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Abstract
One of the most advanced approaches to query-
ing data in the presence of ontologies is to make
use of relational database systems, rewriting the
original query and the ontology into a new query
that is formulated in SQL or, equivalently, in first-
order logic (FO). For ontologies written in many
standard description logics (DLs), however, such
FO-rewritings are not guaranteed to exist. We
study FO-rewritings and their existence for a ba-
sic class of queries and for ontologies formulated
in Horn DLs such as Horn-SHI and EL. Our re-
sults include characterizations of the existence of
FO-rewritings, tight complexity bounds for decid-
ing whether an FO-rewriting exists (EXPTIME and
PSPACE), and tight bounds on the (worst-case) size
of FO-rewritings, when presented as a union of
conjunctive queries.

1 Introduction
A prominent application of description logic (DL) ontologies
is to facilitate access to data. Specifically, the ontology serves
to assign a semantics to the relation symbols used in the data;
it can also provide additional relation symbols that, although
not explicitly occurring in the data, can be used in the query.
Several approaches to querying data in the presence of on-
tologies utilize relational databases systems (RDBMSs), aim-
ing to exploit their mature technology, advanced optimization
techniques, and the general infrastructure that those systems
offer. One of the most popular such approaches is to rewrite
the original query and the DL ontology into an SQL query
that is passed to the RDBMS for execution [Calvanese et
al., 2007; Pérez-Urbina et al., 2009; Chortaras et al., 2011;
Gottlob et al., 2011]. Based on the equivalence of first-order
(FO) formulas and SQL queries, we call the rewritten query
an FO-rewriting.

The FO-rewriting approach to ontology-based data access
comes with its own set of DLs specifically designed for
this purpose, the so-called DL-Lite family. To guarantee
that an FO-rewriting of queries and ontologies always exists,
DLs from this family are significantly restricted in expres-
sive power. Unfortunately, this is not acceptable for all ap-
plications, in particular when the ontology is used to model

the application domain in a detailed way instead of provid-
ing only more abstract, database-style constraints. Given that
very expressive DLs of the ALC and SHIQ families do not
admit tractable query answering (regarding data complexity),
a good compromise between expressive power and computa-
tional complexity is provided by so-called Horn DLs such as
EL, ELI, and Horn-SHIQ. Already in the basic DLs of this
kind, such as EL, and for the simplest kind of queries, known
as atomic queries (AQs) or instance queries, FO-rewritings
are not guaranteed to always exist. To address this problem,
other approaches to utilize RDBMSs and related database
technology have been brought forward, including the com-
bined approach [Lutz et al., 2009] and rewritings into datalog
[Pérez-Urbina et al., 2009; Eiter et al., 2012].

Depending on the application, however, there can still be
good reasons to use the FO-rewriting approach for Horn DLs.
First, an important feature of this approach is that it allows
the ontology to be added on top of the query interface without
any modifications to the underlying database. By contrast, the
combined approach involves a data completion step, and thus
can only be used if data manipulations are permitted. Sec-
ond, a rewriting into FO queries rather than datalog programs
means that one can exploit the comparatively more advanced
optimization techniques available for SQL queries. For both
reasons, when FO-rewritings happen to exist for the relevant
queries and ontologies, the FO-rewriting approach might be
very appropriate.

In this paper, we consider ontologies formulated in the
Horn DLs EL, ELI⊥, and Horn-SHI. Notably, EL forms
the basis of the OWL EL fragment of the OWL 2 web on-
tology language and is popular as a basic language for large-
scale ontologies [Baader et al., 2005]. ELI⊥ can be viewed
as the smallest DL that contains as a fragment both EL and
the core version of DL-Lite, and Horn-SHI is a generaliza-
tion of ELI⊥ inspired by the well-known DL Horn-SHIQ,
but in contrast to the latter does not admit number restrictions
[Hustadt et al., 2007]. As an example for why the rewrit-
ing approach fails for these DLs, consider the AQ A(x) and
the EL ontology T = {∃r.A v A}. The query A(x) can-
not be rewritten into an FO-query in the presence of T , in-
tuitively because T forces the concept name A to be prop-
agated unboundedly along r-chains in the data and thus the
rewritten query would have to express transitive closure of r.
Of course, such an isolated example does not rule out the pos-



sibility that for some AQs and some EL (or Horn-SHI) on-
tologies, including those that are used in applications, FO-
rewritings do exist. For example, A(x) is FO-rewritable rel-
ative to the EL ontology T ′ = {A v ∃r.A}, which has a
lot of similarity with the aforementioned ontology T . In fact,
T ′ can simply be ignored when answering A(x) without los-
ing any answers. Inspired by these observations, the aim of
this paper is to study FO-rewritings of AQs in the presence of
ontologies formulated in EL, ELI, ELI⊥, and Horn-SHI.

