P (z, z) ∧

∧
w(z)=%w

A%(z)
)
. (9)

So the body of this rule must be satisfied when b and a
are substituted for zM∃ and xM respectively. Moreover,
by local compatibility of w with zM , we know that
w(x) = ε for every x ∈ xM . It follows that

– A(a(x)) ∈ A for every A(x) ∈ q such that x ∈ xM ;

– A(b(z)) ∈ A for every A(z) ∈ q such that z ∈ zM∃
and w(z) = ε;

– P (a(x),a(x)) ∈ A for every P (x, x) ∈ q such that
x ∈ xM ;

– P (b(z), b(z)) ∈ A for every P (z, z) ∈ q such that
z ∈ zM∃ and w(z) = ε;

– A%(z) ∈ A for every z ∈ zM with w(z) = %w.

Now let hM be the unique mapping from zM to ∆CT ,A

satisfying (8). First note that hM is well-defined, since
by the last item, if w(z) = %w, then we have A%(z) ∈ A

and %w ∈ WT , so b(z)%w belongs to ∆CT ,A . To show
that hM is a homomorphism of qM into CT ,A, first recall
that the atoms of qM are of two types: A(z) or P (z, z),
with z ∈ zM . Take some A(z) ∈ qM . If w(z) = ε, then
we immediately obtain either A(hM (z)) = A(a(z)) ∈ A
or A(hM (z)) = A(b(z)) ∈ A, depending on whether
z ∈ zM∃ or in xM . Otherwise, if w(z) 6= ε, then the
local compatibility of w with zM means that the final
letter % in w(z) is such that T |= ∃y %(y, x) → A(x),
hence hM (z) = b(z)w(z) ∈ ACT ,A . Finally, suppose
that P (z, z) ∈ q. The local compatibility of w with
zM ensures that either w(z) = ε or T |= P (x, x). In
the former case, we have either P (a(z),a(z)) ∈ A or
P (b(z), b(z)) ∈ A, depending again on whether z ∈ zM∃
or z ∈ xM . In the latter case, (hM (z), hM (z)) ∈ P CT ,A .

For the other direction, (⇐), of the base case, suppose
that the mapping hM given by (8) defines a homomor-
phism from qM into CT ,A. We therefore have:

– a(x) ∈ ACT ,A for every A(x) ∈ q with x ∈ xM ;

– b(z)w(z) ∈ ACT ,A for every A(z) ∈ q with z ∈ zM∃ ;

– (a(x),a(x)) ∈ P CT ,A for every P (x, x) ∈ q such
that x ∈ xM ;

– (b(z), b(z)) ∈ P CT ,A for every P (z, z) ∈ q such that
z ∈ zM∃ ;

– T ,A |= ∃y %(b(z), y) for every z ∈ zM∃ with w(z) =
%w (for otherwise b(z)w(z) would not belong to the
domain of CT ,A).

The first two items, together with completeness of the
data instance A, ensure that all atoms in{

A(z) | A(z) ∈ q, z ∈ zM ,w(z) = ε
}

are present in A when b and a substituted for zM∃ and
xM , respectively. The third and fourth items, again
together with completeness of A, ensure the presence of
the atoms in{

P (z, z) | P (z, z) ∈ q, z ∈ zM ,w(z) = ε
}
.

Finally, the fifth item plus completeness of A ensure
that A contains all atoms in

{A%(z) | z ∈ zM ,w(z) = %w}.

It follows that the body of the unique rule for GwM is
satisfied when b and a are substituted for zM∃ and xM

respectively, and thus ΠLin
Q ,A |= GwM (b,a).

For the induction step, assume that the statement
has been shown to hold for all n ≤ k + 1 ≤ M , and
let us show that it holds when n = k. For the first
direction, (⇒), suppose ΠLin

Q ,A |= Gwk (b,a). It follows

that there exists a pair of types (w, s) compatible with
(zk, zk+1) and an assignment c of individuals from A to
the variables in zk ∪ zk+1 such that c(x) = a(x) for all
x ∈ (zk ∪ zk+1) ∩ x, and c(z) = b(z) for all z ∈ zk∃ , and
such that every atom in the body of the clause

Gwk (zk∃ ,x
k)← Atw∪s(zk, zk+1) ∧Gsk+1(zk+1

∃ ,xk+1)

is entailed from ΠLin
Q ,A when the individuals in c are

substituted for zk ∪ zk+1. Recall that Atw∪s(zk, zk+1)
is the conjunction of the following atoms, for
z, z′ ∈ zk ∪ zk+1:

– A(z), if A(z) ∈ q and (w ∪ s)(z) = ε,

– P (z, z′), if P (z, z′) ∈ q and (w ∪ s)(z) =
(w ∪ s)(z′) = ε,

– z = z′, if P (z, z′) ∈ q and either (w ∪ s)(z) 6= ε or
(w ∪ s)(z′) 6= ε,

– A%(z), if (w ∪ s)(z) is of the form %w.

In particular, we have ΠLin
Q ,A |= Gsk+1(c(zk+1

∃), c(xk+1)).
By the induction hypothesis, there exists a homomor-
phism hk+1 : qk+1 → CT ,A such that hk+1(z) = c(z)s(z)

for every z ∈ zk+1
∃ ∪ xk+1. Define a mapping hk from

var(qk) to ∆CT ,A by setting hk(z) = hk+1(z) for ev-
ery variable z ∈ var(qk+1), setting hk(x) = a(x) for

every x ∈ zk ∩ x, and setting hk(z) = b(z)w(z) for
every z ∈ zk. Using the same argument as was used
in the base case, we can show that hk is well-defined.
For atoms from qk involving only variables from qk+1,
we can use the induction hypothesis to conclude that
they are satisfied under hk, and for atoms only involv-
ing variables from zk, we can argue as in the base case.
It thus remains to handle role atoms that contain one
variable from zk and one variable from zk+1. Consider
such an atom P (z, z′) ∈ qk, for z ∈ zk and z′ ∈ zk+1. If
w(z) = s(z′) = ε, then the atom P (z, z′) appears in the
body of the clause we are considering. It follows that
ΠLin
Q ,A |= P (c(z), c(z′)), hence (c(z), c(z′)) ∈ P CT ,A .

It then suffices to note that c agrees with a and b on
the variables in zk. Next suppose that either w(z) 6= ε
or s(z′) 6= ε. It follows that the clause body contains
z = z′, hence c(z) = c(z′). As (w, s) is compatible with
(zk, zk+1), one of the following must hold: either

(a) s(z′) = w(z) and T |= P (x, x)

(b) or T |= %(x, y)→ P (x, y) and either s(z′) = w(z)%
or w(z) = s(z′)%−.

We give the argument in the case where z ∈ zk∃ (the
argument is entirely similar if z ∈ xk). If (a) holds,
then

(hk(z), hk(z′)) = (b(z)w(z), c(z′)s(z′)) =

(b(z)w(z), c(z′)w(z)) ∈ P CT ,A

since T |= P (x, x) and c(z′) = c(z) = b(z). If the first
option of (b) holds, then

(hk(z), hk(z′)) = (b(z)w(z), c(z′)s(z′)) =

(b(z)w(z), c(z′)w(z)%) ∈ P CT ,A

since T |= %(x, y) → P (x, y) and c(z′) = c(z) = b(z).
If the second option of (b) holds, then

(hk(z), hk(z′)) = (b(z)w(z), c(z′)s(z′)) =

(b(z)s(z′)%−, c(z′)s(z′)) ∈ P CT ,A

since T |= %(x, y)→ P (x, y).

For the converse direction, (⇐), of the induction step,
let w be a type that is locally compatible with zk, let

a ∈ ind(A)|x
k|, b ∈ ind(A)|z

k
∃|, and let hk : qk → CT ,A

be a homomorphism satisfying

hk(x) = a(x), for x ∈ xk,
and hk(z) = b(z)w(z), for z ∈ zk∃ . (10)

We let c for zk+1 be defined by setting c(z) equal to the
unique individual c such that h(z) is of the form cw (for
some w ∈WT), and let s be the unique type for zk+1

satisfying h(z) = c(z)s(z) for every z ∈ zk+1; in other
words, we obtain s(z) from h(z) by omitting the ini-
tial individual name c(z). Note that since xk+1 ⊆ xk,
we have a(x) = c(x) for every x ∈ xk+1. It follows
from the fact that hk is a homomorphism that s is lo-
cally compatible with zk+1 and that, for every role atom
P (z, z′) ∈ qk with z ∈ zk and z′ ∈ zk+1, one of the fol-
lowing holds: (i) w(z) = s(z′) = ε, (ii) w(z) = s(z′)
and T |= P (x, x), (iii) T |= %(x, y) → P (x, y) and ei-
ther s(z′) = w(z)% or w(z) = s(z′)%−. Thus, the pair
of types (w, s) is compatible with (zk, zk+1), and so the
following rule appears in ΠLin

Q :

Gwk (zk∃ ,x
k)← Atw∪s(zk, zk+1) ∧Gsk+1(zk+1

∃ ,xk+1),

where we recall that Atw∪s(zk, zk+1) is the conjunction
of the following atoms, for z, z′ ∈ zk ∪ zk+1:

– A(z), if A(z) ∈ q and (w ∪ s)(z) = ε,

– P (z, z′), if P (z, z′) ∈ q and (w ∪ s)(z) =
(w ∪ s)(z′) = ε,

– z = z′, if P (z, z′) ∈ q and either (w ∪ s)(z) 6= ε or
(w ∪ s)(z′) 6= ε,

– A%(z), if (w ∪ s)(z) is of the form %w.

It follows from Equation (10) and the fact that hk is
a homomorphism that each of the ground atoms ob-
tained by taking an atom from Atw∪s(zk, zk+1) and
substituting a, b, and c for xk, zk∃ and zk+1, respec-
tively, is present in A. By applying the induction hy-
pothesis to the predicate Gsk+1 and the homomorphism

hk+1 : qk+1 → CT ,A obtained by restricting hk to var(qk+1),

we obtain that ΠLin
Q ,A |= Gsk+1(c(zk+1

∃),a(xk+1)). Since
for the considered substitution, all body atoms are en-
tailed, we can conclude that ΠLin

Q ,A |= Gwk (b,a). q

It follows that answering OMQs Q(x) = (T , q(x))
with T of finite depth d and tree-shaped q with ` leaves
over any data instance A can be done in time

poly(|T |d`, |q|, |A|`). (5)

Indeed, (ΠLin
Q , G(x)) can be evaluated in time polyno-

mial in |ΠLin
Q | and |A|w(ΠLin

Q ,G), which are bounded by a

polynomial in |T |2d`, |q| and |A|2`.

A.5 Tw-rewritings

Lemma 25. For any OMQ Q(x0) = (T , q0(x0)) with
a tree-shaped CQ, any complete data instance A, any
q(x) ∈ Q and a ∈ ind(A)|x|, we have ΠTw

Q ,A |= Gq(a)
iff there exists a homomorphism h : q → CT ,A such that
h(x) = a.

Proof. An inspection of the definition of the set Q
shows that every q(x) ∈ Q is a tree-shaped query hav-
ing at least one answer variable, with the possible ex-
ception of the original query q0(x0), which may be
Boolean.

Just as we did for subtrees in Section 3.2, we associate
a binary relation on the queries in Q by setting q′(x′) ≺
q(x) whenever q′(x′) was introduced when applying one
of the two decomposition conditions on p. to q(x). The
proof is by induction on the subqueries in Q, according
to ≺. We will start by establishing the statement for all
queries in Q other than q0(x0), and afterwards, we will
complete the proof by giving an argument for q0(x0).

For the basis of induction, take some q(x) ∈ Q that is
minimal in the ordering induced by≺, which means that
var(q) = x. Indeed, if there is an existentially quanti-
fied variable, then the first decomposition rule will give
rise to a ‘smaller’ query (in particular, if |var(q)| = 2,
then although the ‘smaller’ query may have the same
atoms, the selected existential variable will become an
answer variable). For the first direction, (⇒), suppose
that ΠTw

Q ,A |= Gq(a). By definition, Gq(x) ← q(x)
is the only clause with head predicate Gq. Thus, all
atoms in the ground CQ q(a) are present in A, and
hence the desired homomorphism exists. For the con-
verse direction, (⇐), suppose there is a homomorphism
h : q(x)→ CT ,A such that h(x) = a. It follows that ev-
ery atom in the ground CQ q(a) is entailed from T ,A.
Completeness of A ensures that all of the ground atoms
in q(a) are present in A, and thus we can apply the
clause Gq(x)← q(x) to derive Gq(a).

For the induction step, let q(x) ∈ Q with var(q) 6= x
and suppose that the claim holds for all q′(x′) ∈ Q with
q′(x′) ≺ q(x). For the first direction, (⇒), suppose
ΠTw
Q ,A |= Gq(a). There are two cases, depending on

which type of clause was used to derive Gq(a).

• Case 1: Gq(a) was derived by an application of the
following clause:

Gq(z)←
∧

A(zq)∈q

A(zq) ∧
∧

P (zq,zq)∈q

P (zq, zq) ∧
∧

1≤i≤n

Gqi(xi),

where q1(x1), . . . , qn(xn) are the subqueries induced
by the neighbours of zq in the Gaifman graph G of
q. Then there exists a substitution c for the vari-
ables in the body of this rule that coincides with a
on z and is such that the ground atoms obtained
by applying c to the variables in the body are all
entailed from ΠTw

Q ,A. In particular, ΠTw
Q ,A |=

Gqi(c(xi)) for every 1 ≤ i ≤ n. We can apply
the induction hypothesis to the qi(xi) to obtain
homomorphisms hi : qi → CT ,A such that hi(xi) =
c(xi). Let h be the mapping from var(q) to ∆CT ,A

defined by taking h(z) = hi(z), for z ∈ var(qi).
Note that h is well-defined since var(q) =

⋃n
i=1 var(qi),

and the qi have no variable in common other than
zq, which is sent to c(zq) by every hi. To see why
h is a homomorphism from q to CT ,A, observe that

q =

n⋃
i=1

qi ∪
{
A(zq) ∈ q

}
∪
{
P (zq, zq) ∈ q

}
.

By the definition of h, all atoms in
⋃n
i=1 qi hold un-

der h. If A(zq) ∈ q, then A(c(zq)) is entailed from
ΠTw
Q ,A, and hence is present in A. Similarly, we

can show that for every P (zq, zq) ∈ q, the ground
atom P (c(zq), c(zq)) belongs to A. It follows that
all of these atoms hold in CT ,A under h. Finally,
we recall that c coincides with a on x, so we have
h(x) = a, as required.

• Case 2: Gq(a) was derived by an application of the
following clause, for a tree witness t for (T , q(x))
generated by % with tr 6= ∅ and zq ∈ ti:

Gq(x)← A%(z0) ∧
∧

z∈tr\{z0}

(z = z0) ∧
∧

1≤i≤k

Gqti (x
t
i),

where qt1, . . . , q
t
k are the connected components of

q without qt and z0 is some variable in tr. There
must exist a substitution c for the variables in the
body of this rule that coincides with a on x and
is such that the ground atoms obtained by apply-
ing c to the variables in the body are all entailed
from ΠTw

Q ,A. In particular, for every 1 ≤ i ≤ k,

we have ΠTw
Q ,A |= Gqti (c(x

t
i)). We can apply the

induction hypothesis to the qti(z
t
i) to find homo-

morphisms h1, . . . , hk of qt1, . . . , q
t
k into CT ,A such

that hi(x
t
i) = c(xt

i). Since t is a tree witness for
(T , q(x)) generated by %, there exists a homomor-
phism ht of qt into CT ,{A%(a)} with tr = h−1

t (a)
and such that ht(z) begins by a% for every z ∈ ti.
Now take z0 ∈ tr such that A%(z0) is the atom
in the clause body (recall that tr 6= ∅), and so
ΠTw
Q ,A |= A%(c(z0)), which means that A%(c(z0))

must appear in A. It follows that for every ele-
ment in CT ,{A%(a)} of the form a%w, there exists a

corresponding element c(z0)%w in ∆CT ,A . We now
define a mapping h from var(q) to ∆CT ,A as follows:

h(z) =


hi(z), for every z ∈ var(qti),

c(z0)%w, if z ∈ ti and ht(z) = a%w,

c(z0) if z ∈ tr.

Every variable in var(q) occurs in tr∪ti or in exactly
one of the qti, and so is assigned a unique value by
h. Note that although tr∩var(qti) is not necessarily

empty, due to the equality atoms, we have h(z) =
h(z′), for all z, z′ ∈ tr, and so the function is well-
defined. We claim that h is a homomorphism from
q into CT ,A. Clearly, the atoms occurring in some
qti are preserved under h. Now consider some unary
atom A(z) with z ∈ ti. Then h(z) = c(z0)%w,
where ht(z) = a%w. Since ht is a homomorphism,
we know that w ends with a role σ such that T |=
∃y σ(y, x) → A(x). It follows that h(z) also ends
with σ, and thus h(z) ∈ ACT ,A . Next, consider a
binary atom P (z, z′), where at least one of z and
z′ belongs to ti. As ht is a homomorphism, either

– T |= σ(x, y) → P (x, y), for some σ, such that
ht(z

′) = ht(z)σ or ht(z) = ht(z
′)σ−,

– or T |= P (x, x) and ht(z
′) = ht(z).

We also know that c(z) = c(z0) for all z ∈ tr, hence
h(z) = h(z0) for all z ∈ tr. It follows that in the for-
mer case we have h(z′) = h(z)σ or h(z) = h(z′)σ−

with T |= σ(x, y) → P (x, y). In the latter case,
we have h(z′) = h(z) with T |= P (x, x). Thus,
P (z, z′) is preserved under h. Finally, since c coin-
cides with a on x, we have h(x) = a.

For the converse direction, (⇐), of the induction step,
suppose that h is a homomorphism of q into CT ,A such
that h(x) = a. There are two cases to consider, de-
pending on where h maps the ‘splitting’ variable zq.

• Case 1: h(zq) ∈ ind(A). Let q1(x1), . . . , qn(xn) be
the subqueries of q(x) induced by the neighbours
of zq in G. Recall that xi consists of zq and the
variables in var(qi)∩x. By restricting h to var(qi),
we obtain, for each 1 ≤ i ≤ n, a homomorphism of
qi(xi) into CT ,A that maps zq to h(zq) and var(qi)∩
x to a(var(qi)∩x). Consider a∗ defined by taking
a∗(x) = a(x) for every x ∈ var(qi)∩x and a∗(zq) =
h(zq). By the induction hypothesis, for every 1 ≤
i ≤ n, we have ΠTw

Q ,A |= Gqi(a
∗(xi)). Next, since

h is a homomorphism, we must have h(zq) ∈ ACT ,A

whenever A(zq) ∈ q and (h(zq), h(zq)) ∈ P CT ,A

whenever P (zq, zq) ∈ q. Since A is a complete
data instance, A(h(zq)) ∈ A for every A(zq) ∈ q
and P (h(zq), h(zq)) for every P (zq, zq) ∈ q. We
have thus shown that, under the substitution a∗,
every atom in the body of the clause

Gq(z)←
∧

A(zq)∈q

A(zq) ∧
∧

P (zq,zq)∈q

P (zq, zq) ∧
∧

1≤i≤n

Gqi(xi),

is entailed from ΠTw
Q ,A. It follows that we must

also have ΠTw
Q ,A |= Gq(a).

• Case 2: h(zq) /∈ ind(A). Then h(zq) is of the form
b%w, for some %. Let V be the smallest subset of
var(q) that contains zq and satisfies the following
closure property:

– if z ∈ V , h(z) /∈ ind(A) and q contains an atom
with z and z′, then z′ ∈ V .

Let V ′ consist of all variables z in V such that
h(z) /∈ ind(A). We observe that h(z) begins by b%
for every z ∈ V ′ and h(z) = b for every z ∈ V \ V ′.
Define qV as the CQ comprising all atoms in q
whose variables are in V and which contain at least
one variable from V ′; the answer variables of qV
are V \ V ′. By replacing the initial b by a in the
mapping h, we obtain a homomorphism hV of qV
into CT ,{A%(a)} with V \ V ′ = h−1

V (a). It follows
that t = (tr, ti) with tr = V \ V ′ and ti = V ′ is
a tree witness for (T , q(x)) generated by % (and
qt = qV). Moreover, tr 6= ∅ because q has at least
one answer variable. This means that the program
ΠTw
Q contains the following clause

Gq(x)← A%(z0) ∧
∧

z∈tr\{z0}

(z = z0) ∧
∧

1≤i≤k

Gqti (x
t
i),

where qt1, . . . , q
t
k are the connected components of

q without qt and z0 ∈ tr. Recall that the query qti
has answer variables xt

i = var(qti)∩ (x∪ tr). Let a∗

be the substitution for x∪tr such that a∗(x) = a(x)
for x ∈ x and a∗(z) = h(z) for z ∈ tr. Then, for
every 1 ≤ i ≤ k, there exists a homomorphism hi
from qti to CT ,A such that hi(x) = a∗(x) for every
x ∈ xt

i. By the induction hypothesis, we obtain
ΠTw
Q ,A |= Gqti (a

∗(xt
i)). Next, since h(z) = b for

every z ∈ tr, we have a∗(z) = a∗(z′) for every
z, z′ ∈ tr. Moreover, the presence of the element
b% in CT ,A means that T ,A |= A%(b). Since A is
a complete data instance, we have A%(b) ∈ A. It
follows that under the substitution a∗, all atoms
in the body of the clause under consideration are
entailed by ΠTw

Q ,A. Therefore, we must also have

ΠTw
Q ,A |= Gq(a).

We have thus shown the lemma for all queries Q other
than q0(x0). Let us now turn to q0(x0).

For the first direction, (⇒), suppose ΠTw
Q ,A |= Gq0(a).