We primarily study the problem to decide, given an atomic
query (AQ) q, an ontology T , and a finite set Σ of symbols
that are allowed to be used in the data (ABox), whether q is
FO-rewritable relative to T over Σ-ABoxes. Note that the
restriction of the data signature is natural in many applica-
tions of ontology-based data access, cf. [Baader et al., 2010;
Bienvenu et al., 2012b]. We show that this problem is EX-
PTIME-complete for ontologies formulated in Horn-SHI,
where the lower bound applies even to ELI ontologies and
when the ABox signature is the full signature (that is, it must
contain all concept and role names) rather than being an input.
For ontologies formulated in EL, the problem remains EXP-
TIME-complete when the ABox signature is an input (though
the lower bound is more difficult to establish), but is only
PSPACE-complete when the ABox signature is full.

Our analysis also yields characterizations of the existence
of FO-rewritings in terms of the existence of certain tree-
shaped ABoxes, which are interesting in their own right. Sur-
prisingly, tree-shaped ABoxes can even be replaced with lin-
ear ABoxes (single role chains decorated with concept asser-
tions) when the ontology is formulated in EL and the ABox
signature is full. Our proofs also yield a way to effectively
construct FO-rewritings when they exist. We use this obser-
vation to analyze the size of FO-rewritings, showing that they
can always be represented by a union of conjunctive queries
(UCQ) of at most triple exponential size, and that this bound
is essentially optimal: there are families of AQs and EL on-
tologies for which FO-rewritings exist, but such that every
presentation of the rewritings as a UCQ is necessarily triple-
exponential in size.

Some proof details are deferred to the appendix of the long
version, http://www.informatik.uni-bremen.de/∼clu/papers/.

2 Preliminaries
Let NC and NR be disjoint and countably infinite sets of con-
cept and role names. A role is a role name r or an inverse role
r−, with r a role name. A Horn-SHI concept inclusion (CI)
is of the form L v R, where L and R are concepts defined
by the syntax rules

R,R′ ::=> | ⊥ | A | ¬A | R uR′ | ¬L tR | ∃r.R | ∀r.R
L,L′ ::=> | ⊥ | A | L u L′ | L t L′ | ∃r.L

with A ranging over concept names and r over roles. In
DLs, ontologies are formalized as TBoxes. A Horn-SHI
TBox T is a finite set of Horn-SHI CIs, transitivity asser-
tions trans(r), and role inclusions (RI) r v s, with r and
s roles. Note that different definitions of Horn-SHI can be
found in the literature [Hustadt et al., 2007; Eiter et al., 2008;
Kazakov, 2009]. As the original definition from [Hustadt et

al., 2007] based on polarity is rather technical, we prefer the
above (equivalent) definition.

An ELI⊥ TBox is a finite set of inclusions of the form
L v L′ where L,L′ are constructed by the rule above, but
without using disjunction. An ELI⊥ TBox that does not use
the ⊥ concept is an ELI TBox, and an ELI TBox that does
not use inverse roles is an EL TBox.

An ABox is a finite set of concept assertions A(a) and role
assertions r(a, b) where A is a concept name, r a role name,
and a, b individual names from a countably infinite set NI. We
sometimes write r−(a, b) instead of r(b, a) and use Ind(A) to
denote the set of all individual names used in A.