There are four cases, depending on which type of clause
was used to derive Gq0(a). We skip the first three
cases, which are identical to those considered in the
base case and induction step, and focus instead on the
case in which Gq0(a) was derived using a clause of the
form Gq0 ← A(x) with A a unary predicate such that
T , {A(a)} |= q0. In this case, there must exist some
b ∈ ind(A) such that T ,A |= A(b). By completeness
of A, we obtain A(b) ∈ A. Since T , {A(a)} |= q0, we
get T ,A |= q0, which implies the existence of a homo-
morphism from q0 into CT ,A.

For the converse direction, (⇐), suppose that there
is a homomorphism h : q0 → CT ,A such that h(x0) = a.
We focus on the case in which q0 is Boolean (x0 = ∅)
and none of the variables in q0 is mapped to an individ-
ual constant (the other cases can be handled exactly as
in the induction basis and induction step). In this case,
there must exist an individual constant b and some %
such that h(z) begins by b% for every z ∈ var(q0). It

follows that T , {A%(a)} |= q0, since the mapping h′ de-
fined by setting h′(z) = a%w whenever h(z) = b%w is
a homomorphism from q0 to CT ,{A%(a)}. It follows that

ΠTw
Q contains the clause Gq0 ← A%(x). Since b% occurs

in ∆CT ,A , we have T ,A |= A%(b). By completeness ofA,
A%(b) ∈ A, and so by applying the clause Gq0 ← A%(x),

we obtain ΠTw
Q ,A |= Gq0 . q

A.6 Rewritings Zoo
In this section, we put together the rewritings from

Sections 3.2–3.4 for the OMQ given in Examples 8 and 11.
Consider the CQ q(x0, x7) depicted below (black nodes

represent answer variables)

x0 x1 x2 x3 x4 x5 x6 x7

R S R R S R R

and the following ontology T in normal form:

P (x, y)→ S(x, y), P (x, y)→ R(y, x),

AP (x)↔ ∃y P (x, y), AP−(x)↔ ∃y P (y, x),

AR(x)↔ ∃y R(x, y), AR−(x)↔ ∃y R(y, x),

AS(x)↔ ∃y S(x, y) AS−(x)↔ ∃y S(y, x).

A.6.1 UCQ rewriting
The 9 CQs below form a UCQ rewriting of the OMQ

Q(x0, x7) = (T , q(x0, x7)) over complete data instances
given as an NDL program with goal predicate G:

G(x0, x7)←[R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)] ∧
[R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)] ∧R(x6, x7),

G(x0, x7)←[AP−(x0) ∧R(x0, x3)] ∧
[R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x3) ∧AP (x3)] ∧
[R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)] ∧
[AP−(x3) ∧R(x3, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)] ∧
[R(x3, x6) ∧AP (x6)] ∧R(x6, x7),

G(x0, x7)←[AP−(x0) ∧R(x0, x3)] ∧
[AP−(x3) ∧R(x3, x6)] ∧R(x6, x7),

G(x0, x7)←[AP−(x0) ∧R(x0, x3)] ∧
[R(x3, x6) ∧AP (x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x3) ∧AP (x3)] ∧
[AP−(x3) ∧R(x3, x6)] ∧R(x6, x7),

G(x0, x7)←[R(x0, x3) ∧AP (x3)] ∧
[R(x3, x6) ∧AP (x6)] ∧R(x6, x7).

We note that a UCQ rewriting over all data instances
would in addition contain variants of the CQs above
with each of the predicates R and S replaced by P (with
arguments swapped appropriately).

The UCQ rewriting above can be obtained by trans-

forming the following PE-formula into UCQ form:[(
R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)

)
∨
(
AP−(x0) ∧R(x0, x3)

)
∨
(
R(x0, x3) ∧AP (x3)

)]
∧

[(
R(x3, x4) ∧ S(x4, x5) ∧R(x5, x6)

)
∨
(
AP−(x3) ∧R(x5, x6)

)
∨
(
R(x3, x6) ∧AP (x6)

)]
∧ R(x6, x7).

(Intuitively, each of the two sequences RSR in the query
can be derived in three possible ways: from RSR, from
AP−R and from RAP).

A.6.2 Log-rewriting
As explained in Example 11, we split T into D1 and

D2 and obtain two rules:

GεT (x0, x7)← Gx3 7→ε
D1

(x3, x0) ∧R(x3, x4) ∧
Gx4 7→ε
D2

(x4, x7),

GεT (x0, x7)← Gx3 7→ε
D1

(x3, x0) ∧AP−(x4) ∧ (x3 = x4) ∧
Gx4 7→P−
D2

(x4, x7).

Next, we split each of D1 and D2 into single-atom sub-
queries, which yields the following rules:

Gx3 7→ε
D1

(x3, x0)← (x0 = x1) ∧AP−(x1) ∧ (x1 = x2) ∧
R(x2, x3),

Gx3 7→ε
D1

(x3, x0)← R(x0, x1) ∧
(x1 = x2) ∧AP (x2) ∧ (x2 = x3),

Gx3 7→ε
D1

(x3, x0)← R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3),

Gx4 7→ε
D2

(x4, x7)← (x4 = x5) ∧AP (x5) ∧ (x5 = x6) ∧
R(x6, x7),

Gx4 7→ε
D2

(x4, x7)← S(x4, x5) ∧R(x5, x6) ∧R(x6, x7),

Gx4 7→P−
D2

(x4, x7)← AP−(x4) ∧ (x4 = x5) ∧R(x5, x6) ∧
R(x6, x7).

Note that in each case we consider only those types
that give rise to predicates that have definitions in the
rewriting. The resulting NDL rewriting with goal GεT
consists of 8 rules. Note, however, that the rewriting
illustrated above is a slight simplification of the defini-
tion given in Section 3.2: here, for the leaves of the tree
decomposition, we directly use the atoms Ats instead of
including a rule GwD(∂D,xD) ← Ats in the rewriting.
This simplification clearly does not affect the width of
the NDL query or the choice of weight function.

A.6.3 Lin-rewriting
We assume that x0 is the root, which makes x7 the

only leaf of the query. (Note that we could have chosen
another variable, say x3, as the root, with x0 and x7

the two leaves.) So, the top-level rule is

G(x0, x7)← Gx0 7→ε
0 (x0, x7).

We then move along the query and consider the vari-
ables x1, x2 and x3. The possible ways of mapping
these variables to the canonical model give rise to the
following 7 rules:

Gx0 7→ε
0 (x0, x7)← R(x0, x1) ∧ P x1 7→ε

1 (x1, x7),

Gx0 7→ε
0 (x0, x7)← (x0 = x1) ∧AP−(x1) ∧Gx1 7→P−

1 (x1, x7),

Gx1 7→ε
1 (x1, x7)← S(x1, x2) ∧Gx2 7→ε

2 (x2, x7),

Gx1 7→ε
1 (x1, x7)← (x1 = x2) ∧AP (x2) ∧Gx2 7→P

2 (x2, x7),

Gx1 7→P−
1 (x1, x7)← AP−(x1) ∧ (x1 = x2) ∧Gx2 7→ε

2 (x2, x7),

Gx2 7→ε
2 (x2, x7)← R(x2, x3) ∧Gx3 7→ε

3 (x3, x7),

Gx2 7→P
2 (x2, x7)← AP (x2) ∧ (x2 = x3) ∧Gx3 7→ε

3 (x3, x7).

Next, we move to the variables x4, x5 and x6, which
give similar 7 rules:

Gx3 7→ε
3 (x3, x7)← R(x3, x4) ∧ P x4 7→ε

4 (x4, x7),

Gx3 7→ε
3 (x3, x7)← (x3 = x4) ∧AP−(x4) ∧Gx4 7→P−

4 (x4, x7),

Gx4 7→ε
4 (x4, x7)← S(x4, x5) ∧Gx5 7→ε

5 (x5, x7),

Gx4 7→ε
4 (x4, x7)← (x4 = x5) ∧AP (x5) ∧Gx5 7→P

5 (x5, x7),

Gx4 7→P−
4 (x4, x7)← AP−(x4) ∧ (x4 = x5) ∧Gx5 7→ε

5 (x5, x7),

Gx5 7→ε
5 (x5, x7)← R(x5, x6) ∧Gx6 7→ε

6 (x6, x7),

Gx5 7→P
5 (x5, x7)← AP (x2) ∧ (x5 = x6) ∧Gx6 7→ε

6 (x6, x7).

Finally, the last variable can only be mapped to a con-
stant in the data instance, which yields a single rule:

Gx6 7→ε
6 (x6, x7)← R(x6, x7).

Note that, like in the previous case, we consider only
those types that give rise to predicates with definitions
(and ignore the dead-ends in the construction).

A.6.4 Tw-rewriting
We begin by splitting the query roughly in the middle,

that is, we choose x3 and consider two subqueries:

q03(x0, x3) = ∃x1x2

(
R(x0, x1) ∧ S(x1, x2) ∧R(x2, x3)

)
and

q37(x3, x7) = ∃x4x5x6

(
R(x3, x4) ∧ S(x4, x5) ∧

R(x5, x6) ∧R(x6, x7)
)
.

Since there is no tree witness t for (T , q(x0, x7)) that
contains x3 in ti, we have only one top-level rule:

G07(x, y)← G03(x0, x3) ∧G37(x3, x7).

Next, we focus on q03 and choose x1 as the splitting
variable. In this case, there is a tree witness t1 with
t1i = {x1} and t1r = {x0, x2}, and so we obtain two rules
for G03:

G03(x0, x3)← R(x0, x1) ∧G13(x1, x3),

G03(x0, x3)← AP−(x0) ∧ (x0 = x2) ∧R(x2, x3).

The subquery q13(x1, x3) = ∃x2

(
S(x1, x2) ∧R(x2, x3)

)
contains two atoms and is split at x2. Since there is a
tree witness t2 for (T , q13(x1, x3)) with t2i = {x2} and
t2r = {x1, x3}, we obtain two rules:

G13(x1, x3)← S(x1, x2) ∧R(x2, x3),

G13(x1, x3)← AP (x1) ∧ (x1 = x3).

By applying the same procedure to q37(x3, x7), we get
the following five rules:

G37(x3, x7)← G35(x3, x5) ∧G57(x5, x7),

G37(x5, x7)← R(x3, x4) ∧AP (x4) ∧ (x4 = x6) ∧R(x6, x7),

G35(x3, x5)← R(x3, x5) ∧ S(x5, x7),

G35(x3, x5)← AP−(x3) ∧ (x3 = x5),

G57(x3, x5)← R(x3, x4) ∧R(x4, x7).

Note that the rewriting illustrated above is slightly sim-
pler than the definition in Section 3.4: here, we di-
rectly use the atoms of q(x) instead of including a rule
Gq(x)← q(x), for each q(x) without existentially quan-
tified variables. This simplification clearly does not af-
fect the width of the NDL query and the choice of weight
function.

B. PROOFS FOR SECTION 4

B.1 Theorem 15
Theorem 15. pDepth-TreeOMQ is W [2]-hard.

Proof. We show that T kH , {V 0
0 (a)} |= qkH iff H has

a hitting set of size k. Denote by C the canonical model
of (T kH , {V 0

0 (a)}). For convenience of reference to the
points of the canonical model we assume that T kH con-
tains the following axioms:

V l−1
i (x)→ ∃z υli′(x, z) and

υli′(x, z)→ P (z, x) ∧ V li′(z), for 0 ≤ i < i′ ≤ n,
V li (x)→ Elj(z), for vi ∈ ej , ej ∈ E,
Elj(x)→ ∃z ηlj(x, z) and

ηlj(x, z)→ P (x, z) ∧ El−1
j (z), for 1 ≤ j ≤ m.

We show that C |= qkH iff H has a hitting set of size k.

(⇒) Suppose h : qkH → C is a homomorphism. Note
that C satisfies the following properties: (i) w ∈ E0

j iff

w = aυ1
i1
υ2
i2
. . . υsisη

s
jη
s−1
j . . . η1

j where vjs ∈ ej and (ii)

all points in ∆C have at most one P -predecessor. By
starting with some E0

j atom and applying first (i) and

then iterating (ii), we conclude that h(y) = aυ1
i1
. . . υkik

for some 1 ≤ i1 < i2 < . . . ik ≤ n. We claim that
{vi1 , vi2 , . . . , vik} is a hitting set in H. Indeed, for every
branch j of qkH , there is 1 ≤ s ≤ k such that this branch
is mapped on C in the following way:

h(zlj) = aυ1
i1υ

2
i2 . . . υ

l
il
, s ≤ l ≤ k − 1,

h(zlj) = aυ1
i1υ

2
i2 . . . υ

s
isη

s
jη
s−1
j . . . ηl+1

j , 0 ≤ l < s,

with vis ∈ ej . This can be shown by induction on l from
0 to k − 1 using (i) to prove the base of induction and
(ii) to prove the induction step. Therefore, for every j,
there exists s such that vis ∈ ej .

(⇐) Suppose {vi1 , vi2 , . . . , vik} is a hitting set in H.
We construct a homomorphism h from qkH to C. First,
we set h(y) = aυ1

i1
. . . υkik . Then, for each 1 ≤ j ≤ m,

we find s such vis ∈ ej and define h as follows:

h(zlj) = aυ1
i1υ

2
i2 . . . υ

l
il
, s ≤ l ≤ k − 1,

h(zlj) = aυ1
i1υ

2
i2 . . . υ

s
isη

s
jη
s−1
j . . . ηl+1

j , 0 ≤ l < s.

It should be clear that h is indeed a homomorphism. q

B.2 Theorem 16
Theorem 16. pLeaves-TreeOMQ is W [1]-hard.

Proof. We prove that TG, {A(a)} |= qG iff G has a
clique containing one vertex from each set Vi.

We start with some preliminaries. First note we as-
sume that the final axiom in TG (which uses the syn-
tactic sugar ∧) is actually given by the following three
axioms (where P is a fresh binary predicate):

B(x)→ ∃y P (x, y),

P (x, y)→ U(x, y),

P (x, y)→ U(y, x).

To simplify notation, we will abbreviate CTG,{A(a)} by C,
and for every 1 ≤ j ≤M , we let w(vj) = L1

jL
2
j . . . L

2M
j .

Observe that for every vj1 ∈ V1, vj2 ∈ V2, . . . , vjp ∈
Vp, the element aw(vj1)w(vj2) . . .w(vjp) belongs to ∆C .

Further, observe that if aw ∈ ∆C with |w| = 2M · p,
then there exist vj1 ∈ V1, vj2 ∈ V2, . . . , vjp ∈ Vp such
that w = w(vj1)w(vj2) . . .w(vjp).

(⇒) Suppose that TG, {A(a)} |= qG, and let h be
a homomorphism of qG into C. Note that because of
the atom B(y), the variable y must be sent by h to an
element occurring at the end of the pth block. As noted
above, every such element takes the form

aw(vj1)w(vj2) . . .w(vjp)

where vj1 ∈ V1, vj2 ∈ V2, . . . , vjp ∈ Vp. We claim that
{vj1 , . . . , vjp} is a clique in G. To see why, consider the
ith branch of qG, compactly represented as follows:(

U2M−2 · (Y Y · U2M−2)i · SS
)
(y, zi)

By examining the axioms, we see that starting from the
first occurrence of Y Y , every U and Y atom takes us one
step closer to a (prior to the first Y Y , we may go back
and forth on the extra P -edge leaving from h(y)). It
follows that SS must be mapped within the p-ith block
of the selected branch, and since S is present only at po-
sitions 2jp−i and 2jp−i + 1 of the block, we must have

h(zi) = aw(vj1) . . .w(vjp−i−1)L1
jp−i

. . . L
2jp−i−1
jp−i

. As the

distance between consecutive occurrences of Y Y (and
between the final Y Y and the SS) is 2M − 2, it fol-
lows that all Y Y blocks occur at positions 2jp−i and
2jp−i + 1 of blocks p − i + 1, . . . , p, which implies that
vjp−i+1

, . . . , vjp are neighbours of vji in G. Since qG
contains branches for every 1 ≤ i < p, the selected ver-
tices vj1 , . . . , vjp are all neighbours in G, and G contains
a clique with the required properties.

(⇐) Suppose that vj1 ∈ V1, . . . , vjp ∈ Vp form a
clique. We construct a homomorphism h of qG into C.
First, set h(y) = aw where w = w(vj1)w(vj2) . . .w(vjp)
and observe that the atom B(y) is satisfied by this as-
signment. We will use w[`, `′] to denote the subword
of w beginning with the `th symbol of w and ending
with the `′th symbol (note that w = |2M · p|, so w =
w[1, 2M ·p]). Next, consider the ith branch of the query,
which connects y to zi, and let y0, y1, . . . y2M(i+1) be the
variables lying between y and zi with y0 = y and zi =
y2M(i+1). For 0 ≤ k ≤ 2jp−i, we set h(yk) = h(y) if k
is even, and set h(yk) = h(y)P otherwise. Observe that
because P is included in both U and U−, we satisfy all
binary atoms between variables from {y0, . . . , y2jp−i

}.
For 2jp−i < k ≤ 2M(i+ 1), we set

h(yk) = aw[1, 2M · p− (k − 2jp−i)].

Note that, in particular, this yields

h(y2M(i+1)−2) = aw[1, 2M(p− i− 1) + 2jp−i + 2],

h(y2M(i+1)−1) = aw[1, 2M(p− i− 1) + 2jp−i + 1],

h(y2M(i+1)) = aw[1, 2M(p− i− 1) + 2jp−i],

so the final two S-atoms in the branch are satisfied
by h. It is easy to see that all U -atoms between vari-
ables from y2jp−i

, . . . , y2M(i+1) are also satisfied. Fi-
nally, using the fact that vertices vjp−i+1

, . . . , vjp are
neighbours of vjp−i , we can show that all of the Y -
atoms in the ith branch are satisfied by h. As we have
constructed a homomorphism from qG into C, we can
conclude TG, {A(a)} |= qG. q

C. PROOFS FOR SECTION 5

C.1 Theorem 17
Theorem 17. There is an ontology T† such that an-

swering OMQs of the form (T†, q) with Boolean tree-
shaped CQs q is NP-hard for query complexity.

Proof. We assume that T† consists of the following
axioms:

A(x)→ ∃y υ+(x, y)

υ+(x, y)→ P+(y, x) ∧ P0(y, x) ∧B−(y) ∧A(y),

B−(x)→ ∃y η−(x, y)

η−(x, y)→ P−(x, y) ∧B0(y),

A(x)→ ∃y υ−(x, y)

υ−(x, y)→ P−(y, x) ∧ P0(y, x) ∧B+(y) ∧A(y),

B+(x)→ ∃y η+(x, y)

η+(x, y)→ P+(x, y) ∧B0(y),

B0(x)→ ∃y η0(x, y)

η0(x, y)→ P+(x, y) ∧ P−(x, y) ∧ P0(x, y) ∧B0(y).

Let C be the canonical model of (T†, {A(a)}). We
prove that C |= qϕ iff ϕ is satisfiable.

(⇒) Suppose h is a homomorphism from qϕ to C and

h(zkj) = h(y) = a%1 . . . %n, for some roles %l. Since
A(y) ∈ qϕ, it follows that %l ∈ {υ+, υ−}. Moreover,
because of the structure of C, without any loss of gen-
erality we may assume that n = k. Define a valuation
ν : {p1, . . . , pk} → {t, f} by taking ν(pl) = t if %l = υ−,
ν(pl) = f, if %l = υ+. We claim that ν makes ϕ true. To
verify that the clause χj is satisfied, consider a number
1 ≤ s ≤ k, such that the jth branch of the query is
mapped on C in the following way:

h(zlj) = a%1 . . . %l, s ≤ l ≤ k,
h(zlj) = a%1 . . . %sγ1 . . . γs−l, 0 ≤ l < s,

for some roles γ1 . . . γs−l with γ1 ∈ {η−, η+} and γi = η0

for 2 ≤ i ≤ s − l. Such s and the roles γi exist, be-
cause the P -atoms in C are directed towards the root
if they cover υ-atoms, and away from the root if they
cover η-atoms (s ≥ 1 since B0(z0

j) ∈ qϕ). Clearly,
T† |= γ1(x, y) → P+(x, y) iff ρs = υ− iff ν(ps) = t
and T† |= γ1(x, y) → P−(x, y) iff ρs = υ+ iff ν(ps) = f.

It follows that either P+(zsj , z
s−1
j) ∈ qϕ and ν(ps) = t,

or P−(zsj , z
s−1
j) ∈ qϕ and ν(ps) = f. In either case, χj

contains a literal with ps satisfied by ν.