The semantics of DLs is given in terms of interpretations
I = (∆I , ·I), where ∆I is a non-empty set (the domain) and
·I is the interpretation function, assigning to each A ∈ NC a
set AI ⊆ ∆I , to each r ∈ NR a relation rI ⊆ ∆I × ∆I ,
and to each a ∈ NI an element aI ∈ ∆I such that aI1 6= aI2
whenever a1 6= a2 (the so-called unique name assumption).
The interpretation CI ⊆ ∆I of a concept C in I is defined as
usual, see [Baader et al., 2003]. An interpretation I satisfies
a CI C v D if CI ⊆ DI , a transitivity assertion trans(r) if
rI is transitive, an RI r v s if rI ⊆ sI , a concept assertion
A(a) if aI ∈ AI , and a role assertion r(a, b) if (aI , bI) ∈ rI .
We say that I is a model of a TBox or an ABox if it satisfies
all inclusions and assertions in it. An ABox A is consistent
w.r.t. a TBox T if A and T have a common model.

An atomic query (AQ) takes the form A(x), with A a con-
cept name and x a variable. We write A, T |= A(a) if
aI ∈ AI for all models I of A and T . If A, T |= A(a)
and a ∈ Ind(A), then a is a certain answer to A(x) given A
and T . We use certT (A(x),A) to denote the set of all certain
answers toA(x) givenA and T . A first-order query (FOQ), is
a first-order formula ϕ constructed from atomsA(x), r(x, y),
and x = y; here, concept names are viewed as unary predi-
cates, role names as binary predicates, and predicates of other
arity, function symbols, and constant symbols are not permit-
ted. As usual, we write ϕ(~x) to indicate that the free variables
of ϕ are among ~x and call ~x the answer variables of ϕ. The
number of answer variables is the arity of ϕ and a FOQ ϕ is
Boolean if it has arity zero. We use ans(I, ϕ) to denote the set
of all answers to the FOQ ϕ in the interpretation I; that is, if
ϕ is n-ary, then ans(I, ϕ) contains all tuples ~d ∈ (∆I)n such
that the FO-sentence ϕ[~d] is satisfied in I (written I |= ϕ[~d]).
To bridge the gap between certain answers and “normal” an-
swers, we sometimes view an ABox A as an interpretation
IA, defined in the obvious way; see [Lutz and Wolter, 2012].

A signature is a set of concept and role names, which are
uniformly called symbols in this context. We use sig(T ) to
denote the set of symbols used in the TBox T . A Σ-ABox is
an ABox that uses only concept and role names from Σ. We
speak of an ABox signature if the purpose of the signature is
to fix the symbols permitted in ABoxes.

Definition 1 (FO-rewriting). Let T be a TBox and Σ an ABox
signature. A FOQ ϕ(x) is an FO-rewriting of an AQ A(x)
relative to T and Σ if certT (A(x),A) = ans(IA, ϕ) for
all Σ-ABoxes A. If there is such a ϕ(x), then A(x) is FO-
rewritable relative to T and Σ.

Thus, FO-rewritings reduce the computation of certain an-



swers (which is a form of deduction) to standard query an-
swering on structures (which is a form of model checking).

Example 2. Recall from the introduction that A(x) is not
FO-rewritable relative to T = {∃r.A v A} and the signa-
ture Σ = {r,A}. If we add ∃r.> v A to T , then A(x)
is FO-rewritable relative to the resulting TBox and Σ, and
ϕ(x) = A(x) ∨ ∃y r(x, y) is an FO-rewriting. If we choose
Σ = {A}, then A(x) becomes FO-rewritable also relative to
the original T , with the trivial FO-rewriting A(x).

In some applications, the signature of the ABox is not re-
stricted at all and thus, in principle, infinite. However, FO-
rewritability of an AQ A(x) relative to T and any (poten-
tially infinite) signature Σ ⊆ NC ∪ NR coincides with FO-
rewritability of A(x) relative to T and the (finite) ABox sig-
nature sig(T )∩Σ. In fact, any FO-rewriting of A(x) relative
to T and Σ is trivially also an FO-rewriting of A(x) relative
to T and sig(T ) ∩ Σ, and when ϕ(x) is an FO-rewriting of
A(x) relative to T and sig(T ) ∩ Σ, then (i) ϕ(x) is also an
FO-rewriting of A(x) relative to T and Σ if A ∈ sig(T ) and
(ii) ϕ(x)∨A(x) is an FO-rewriting of A(x) relative to T and
Σ otherwise. Consequently, we from now on restrict our at-
tention to ABox signatures Σ with Σ ⊆ sig(T ) and speak of
the full signature Σ when Σ = sig(T ).