(⇐) Suppose a valuation ν : {p1, . . . , pk} → {t, f} sat-
isfies ϕ. Consider the sequence of roles %1 . . . %k, such
that for 1 ≤ l ≤ k we have %l = υ+, if ν(pl) = f, and
%l = υ−, if ν(pl) = t. We claim that there exists a homo-
morphism h from qϕ to C. First, let h(y) = a%1 . . . %k.
To map the jth branch of the query, consider the max-
imal 1 ≤ s ≤ k, such that a ps-literal (positive or nega-
tive) makes χj true. Set

h(zlj) = a%1 . . . %l, s ≤ l ≤ k − 1,

h(zlj) = a%1 . . . %sγ1 . . . γs−l, 0 ≤ l < s,

where γ1 = η+ if ps occurs positively, γ1 = η− if ps
occurs negatively and γi = η0 for i ≥ 2. That zlj , for
s ≤ l ≤ k − 1, are mapped correctly follows from the
maximality of s. That zlj is mapped correctly for l =
s−1 follows from the fact that ps occurs in χj positively

iff P+(zsj , z
s−1
j) ∈ qϕ iff ν(ps) = t iff %s = υ− iff γ1 =

η+ (similarly for negative ps). Finally, zlj is mapped
correctly for 0 ≤ l < s − 1 since the sequence of roles
γ2 . . . γs−l can embed any P+, P−, or P0 roles, and B0

concept. Thus, h is a homomorphism from qϕ to C. q

C.2 Theorem 20
We need several intermediate results and definitions

before we present the proof in the end of the section.
Suppose ϕ is a propositional formula in CNF having

p4

p3

p2

p1

y

z31 z32

z21 z22

z33 z34

z23 z24

z11 z12

z01 z02

z13 z14

z03 z04

z−1
1 z−1

2 z−1
3 z−1

4

z−2
1 z−2

2 z−2
3 z−2

4

y3

y2

y1

x

+ + 0 −

− − 0 −

0 0 0 0

+ 0 + 0

0

0

0

0

−

−

−

+

+

−

+

+

χ1 χ2 χ3 χ4

a

+
0

−
0

+
0

−
0

+
0

−
0

−

− + −

+

+

CT†,Aαm

−

− +

+

− +

Aαm

q̄ϕ(x)

Figure 3: Example of q̄ϕ(x) and CT†,Aαm for ϕ = χ1 ∧ · · · ∧ χ4 with χ1 = (p1 ∨ ¬p3 ∨ p4), χ2 = (¬p3 ∧ p4),
χ3 = p1, χ4 = (¬p3 ∨ ¬p4) and α = (0, 1, 1, 0)

k variables p1, . . . , pk and m clauses χ1, . . . , χm. We
assume that m = 2`. We associate with every such ϕ a
CQ q̄ϕ(x) with one answer variable x and the following

atoms, where 1 ≤ j ≤ m, 1 ≤ l ≤ k, and zkj = yk:

P0(y1, x), . . . , P0(yk, yk−1),

P+(zlj , z
l−1
j) if χj contains pl,

P−(zlj , z
l−1
j), if χj contains ¬pl,

P0(zlj , z
l−1
j), if χj contains no occurrence of pl.

Then, for 0 ≤ l ≤ `− 1,

P−(z−lj , z−l−1
j), if the lth bit of (j − 1)2 is 0,

P+(z−lj , z−l−1
j), if the lth bit of (j − 1)2 is 1,

B0(z−`j).

See an example in Fig. 3. For any α ∈ {0, 1}m, define
a data instance Aαm as the full binary tree of depth `
(and so m = 2` leaves) on the binary predicates P− (for
the left child) and P+ (for the right child); Aαm contains
A(a) for the root a of the tree and, for every ith leaf bi
of the tree, B0(bi) ∈ Aαm iff αi = 1.

Denote by fϕ : {0, 1}m → {0, 1} the monotone func-
tion such that fϕ(α) = 1 iff the CNF ϕ−α, which is ob-
tained from ϕ by removing all conjuncts χi with αi = 1,
is satisfiable. It is readily checked that we have

Lemma 26. For any α ∈ {0, 1}m,

T†,Aαm |= q̄ϕ(a) iff fϕ(α) = 1.

Let QL be any query language such that, for any QL-
query Φ(x) and any Aαm, the answer to Φ(a) over Aαm
can be computed in time poly(|Φ|,m).

Theorem 27. The OMQ (T†, q̄ϕ(x)) does not have a
polynomial-size rewriting in QL unless NP ⊆ P/poly.

Proof. Take any sequence of CNFs ϕn of polyno-
mial size in n such that fϕn

is NP-hard [23, Sec. 3]. Sup-
pose there is aQL-rewriting Φn of (T†, q̄ϕ(x)) of polyno-
mial size. By adapting the proof of P ⊆ P/poly [3, The-
orem 6.6] to the algorithm that checks Aαm |= Φn(a), we
obtain a sequence of polynomial-size circuits computing
fϕn , from which NP ⊆ P/poly. q

C.3 Theorem 21
Theorem 21. Evaluating PE-queries over trees in T

is NP-hard.

More precisely, we are going to prove:

Theorem 28. The evaluation problem for PE-queries
over data instances of the form Aαm is NP-hard.

Proof. Let ϕk, k ≥ 1, be the 3-CNF with all possi-
ble m = O(k3) clauses of k variables. Without loss of
generality, we will assume that the number of clauses
in ϕk is actually m = 2`, for some `. We construct
a PE-query qm(x) such that, for any α ∈ {0, 1}m, we
have Aαm |= qm(a) iff the CNF ϕ−αk is satisfiable, and
the size of qm is polynomial in m (and k).

The query qm(x) takes the form

qm(x) = ∃z
(
r(x, z) ∧ s(x, z) ∧ t(x, z)

)
,

where the subqueries (without quantified variables) r, s
and t and the variables z are defined as follows. Among
the variables z, there are variables z1, . . . , zm corre-
sponding to the leaves of Aαm, variables x1, . . . , xk corre-
sponding to the propositional variables of ϕk, and vari-
ables x′1, . . . , x

′
k corresponding to their negations (there

are other auxiliary variables which will be introduced
later on).

Now we will describe the subqueries r, s, t of qm. The
subquery r expresses that the variables z1, . . . , zm in-

deed correspond to the clauses of ϕk; it takes the form
r =

∧m
i=1 ri. Each ri corresponds to a leaf of Aαm.

Consider a path from the root a to this ith leaf. Let
P1, . . . , P` be the sequence of labels on the edges of this
path, that is, each Pi is either P− or P+. Then

ri = P1(x, y1
i) ∧ P2(y1

i , y
2
i) ∧ . . . ∧ P`(y`−1

i , zi),

where y1
i , . . . , y

`−1
i are variables among z.

The subquery s encodes that the variables x1 . . . , xk
and x′1, . . . , x

′
k correspond to an arbitrary Boolean as-

signment. It is of the form s =
∧k
i=1 si, and each si is

the following:

P±(x, u1
i) ∧ P±(u1

i , u
2
i) ∧ · · · ∧ P±(u`−2

i , u`−1
i) ∧[(

P±(u`−1
i , xi) ∧ P±(x′i, u

`−1
i) ∧B0(xi)

)
∨(

P±(u`−1
i , x′i) ∧ P±(xi, u

`−1
i) ∧B0(x′i)

)]
,

where u1
i , . . . , u

`−1
i are variables among z and

P±(x, y) = P−(x, y) ∨ P+(x, y).
The last subquery t encodes that the assignment given

by x1, . . . , xk and x′1, . . . , x
′
k satisfies the CNF given

by z1, . . . , zm. The formula t has the following form:
t =

∧m
i=1 ti. Suppose the clause zi is a disjunction of lit-

erals li,1, li,2 and li,3, where each li,n is among x1, . . . , xk
and x′1, . . . , x

′
k. Then

ti = B0(zi) ∨B0(li,1) ∨B0(li,2) ∨B0(li,3).

It is easy to see that qm is satisfiable over a given Aαm
iff Aαm corresponds to a satisfiable 3-CNF ϕ−αk . Thus
we have reduced the 3-SAT problem to the problem of
evaluating qm over Aαm. Since 3-SAT is NP-complete,
we thus have shown NP-hardness of our query evalua-
tion problem. q

C.4 Theorem 22
Theorem 22. There is an ontology T‡ such that an-

swering OMQs of the form (T‡, q) with Boolean linear
CQs q is LOGCFL-hard for query complexity.

Proof. Our proof encodes the hardest LOGCFL lan-
guage L [26] as formulated in [52]. The language L
enjoys the following property: for every language L′
over the alphabet Σ′ in LOGCFL, there exists a logspace
transducer τ converting words over Σ′ to the words
over the alphabet Σ of L in the sense that w ∈ L′ iff
τ(w) ∈ L. We construct an ontology T‡ and a logspace
transducer that converts the words w ∈ Σ∗ to linear
Boolean CQs qw such that

w ∈ L iff T‡, {A(a)} |= qw.

To explain the construction, we begin with a simpler
context-free language. Let Σ0 = {a1, b1, a2, b2} be an
alphabet and B0 be the context-free language generated
by the following grammar:

S → SS, S → ε,

S → a1Sb1, S → a2Sb2.

With each word w = c0 . . . cn over Σ0 we associate
conjunction γw(u0, v0, . . . , un, vn, un+1) of the following
atoms:

Rc0(u0, v0), Sc0(v0, u1), Rc1(u1, v1), Sc1(v1, u2), . . . ,

Rcn(un, vn), Scn(vn, un+1),

where Rc and Sc are binary predicates, for c ∈ Σ0. Let
T0 contain the following axioms, for i = 1, 2:

D(x)→ ∃y
(
Rai(x, y) ∧ Sbi(y, x) ∧ (11)

∃z
(
Sai(y, z) ∧Rbi(z, y) ∧D(z)

))
.

An initial part of the canonical model of (T0, {A(a), D(a)})
encoded by these axioms is shown below:

a : A

a1

a1

b1

b1

a
2

a
2

b
2

b
2

a 1

a 1

b 1

b 1

a
2

a
2

b
2

b
2

a 1

a 1

b 1

b 1

a
2

a
2

b
2

b
2

(each large gray node belongs to D, each solid arrow
with label c belongs to Rc and each dashed arrow with
label c to Sc, for c ∈ Σ0). Let qAw be the following linear
Boolean CQ:

A(u0) ∧ γw(u0, v0, . . . , un, vn, un+1) ∧A(un+1).

The following claim can readily be verified:

Proposition 29. For every w ∈ Σ∗0, we have w ∈ B0

iff T0, {A(a), D(a)} |= qAw.

The language B0 is, however, not LOGCFL-hard. We
now reproduce the definition of the hardest LOGCFL
language L from [52], which uses B0 as a basis of the
construction. Let Σ = Σ0∪{[,],#}, for distinct symbols
[,], and # not in Σ0. Then set

L =
{

[x1y1z1][x2y2z2] . . . [xkykzk] | k ≥ 1,

xi ∈ (Σ0 ∪ {#})∗{#} ∪ {ε} and

zi ∈ {ε} ∪ {#}(Σ0 ∪ {#})∗, for all i ≤ k,
and y1y2 . . . yk ∈ B0

}
.

To explain the intuition, following [52], let a string of
symbols of the form [w1#w2# . . .#wn], where wi ∈ Σ∗

for all i, be called a block and let each of the substrings
wi be called a choice. Then, L is the set of all strings of
blocks such that there exists a sequence of choices, one
from each block, which is in the base language B0. The
reader should notice that a choice (possibly of the empty
string) must be made from each block. For example,

[a1a2#b2b1] /∈ L, (12)

[a1a2#b2b1][b2b1] ∈ L, (13)

[a1a2#b2b1][a1b1] /∈ L, (14)

[#a1a2#b2b1][a1b1] ∈ L. (15)

We say that a word w over Σ is block-formed if the
following conditions are satisfied:

– the word begins with [and ends with],

– after each [there is no [before];

– each non-final] is followed immediately by [;

– between each pair of matching [and] there is at
least one symbol.

With these definitions at hand, we first describe a log-
space transducer that, given a word w over Σ, returns
a linear Boolean CQ qw with binary predicates Rc and
Sc, for c ∈ Σ, and unary predicates A and E. If the
word w = c0 . . . cn is block-formed, then qw consists of
the following atoms:

A(u0) ∧ γw(u0, v0, . . . , un, vn, un+1) ∧A(un+1).

Otherwise, the transducer returns a query that consists
of a prefix of A(u0) ∧ γw(u0, v0, . . . , un, vn, un+1) and
ends in E(ui), for some i, which will indicate an error (as
all queries containing E will be false in T‡, {A(a)}). It
is straightforward to verify that the required transducer
can be implemented in L.

Let T‡ contain the two axioms (11) and the following
axioms:

A(x)→ D(x), (16)

D(x)→ ∃y
(
R[(x, y) ∧ S[(y, x)

)
, (17)

D(x)→ ∃y
(
R[(x, y) ∧ S#(y, x) ∧ (18)

∃z
(
S[(y, z) ∧R#(z, y) ∧ F (z)

))
,

D(x)→ ∃y
(
R](x, y) ∧ S](y, x)

)
, (19)

D(x)→ ∃y
(
R#(x, y) ∧ S](y, x) ∧ (20)

∃z
(
S#(y, z) ∧R](z, y) ∧ F (z)

))
,

F (x)→ ∃y
(
Rc(x, y) ∧ Sc(y, x)

)
, (21)

for c ∈ Σ0 ∪ {#}.

The four additional branches of the canonical model of
(T‡, {A(a)}) at each point in D are shown below:

D

F F

[

[

#

#

#

#

]

]

c c c c

[

[

]

]

(the labels D and F are indicated next to the nodes,
and, as before, each solid arrow with label c belongs to
Rc and each dashed arrow with label c to Sc, for c ∈ Σ0;

to avoid clutter, only one pair of c-arrows is shown at
the bottom).

Let qDw be defined identically to qAw except that the
two occurrences of A are replaced by D. The following
property is established similarly to Proposition 29:

Proposition 30. For any block-formed word w] ∈ Σ∗,

w = [x, for x ∈ (Σ0 ∪ {#})∗{#} ∪ {ε},
iff {(17), (18), (21)}, {D(d)} |= qDw .

For any block-formed word [w ∈ Σ∗,

w = z], for z ∈ {ε} ∪ {#}(Σ0 ∪ {#})∗,
iff {(19), (20), (21)}, {D(d)} |= qDw .

With these properties established, it can readily be
verified that T‡, {A(a)} |= qw iff w ∈ L. Consider a
block-formed word w ∈ Σ∗. Let [w1#w2# . . .#wn] be
its m-th block and wj = ym (that is, wj is the seg-
ment of the B0-word in this block). By Proposition 30,
the subtree generated by (18) matches the (translation
of) [w1# . . .#wj−1#, whereas the subtree generated
by (20) matches #wj+1# . . .#wn]. By Proposition 29,
the wj itself is mapped into the main tree generated
by (11). Note that (17) and (19) are needed for the case
when j = 1 and j = n, respectively. Finally, observe
that (the translation of) w has to be mapped starting
from a (the root of the tree) and ending at a, and that
the tree of the canonical model does not contain con-
cept E, so only a block-formed w can be mapped to the
canonical model. In particular, T‡, {A(a)} 6|= qw for w
of (12) and (14), and T‡, {A(a)} |= qw for w of (13)
and (15). q

D. EXPERIMENTS

D.1 Computing rewritings
We computed 6 types of rewritings for linear queries

similar to those in Example 8 and a fixed ontology from
Example 11. The first three rewritings were obtained
by running executables of Rapid [13], Clipper [18] and
Presto [49] with a 15 minute timeout on a desktop ma-
chine. The other three rewritings are rewritings Lin,
Log and Tw described in Sections 3.3, 3.2 and 3.4 re-
spectively.

We considered the following three sequences:

RRSRSRSRRSRRSSR, (Sequence 1)

SRRRRRSRSRRRRRR, (Sequence 2)

SRRSSRSRSRRSRRS. (Sequence 3)

For each of the three sequences, we consider the line-
shaped queries with 1–15 atoms formed by their pre-
fixes. Table 1 presents the sizes of the different types of
rewritings.

Table 1: The size (number of clauses) of different types of rewritings for the three sequences of queries
(– indicates timeout after 15 minutes)

no. Sequence 1 Sequence 2 Sequence 3
of RRSRSRSRRSRRSSR SRRRRRSRSRRRRRR SRRSSRSRSRRSRRS

atoms Rapid Clipper Presto Lin Log Tw Rapid Clipper Presto Lin Log Tw Rapid Clipper Presto Lin Log Tw
1 1 1 5 2 1 1 1 1 5 2 1 1 1 1 5 2 1 1
2 1 1 5 5 2 0 2 2 14 5 4 2 2 2 14 5 4 2
3 2 2 14 8 5 3 2 2 14 8 5 3 2 2 14 8 5 3
4 3 3 19 11 8 4 2 2 14 11 6 3 4 4 23 11 8 5
5 5 5 24 14 12 6 2 2 14 14 8 4 4 4 23 14 10 6
6 7 7 33 17 16 10 2 2 14 17 10 4 8 8 39 17 15 7
7 10 11 49 20 20 10 4 4 23 20 13 7 11 11 57 20 18 14
8 13 16 77 23 24 14 6 7 29 23 16 7 18 24 96 23 21 8
9 13 16 77 26 27 15 10 13 50 26 22 10 24 35 183 26 27 10
10 26 44 203 29 32 16 14 26 83 29 27 11 34 63 356 29 33 17
11 39 72 329 32 36 16 14 26 83 32 29 14 43 100 356 32 37 20
12 39 126 329 35 40 21 14 26 83 35 33 18 56 302 1028 35 42 23
13 – 241 959 38 45 24 – 30 83 38 35 20 – – 1712 38 46 25
14 – – 959 41 47 25 – 31 83 41 36 16 – – 1712 41 51 27
15 – – 2723 44 51 22 – 30 83 44 37 15 – – 5108 44 52 29

Table 2: Generated datasets

dataset V p q avg. degree
of vertices no. of atoms

1.ttl 1 000 0.050 0.050 50 61 498
2.ttl 5 000 0.002 0.004 10 64 157
3.ttl 10 000 0.002 0.004 20 256 804
4.ttl 20 000 0.002 0.010 40 1 027 028

D.2 Datasets
We used Erdös-Rènyi random graphs with indepen-

dent parameters V (number of vertices), p (probability
of an R-edge) and q (probability of concepts A and B
at a given vertex). Note that we intentionally did not
introduce any S-edges. The last parameter, the aver-
age degree of a vertex, is V · p. Table 2 summarises the
parameters of the datasets.

D.3 Evaluating rewritings
We evaluated all obtained rewritings on the datasets

in Section D.2 using RDFox triplestore [42] with 999-
second timeout. The materialisation time and other
relevant statistics are given in Tables 3, 4, and 5.

D.4 Discussion
Note that the three types of rewritings suggested in

this paper give rise to three different rewriting strate-
gies for linear queries. Let us compare how the exe-
cution time depends on the exact rewriting strategy.
We see in Table 3 that for most queries in Sequence
1 the Lin rewriting shows the best performance, while
for Sequences 2 and 3 algorithms Log and Tw* are the
winners (Tables 4 and 5). Note also that even within a
single sequence the results may vary with the number
of atoms.

All three rewriting algorithms are based upon a com-
mon idea: given a query, pick a point (or a set of points)

that would split the query into subqueries, then rewrite
these subqueries recursively, and then include rules that
join the results into the rewriting of the initial query.
However, there is a liberty in the choice of this point,
and our rewritings are essentially different in this strat-
egy. Thus, different rewritings generate NDL programs
which are related to each other like different execution
plans for CQs. Taking into account that we use highly
unbalanced data (empty S versus dense R) and that
RDFox just materialises all of the predicates of the pro-
gram without using magic sets or optimising the pro-
gram before executions, the performance naturally de-
pends on how we split the query into subqueries in the
rewriting algorithm.

In the paper, we described three simple complexity-
motivated splitting strategies. Our experiments show
that none of them is always the best and the execution
time may be dramatically improved by using an ‘adapt-
able’ splitting strategy which would work similarly to a
query execution planner in database management sys-
tems and use statistical information about the data to
generate a quickly executable NDL program.

The difference in performance between different types
of optimal rewritings made us investigate its causes. For
example, we noticed that the Tw-rewriting of the query
with 3 atoms of Sequence 3

G(x, y)← S(x, z) ∧ P13(z, y),

P13(x, y)← R(x, z) ∧R(z, y),

Table 3: Evaluating rewritings on RDFox - 1
data- query evaluation time (sec) no. of no. of generated tuples
set size Rapid Clipper Presto Lin Log Tw Tw* answers Rapid Clipper Presto Lin Log Tw Tw*

1 0.021 0.019 0.034 0.049 0.017 0.016 0.01 61390 61390 61390 122780 61449 61390 61390 61390
2 0.675 0.694 0.706 0.898 0.505 0.652 0.698 976789 976789 976789 1038179 1041822 1038179 976789 976789
3 0.058 0.053 0.125 0.013 0.112 0.01 0.012 2956 2956 2956 64394 3054 64394 3004 3004
4 0.204 0.201 0.314 0.087 0.675 0.76 0.12 212213 212213 212213 273710 283409 1314797 1189061 212272
5 0.12 0.114 0.314 0.014 0.576 0.696 0.064 2956 2956 2956 64453 3150 1105636 976837 3004
6 0.266 0.248 0.685 0.093 0.266 0.768 0.124 212213 212213 212213 273710 292815 337479 1198455 218710
7 0.271 0.242 1.11 0.008 0.243 0.687 0.05 2 956 2 956 2 956 64453 3 246 125 361 982797 3148
8 0.412 0.377 1.406 0.084 0.904 0.944 0.186 212 213 212 213 212 213 273710 302 221 1 659 409 1410727 431100
9 3.117 3.337 12.713 3.376 2.941 2.405 1.633 998 945 998 945 998 945 1060442 2 927 979 2 684 359 2435551 1455913