Atomic queries are closely related to queries of the more
general form C(x) with C an EL concept or an ELI concept.
Note that such queries can be viewed as tree-shaped conjunc-
tive queries where the root is the only answer variable. The
results presented in this paper also capture these more gen-
eral queries since ϕ(x) is an FO-rewriting of C(x) relative to
T and an ABox signature Σ iff it is an FO-rewriting of A(x)
relative to T ∪{A ≡ C} and Σ, withA a fresh concept name.

The reasoning problem studied in this paper is as follows:
given an AQA(x), a TBox T , and an ABox signature Σ (with
Σ ⊆ sig(T )), decide whether A(x) is FO-rewritable relative
to T and Σ and if this is the case, produce an FO-rewriting.
We obtain different versions of this problem by varying the
language in which the TBox T can be formulated, and by
admitting a finite ABox signature Σ as input or fixing it to be
the full signature.

We also consider restricted forms of FOQs for rewriting
atomic queries, and restricted kinds of ABoxes. A FOQ is a
conjunctive query (CQ) if it has the form ∃~yϕ(~x, ~y) with ϕ
a conjunction of atoms; it is a union of conjunctive queries
(UCQ) if it is a disjunction of CQs. For simplicity, we disal-
low equality in CQs and UCQs. If an FO-rewriting is a UCQ,
we speak of a UCQ-rewriting. With every ABox A, we asso-
ciate the undirected graph GA with nodes Ind(A) and edges
{{a, b} | r(a, b) ∈ A or r(b, a) ∈ A}. An ABox A is acyclic
if the corresponding graph GA is acyclic and r(a, b) ∈ A im-
plies that (i) s(a, b) /∈ A for all s 6= r and (ii) s(b, a) /∈ A
for all role names s; A is tree-shaped if it is acyclic and GA
is connected. In tree-shaped ABoxes A, we often distinguish
one individual ρA ∈ Ind(A) as the root of A.

We often identify a CQ q with the set of its atoms and re-
gard q as an ABox whose individual names are the variables
of q. Then q is called acyclic or tree-shaped if the ABox cor-
responding to q has the same property.

3 FO-rewritability in Horn-SHI and ELI⊥
We show that deciding FO-rewritability in Horn-SHI and
ELI⊥ is EXPTIME-complete. To achieve this, we provide a
characterization of FO-rewritability in terms of the existence
of certain ABoxes, which is of independent interest. We also
show how to compute FO-rewritings if they exist and give
upper and lower bounds on their size.

We start by observing that it suffices to concentrate on
TBoxes that are formulated in ELI⊥ and in normal form,
that is, all CIs are of one of the forms

A v ⊥ A v ∃r.B > v A B1 uB2 v A ∃r.B v A

with A,B,B1, B2 concept names and r a role.

Theorem 3. For every Horn-SHI TBox T and ABox signa-
ture Σ, one can construct in polynomial time an ELI⊥ TBox
T ′ such that for all AQs A(x) with A /∈ sig(T ′) \ sig(T ),
every FO-rewriting of A(x) relative to T and Σ is an FO-
rewriting of A(x) relative to T ′ and Σ, and vice versa.

The proof of Theorem 3 is similar to reductions in [Hustadt
et al., 2007; Kazakov, 2009]. For the elimination of value
restrictions ∀r.B, observe that the CI A v ∀r.B is logically
equivalent to the CI ∃r−.A v B. In the following, we will
generally work with ELI⊥ TBoxes and assume normal form
whenever this is more convenient.

The following is a direct consequence of a result by Ross-
man and the fact that the class of finite pointed structures
(IA, a), with A, T |= A(a), is preserved under homomor-
phisms [Rossman, 2008].

Proposition 4. Let T be an ELI⊥ TBox and Σ an ABox sig-
nature. If an AQ A(x) is FO-rewritable relative to T and Σ,
then there is a UCQ-rewriting of A(x) relative to T and Σ.

Next, we observe that ABox inconsistency plays a central
role for FO-rewritability of AQs relative to ELI⊥ TBoxes.