1.ttl 10 1.079 1.102 18.432 0.012 0.607 0.76 0.166 8 374 8 374 10 760 69871 12 573 1 178 714 1203649 224057
11 2.246 1.984 48.311 0.385 0.945 1.075 0.371 436 000 436 000 436 000 497497 836 876 1 618 743 1663534 664174
12 13.693 30.032 >999 8.129 6.867 5.922 5.28 999 998 999 998 1 000 000 – 5 311 314 4 439 352 3217262 2241208
13 – 6.810 560.206 0.027 0.616 0.946 0.274 20 985 – 24 839 82482 38 200 553 821 1234421 254888
14 – – 913.387 0.013 0.358 0.819 0.27 0 – – 61497 48 312 723 1201459 228307
15 – – >999 0.032 0.394 0.994 0.33 2 000 – – – 70 277 376 313 1417786 442579
1 0.02 0.022 0.039 0.02 0.019 0.017 0.008 64103 64103 64103 128206 64125 64103 64103 64103
2 0.273 0.305 0.321 0.29 0.297 0.275 0.466 809731 809731 809731 873834 874112 873834 809731 809731
3 0.03 0.028 0.06 0.011 0.058 0.01 0.013 427 427 427 64561 489 64561 458 458
4 0.057 0.054 0.103 0.032 0.448 0.315 0.035 8778 8778 8778 72934 74004 947164 818531 8800
5 0.05 0.046 0.128 0.014 0.423 0.301 0.03 427 427 427 64583 551 938875 809762 458
6 0.08 0.074 0.27 0.035 0.084 0.316 0.038 8778 8778 8778 72934 75103 77253 819648 9490
7 0.089 0.080 0.378 0.008 0.078 0.295 0.024 427 427 427 64583 613 68 546 810647 551
8 0.136 0.125 0.467 0.029 0.434 0.322 0.037 8 778 8 778 8 778 72934 76 202 1 085 362 828448 18334
9 0.202 0.254 1.179 0.369 0.554 0.391 0.102 105 853 105 853 105 853 170009 1 020 363 1 190 249 933295 123190

2.ttl 10 0.174 0.204 2.341 0.011 0.461 0.321 0.052 11 11 438 64167 506 943 097 819428 9354
11 0.192 0.259 4.726 0.036 0.473 0.336 0.053 651 651 9 396 64807 74 922 944 210 820354 11271
12 0.244 0.699 24.778 0.396 1.034 0.509 0.15 8 058 8 058 113 179 72214 1 004 735 1 940 300 934269 124420
13 – 0.629 20.555 0.015 0.244 0.458 0.084 0 – 438 64156 502 209 915 820373 10321
14 – – 25.243 0.014 0.153 0.350 0.081 0 – – 64156 31 200 962 820106 10722
15 – – 66.916 0.032 0.172 0.335 0.072 0 – – 64156 64 543 265 087 828884 19522
1 0.131 0.094 0.225 0.101 0.096 0.14 0.032 256699 256699 256699 513398 256756 256699 256699 256699
2 2.933 2.946 3.017 2.955 3.053 2.929 3.039 6379932 6379932 6379932 6636631 6638150 6636631 6379932 6379932
3 0.206 0.175 0.519 0.03 0.499 0.029 0.034 1217 1217 1217 257963 1311 257963 1264 1264
4 0.399 0.424 0.927 0.171 4.003 3.419 0.231 67022 67022 67022 323825 327716 6961626 6447011 67079
5 0.36 0.357 1.112 0.036 4.133 3.396 0.179 1217 1217 1217 258020 1405 6895915 6379979 1264
6 0.632 0.57 1.806 0.169 0.836 3.425 0.228 67022 67022 67022 323825 331647 363640 6450931 69782
7 0.631 0.581 2.981 0.035 0.756 3.255 0.156 1 217 1 217 1 217 258020 1 499 296 711 6382460 1405
8 0.925 0.876 3.739 0.159 4.377 3.405 0.278 67 022 67 022 67 022 323825 335 578 7 546 184 6518010 136975
9 1.949 2.275 14.564 4.063 5.251 4.169 1.169 1 678 668 1 678 668 1 678 668 1935471 8 613 829 9 225 201 8196944 1815899

3.ttl 10 1.24 1.377 35.109 0.049 4.731 3.571 0.342 60 60 1 277 256863 1 389 6 936 178 6449555 68557
11 1.403 1.798 60.858 0.249 4.846 3.607 0.343 11 498 11 498 77 811 268301 341 459 6 949 160 6462905 85267
12 1.697 5.413 572.53 4.355 10.128 6.693 1.645 305 640 305 640 1 951 654 562443 8 780 232 15 626 926 8438115 2058532
13 – 4.382 484.969 0.082 1.762 4.926 0.599 0 – 1 277 256803 1 377 917 117 6453717 72776
14 – – 575.487 0.063 1.115 3.972 0.584 0 – – 256803 47 850 309 6452195 73900
15 – – >999 0.177 1.011 3.585 0.501 0 – – – 257 974 1 107 065 6519217 140979
1 0.433 0.451 1.037 0.495 0.439 0.456 0.165 1026526 1026526 1026526 2053052 1026774 1026526 1026526 1026526
2 27.549 28.088 28.329 27.011 29.532 32.331 31.34 49364886 49364886 49364886 50391412 50404311 50391412 49364886 49364886
3 2.067 2.409 3.657 0.159 4.087 0.161 0.162 13103 13103 13103 1039882 13613 1039882 13356 13356
4 4.866 5.438 9.511 1.37 38.919 31.188 2.746 1286991 1286991 1286991 2314018 2353661 52718280 50652125 1287239
5 4.061 4.032 10.374 0.209 42.943 33.064 2.142 13103 13103 13103 1040130 14119 51444898 49365139 13356
6 6.909 7.133 16.249 1.443 7.767 36.268 2.782 1286991 1286991 1286991 2314018 2393145 2952225 50691250 1313261
7 6.614 6.277 23.7 0.243 8.586 29.098 2.02 13 103 13 103 13 103 1040130 14 625 1 665 376 49391598 14115
8 11.441 10.923 29.1 1.880 54.813 29.426 3.669 1 286 991 1 286 991 1 286 991 2314018 2 432 629 56 098 445 51978489 2600996
9 46.704 50.668 193 76.169 102.055 66.464 33.63 58 753 514 58 753 514 58 753 514 59780541 114 973 160 114 837 395 110717131 61339643

4.ttl 10 14.348 15.503 462 0.375 43.347 30.008 4.694 19 966 19 966 33 014 1046993 35 359 52 103 362 50698955 1321716
11 19.593 20.907 821 2.843 44.410 31.061 5.319 1 872 159 1 872 159 3 051 184 2899186 4 397 556 53 986 724 52602849 3224788
12 71.354 182.499 >999 172.822 237.478 179.12 90.04 79 939 048 79 939 048 120 229 590 – 199 083 489 242 500 074 189429768 140064931
13 – 54.497 >999 0.562 22.345 44.427 7.105 22 474 – 53 717 – 58 826 5 686 759 50759705 1382714
14 – – >999 0.550 12.462 36.259 7.493 0 – – – 253 4 356 739 50704606 1353393
15 – – >999 1.211 11.315 30.709 7.028 12 165 – – – 1 064 542 5 395 902 52014512 2652797

Table 4: Evaluating rewritings on RDFox - 2
data- query evaluation time (sec) no. of no. of generated tuples
set size Rapid Clipper Presto Lin Log Tw Tw* answers Rapid Clipper Presto Lin Log Tw Tw*

1 0.009 0.005 0.005 0.005 0.005 0.005 0.007 0 0 0 0 48 0 0 0
2 0.009 0.008 0.021 0.05 0.012 0.008 0.007 59 59 59 61508 64406 118 59 59
3 0.083 0.058 0.077 0.9 0.093 0.732 0.058 3584 3584 3584 65033 1092161 65033 980373 3584
4 2.363 4.049 2.301 8.32 0.11 0.723 0.073 57571 57571 57571 119020 2204964 119079 1034419 57630
5 97 92 102 13.599 2 14.272 2.718 59000 59000 59000 120449 3265393 1097297 2035848 59059
6 >999 >999 >999 17.882 19 13.881 42.914 59000 – – – 4324393 1162212 2039373 62584
7 129 122 >999 0.384 0.25 0.749 0.344 2832 2832 2832 – 156824 132259 1030122 6464
8 >999 >999 >999 10.963 2 1.82 21.399 55991 – – – 3352724 304347 1302623 268322
9 162 158 >999 0.395 0.21 0.722 0.344 2832 2832 2832 – 156920 187155 1040255 5895

1.ttl 10 >999 >999 >999 11.118 2 12.928 39.21 55991 – – – 3362130 1220806 2104667 68937
11 >999 >999 >999 20.217 4 14.611 >999 59000 – – – 5920653 2251570 2342243 –
12 >999 >999 >999 31.648 21 19.079 >999 59000 – – – 8714382 3361965 4165789 –
13 – >999 >999 34.395 46 193.512 >999 59000 – – – 9783393 3429574 4198870 –
14 – >999 >999 39.818 223 190.334 >999 59000 – – – 10842393 1509563 4130571 –
15 – >999 >999 49.391 232 226.827 >999 59000 – – – 11901393 1594164 4420495 –
1 0.007 0.007 0.005 0.007 0.007 0.005 0.004 0 0 0 0 31 0 0 0
2 0.01 0.01 0.028 0.027 0.011 0.008 0.008 22 22 22 64147 64543 44 22 22
3 0.025 0.025 0.041 0.345 0.046 0.313 0.024 256 256 256 64381 879372 64381 809987 256
4 0.135 0.136 0.169 4.798 0.055 0.297 0.023 3300 3300 3300 67425 9329702 67447 813053 3322
5 1.314 1.278 1.824 39.195 0.513 4.714 0.122 34474 34474 34474 98599 33935400 908352 9240858 34496
6 13.597 13.652 19.52 119.212 0.698 4.606 0.178 106742 106742 106742 170867 59117304 1044957 9313360 106998
7 1.396 1.34 18.91 0.116 0.102 0.326 0.028 248 248 248 64404 214761 129190 815625 535
8 1.572 1.987 20.58 2.518 0.095 0.364 0.069 3478 3478 3478 67634 2968573 199843 825309 12300
9 1.397 1.554 35.15 0.118 0.076 0.333 0.033 248 248 248 64404 214823 132187 813759 728

2.ttl 10 1.636 2.634 233 2.591 0.639 4.45 0.069 3478 3478 3478 67634 2969672 976875 9245685 4871
11 1.677 12.024 895 30.575 0.98 4.434 0.66 35382 35382 35382 99538 26328037 1823608 9285127 44313
12 2.009 143 >999 128.532 1.756 5.666 7.999 106895 106895 106895 – 71017728 2184441 10358119 1010563
13 – >999 >999 243.656 2.559 47.098 5.121 110000 – – – 115653199 2742932 34483363 145486
14 – >999 >999 325.755 2.866 50.997 12.028 110000 – – – 151038934 1448087 35282112 111224
15 – >999 >999 433.438 26.903 54.518 133.512 110000 – – – 176515562 9102348 35442252 118515
1 0.009 0.01 0.009 0.011 0.009 0.011 0.009 0 0 0 0 47 0 0 0
2 0.023 0.02 0.115 0.145 0.022 0.019 0.019 57 57 57 256813 257974 114 57 57
3 0.123 0.127 0.249 3.364 0.315 3.212 0.136 1462 1462 1462 258218 6668549 258218 6381394 1462
4 1.992 1.93 3.072 85.844 0.345 3.21 0.122 36260 36260 36260 293016 86686553 293073 6416249 36317
5 47 56 76.8 967 7.09 70.117 1.898 452502 452502 452502 709258 187656175 7089247 86439255 452559
6 >999 >999 >999 >999 9.996 73.99 3.965 570000 - – – – 7464849 86558158 571462
7 47 51 >999 1.591 0.736 3.47 0.181 2125 2125 2125 – 883690 518306 6413768 3634
8 77 99 >999 60.365 0.667 3.601 1.842 53191 53191 53191 – 22657990 862422 6536462 120327
9 50 56 >999 1.885 0.473 3.496 0.223 2125 2125 2125 – 883784 553583 6419638 3446