Example 5. Let T = {∃r.A v A,A u B v ⊥}. Then
B(x) is not FO-rewritable since A, T |= B(a) whenever A
is inconsistent w.r.t. T , which is the case iff in A, there are
individuals a and b such that A(a) ∈ A, a is reachable from
b on an r-path, and B(b) ∈ A. Clearly, this condition cannot
be expressed by an FO-formula. If we only admit ABoxes that
are consistent w.r.t. T , then B(x) is trivially rewritable (it is
a rewriting itself).

To make precise the interplay between FO-rewritability of
AQs and of ABox inconsistency, we require some further no-
tions. We say that ABox inconsistency is FO-rewritable rel-
ative to T and Σ if there is a FOQ ϕ() such that for every
Σ-ABox A, A is inconsistent w.r.t. T iff IA |= ϕ(). We call
an AQ A(x) FO-rewritable relative to T and consistent Σ-
ABoxes if there exists a FOQ ϕ(x) such that certT (q,A) =
ansIA(ϕ) for all Σ-ABoxes A that are consistent w.r.t. T .
Finally, we an AQ A(x) is Σ-trivial relative to T if A, T |=
A(a) for all Σ-ABoxesA and a ∈ Ind(A). Note that Σ-trivial
AQs are FO-rewritable relative to Σ (with x = x a rewriting)
and that A(x) is Σ-trivial relative to T iff T |= C v A for all
concept names C ∈ Σ and all C of the form ∃r.> and ∃r−.>
with r ∈ Σ. Thus, it is straightforward to check Σ-triviality
of AQs.



Proposition 6. Let T be an ELI⊥ TBox, Σ an ABox signa-
ture, and A(x) an AQ that is not Σ-trivial relative to T . Then
A(x) is FO-rewritable relative to T and Σ iff

1. A(x) is FO-rewritable relative to T and consistent Σ-
ABoxes, and

2. ABox inconsistency is FO-rewritable relative to T , Σ.

Proof. Assume first that Points 1 and 2 hold. Let ϕ1() be
an FO-rewriting of ABox inconsistency relative to T and Σ,
and let ϕ2(x) be an FO-rewriting of A(x) relative to T and
consistent Σ-ABoxes. Then (ϕ1 ∧ x = x) ∨ ϕ2 is an FO-
rewriting of A(x) relative to T and Σ.

Conversely, assume that there is an FO-rewriting ϕ(x) of
A(x) relative to T and Σ, and that A(x) is not Σ-trivial rel-
ative to T . Point 1 is trivial since ϕ(x) is an FO-rewriting
of A(x) also relative to T and consistent Σ-ABoxes. For
Point 2, Proposition 4 implies that we may assume ϕ(x) to
be a UCQ q1 ∨ · · · ∨ qn. Let ψ() be the union of all Boolean
CQs p such that

(i) p ⊆ qi (p is a subset of qi) for some 1 ≤ i ≤ n;

(ii) for all Σ-ABoxes A: if IA |= p, then A is inconsistent
w.r.t. T .

We show that ψ() is an FO-rewriting of ABox inconsistency
relative to T and Σ. By Point (ii), IA |= ψ() implies that
A is inconsistent w.r.t. T . Conversely, assume that A is a Σ-
ABox that is inconsistent w.r.t. T . Since A(x) is not Σ-trivial
relative to T , there is a Σ-ABox A0 and a0 ∈ Ind(A0) such
that A0, T 6|= A(a0). Let Ind(A) ∩ Ind(A0) = ∅. We have
A0 ∪ A, T |= A(a0) since A is inconsistent w.r.t. T . Hence
IA∪A0

|= ϕ[a0] and there is a qi such that IA∪A0
|= qi(a0).

Let π be a match of qi in IA∪A0
and let p be the Boolean CQ

that consists of all atoms in qi whose variables are mapped by
π to Ind(A). It is readily checked that p is a disjunct of ψ()
and so IA |= ψ(), as required.

Proposition 6 suggests a decomposition of the test for FO-
rewritability of AQs: first check FO-rewritability of ABox
inconsistency and then check FO-rewritability of the AQ rel-
ative to consistent ABoxes. In the following, we pursue this
approach.