3.ttl 10 79 142 >999 59.019 7.999 67.145 2.083 53191 53191 53191 – 22661921 7401781 86497805 58664
11 81 >999 >999 >999 10.862 68.956 50.812 516631 516631 – – – 14275796 87027128 587987
12 116 >999 >999 >999 26.218 112.098 306.304 570000 570000 – – – 16280643 95308112 8298971
13 – >999 >999 >999 45.19 >999 785.247 570000 – – – – 27255415 – 1026838
14 – >999 >999 >999 74.691 >999 >999 570000 – – – – 9092721 – –
15 – >999 >999 >999 >999 >999 >999 – – – – – – – –
1 0.026 0.027 0.027 0.035 0.026 0.047 0.029 0 0 0 0 253 0 0 0
2 0.068 0.067 0.5 0.543 0.078 0.069 0.07 248 248 248 1027022 1040241 496 248 248
3 0.992 0.99 1.483 33.62 1.98 30.768 0.976 12651 12651 12651 1039425 51050537 1039425 49377537 12651
4 60.836 69.126 65.671 M 2.175 30.532 1.272 609193 609193 609193 1635967 – 1636215 49974327 609441
5 >999 >999 >999 >999 85 >999 60.335 4947136 – – – – 55339044 – 4947384
6 >999 >999 >999 >999 287 >999 261.562 4960000 – – – – 56390837 – 4972651
7 >999 >999 >999 63 5 31.839 3.118 62572 – – – 10949093 2141879 50070886 75476
8 >999 >999 >999 >999 13 37.121 273.336 2435666 – – – – 6151203 53696984 3723153
9 >999 >999 >999 61 5 31.899 5.725 62572 – – – 10949599 2739031 50050255 76176

4.ttl 10 >999 >999 >999 >999 131 >999 319.902 2435666 – – – – 58829172 – 2487953
11 >999 >999 >999 M 214 >999 – 4960000 – – – – 111363802 – –
12 >999 >999 >999 M >999 >999 – – – – – – – – –
13 – >999 >999 M >999 >999 – – – – – – – – –
14 – >999 >999 M >999 >999 – – – – – – – – –
15 – >999 >999 M >999 >999 – – – – – – – – –

Table 5: Evaluating rewritings on RDFox - 3
data- query evaluation time (sec) no. of no. of generated tuples
set size Rapid Clipper Presto Lin Log Tw Tw* answers Rapid Clipper Presto Lin Log Tw Tw*

1 0.004 0.003 0.003 0.004 0.003 0.021 0.003 0 0 0 0 48 0 0 0
2 0.006 0.006 0.017 0.022 0.008 0.014 0.005 59 59 59 61508 64406 118 59 59
3 0.053 0.06 0.065 0.849 0.087 0.69 0.053 3584 3584 3584 65033 1092161 65033 980373 3584
4 0.012 0.01 0.074 0.01 0.009 0.008 0.008 2 2 2 61499 3176 168 109 109
5 0.011 0.009 0.07 0.008 0.009 0.008 0.009 0 0 0 61497 48 166 59 59
6 0.018 0.015 0.139 0.023 0.09 0.677 0.055 2 2 2 61499 64560 65203 980434 3704
7 0.017 0.015 0.145 0.01 0.087 0.68 0.057 0 0 0 61497 144 65190 980480 3691

1.ttl 8 0.025 0.034 0.339 0.026 0.044 0.009 0.008 2 2 135 61499 73966 129565 170 286
9 0.025 0.034 0.433 0.01 0.034 0.009 0.008 0 0 2 61497 240 65530 109 214

10 0.035 0.086 0.549 0.029 0.026 0.015 0.015 2 2 135 61499 83372 67690 12950 13114
11 0.034 0.086 4.445 1.164 0.54 0.765 0.221 133 0 2 61630 1684864 1095576 1227962 251278
12 0.048 0.223 4.877 0.013 0.137 0.699 0.062 2 2 135 61499 4082 192211 983694 4115
13 - - 13.007 0.141 0.153 0.79 0.175 133 - - 61630 380205 226874 1228297 229396
14 - - 382.922 3.738 0.878 1.166 0.318 1967 - - 63464 3842746 1282299 1809813 270081
15 - - 307.184 0.017 0.36 0.771 0.224 11 - - 61508 16542 242156 1228610 252720
1 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0 0 0 0 31 0 0 0
2 0.006 0.006 0.02 0.023 0.009 0.006 0.006 22 22 22 64147 64543 44 22 22
3 0.022 0.019 0.04 0.339 0.045 0.29 0.019 256 256 256 64381 879372 64381 809987 256
4 0.013 0.011 0.047 0.01 0.01 0.009 0.009 0 0 0 64156 490 75 53 53
5 0.012 0.011 0.044 0.008 0.009 0.01 0.009 0 0 0 64156 31 75 22 22
6 0.02 0.016 0.081 0.027 0.042 0.304 0.021 0 0 0 64156 64543 64456 810009 300

2.ttl 7 0.018 0.015 0.094 0.011 0.041 0.297 0.024 0 0 0 64156 93 64465 810040 309
8 0.025 0.036 0.182 0.027 0.053 0.01 0.009 0 0 0 64156 65642 129037 75 119
9 0.026 0.037 0.215 0.012 0.03 0.009 0.009 0 0 0 64156 155 64611 53 106

10 0.038 0.091 0.327 0.028 0.029 0.014 0.013 0 0 0 64156 66741 65120 1393 1468
11 0.036 0.09 1.467 0.345 0.358 0.314 0.055 0 0 0 64156 906286 879949 818896 9218
12 0.052 0.268 1.868 0.014 0.106 0.294 0.03 0 0 0 64156 494 193096 810468 385
13 - - 4.579 0.032 0.119 0.359 0.051 0 - - 64156 74216 193944 819532 10495
14 - - 26.213 0.38 0.454 0.37 0.123 0 - - 64156 995998 1008466 819319 9523
15 - - 26.689 0.017 0.209 0.352 0.063 0 - - 64156 502 198540 819067 9293
1 0.009 0.009 0.009 0.01 0.007 0.008 0.008 0 0 0 0 47 0 0 0 0
2 0.019 0.017 0.104 0.111 0.02 0.017 0.016 57 57 57 256813 257974 114 57 57
3 0.11 0.135 0.233 3.244 0.274 3.109 0.113 1462 1462 1462 258218 6668549 258218 6381394 1462
4 0.038 0.034 0.277 0.034 0.026 0.027 0.028 0 0 0 256803 1314 161 104 104
5 0.036 0.036 0.275 0.025 0.024 0.031 0.027 0 0 0 256803 47 161 57 57
6 0.063 0.056 0.663 0.128 0.298 3.122 0.133 0 0 0 256803 257974 258379 6381451 1576

3.ttl 7 0.061 0.062 0.709 0.032 0.287 3.101 0.132 0 0 0 256803 141 258369 6381498 1566
8 0.094 0.153 1.425 0.138 0.297 0.03 0.027 0 0 0 256803 261905 516433 161 275
9 0.098 0.15 1.819 0.037 0.156 0.03 0.027 0 0 0 256803 235 258660 104 208

10 0.143 0.399 2.478 0.15 0.148 0.049 0.048 0 0 0 256803 265836 259504 5473 5634
11 0.141 0.368 12.374 3.343 3.315 3.397 0.384 0 0 0 256803 6866425 6670079 6452693 72865
12 0.21 1.136 15.915 0.051 0.576 3.133 0.171 0 0 0 256803 1326 773580 6382718 1730
13 - - 35.05 0.194 0.623 3.521 0.341 0 - - 256803 329484 776449 6451652 74135
14 - - 399.257 3.948 3.982 3.344 0.558 0 - - 256803 8461907 7190771 6463879 74581
15 - - 388.289 0.06 1.34 3.213 0.378 0 - - 256803 1377 803755 6452448 73026
1 0.026 0.025 0.025 0.039 0.025 0.024 0.025 0 0 0 0 253 0 0 0
2 0.064 0.069 0.471 0.522 0.064 0.07 0.064 248 248 248 1027022 1040241 496 248 248
3 0.929 0.938 1.404 28.325 1.857 28.103 0.945 12651 12651 12651 1039425 51050537 1039425 49377537 12651
4 0.198 0.173 1.617 0.157 0.095 0.129 0.135 4 4 4 1027031 13800 753 505 505
5 0.182 0.174 1.617 0.144 0.094 0.143 0.138 0 0 0 1027027 253 749 248 248
6 0.327 0.312 4.729 0.64 1.913 28.148 1 4 4 4 1027031 1040479 1040182 49377789 13151

4.ttl 7 0.308 0.325 4.721 0.222 1.98 27.908 1.106 0 0 0 1027027 759 1040183 49378038 13152
8 0.504 0.778 9.217 0.675 1.278 0.158 0.129 4 4 236 1027031 1079963 2080575 757 1249
9 0.522 0.835 12.456 0.266 0.705 0.14 0.131 0 0 4 1027027 1265 1041493 505 1002

10 0.782 2.174 15.698 0.738 0.66 0.288 0.253 4 4 236 1027031 1119447 1055223 52295 53040
11 0.76 2.077 93.286 30.477 30.641 29.507 3.476 232 0 4 1027259 54927712 51065747 50689528 1325139
12 1.083 6.03 114.063 0.354 3.362 28.046 1.329 4 4 236 1027031 15222 3107857 49391554 14314
13 - - 253.131 1.64 3.442 30.217 3.913 232 - - 1027259 2499217 3173640 50730474 1353321
14 - - >999 74.607 35.483 30.531 5.52 10972 - - - 117902759 53931133 52556376 1368984
15 - - >999 0.454 10.929 29.497 3.763 1 - - - 35953 3754770 50690218 1326126

G(x, y)← AP (x) ∧R(x, y)

takes as long as 28 seconds to execute on the fourth
dataset because it needs so much time to materialise
P13, which has around 6 · 106 triples. On the other
hand, if we remove this predicate by substituting its
definition into the first rule, we obtain the rewriting

G(x, y)← S(x, z) ∧R(x, v) ∧R(v, y),

G(x, y)← AP (x) ∧R(x, y),

which is executed in 0.945 seconds. This substitution
could be done automatically by a clever NDL engine,
but not performed by RDFox. Thus, we made an at-
tempt to ‘improve’ the Tw-rewriting by getting rid in
this fashion of all predicates that are defined by a sin-
gle rule and occur not more than twice in the bodies of
the rules. However, though the rewriting Tw* thus ob-
tained shows a much better performance on Sequences 1
and 3 (see Tables 3 and 5), it is not always so on Se-
quence 2 (Table 4). This observation suggests that our
rewriting could be executed faster on a more advanced
NDL engine than RDFox which would carry out such
substitutions depending on the cardinality of EDBs.