We now develop characterizations of FO-rewritability in
terms of the existence of certain ABoxes. For a tree-shaped
ABox A with distinguished root ρA and k ≥ 0, we use A|k
to denote the restriction of A to all a ∈ Ind(A) with distance
from ρA less than or equal to k. Moreover,A\{ρA} denotes
the (acyclic) ABox obtained from A by removing from A all
assertions that involve ρA.

Theorem 7. Let T be an ELI⊥ TBox, Σ an ABox signature,
and A(x) an AQ.

1. A(x) is FO-rewritable relative to T and consistent Σ-
ABoxes iff there is a k ≥ 0 such that for all tree-shaped
Σ-ABoxes A with root ρA that are consistent w.r.t. T : if
A, T |= A(ρA), then A|k, T |= A(ρA);

2. ABox inconsistency is FO-rewritable relative to T and
Σ iff there is a k ≥ 0 such that for all tree-shaped Σ-
ABox A with root ρA: if A is inconsistent w.r.t. T and

A \ {ρA} is consistent w.r.t. T , then A|k is inconsistent
w.r.t. T .

Proof (sketch). For the “only if” direction of Point 1, let ϕ
be an FO-rewriting of A(x) relative to T and consistent Σ-
ABoxes. By Proposition 4, we may assume ϕ to be a UCQ.
Let k be the maximum number of atoms in any CQ in ϕ. It
can be shown that k is the required bound, that is, for all tree-
shaped Σ-ABoxesA with root ρA that are consistent w.r.t. T ,
A, T |= A(ρA) implies A|k, T |= A(ρA).

For the “if” direction, assume that k satisfies the conditions
in Point 1. We consider all minimal tree-shaped Σ-ABoxesA
of depth at most k that are consistent w.r.t. T and such that
A, T |= A(ρA) andA|k, T 6|= A(ρA). View each such ABox
A as a (tree-shaped) CQ qA in the obvious way with the root
ρA translated into the answer variable x, and define ϕ(x) to
be the UCQ obtained as the disjunction of all the CQs qA (it is
not hard to see that there are only finitely many such queries,
up to equivalence). Then ϕ(x) is a UCQ-rewriting of A(x)
relative to T and Σ on acyclic Σ-ABoxes. We use a result on
‘unraveling tolerance’ from [Lutz and Wolter, 2012] to show
that such a ϕ(x) must also be a rewriting ofA(x) relative to T
and Σ (for this argument, it is not sufficient to know that ϕ(x)
is a UCQ-rewriting on tree-shaped Σ-ABoxes). The proof of
Point 2 is similar.

The following examples illustrate Theorem 7.

Example 8. (1) We use Point 1 of Theorem 7 to show that
A(x) is not FO-rewritable relative to T = {∃r.A v A} and
the full ABox signature. In fact, it suffices to observe that the
ABoxes Ak = {r(a0, a1), . . . , r(ak, ak+1), A(ak+1)} with
ρAk

= a0 are consistent w.r.t. T and satisfy Ak, T |=
A(ρAk

) and Ak|k, T 6|= A(ρAk
).

(2) In Example 5, it was claimed that ABox inconsistency is
not FO-rewritable relative to T = {∃r.A v A,A u B v
⊥} and the full ABox signature. This is a consequence of
Point 2 of Theorem 7 and the facts that the ABoxes A′k =
Ak ∪{B(a0)} are not consistent w.r.t. T , but with ρA′k = a0,
both A′k|k and A′k \ {ρA′k} are consistent w.r.t. T .

(3) In Point 2 of Theorem 7, the precondition that A \ {ρA}
has to be consistent w.r.t. T cannot be dropped. To show
this, let T = {A v ⊥}. Then ABox inconsistency is FO-
rewritable relative to T and Σ = {A, r} (with rewriting
∃xA(x)), but Ak is inconsistent w.r.t. T and Ak|k is con-
sistent w.r.t. T .

To exploit Theorem 7 for developing a decision procedure
for FO-rewritability, we prove that the depth and outdegree
of the tree-shaped ABoxes considered in that theorem can be
bounded. We use |T | to denote the size of the TBox T , that
is, the number of symbols needed to write T .

Theorem 9. Let T be an ELI⊥ TBox in normal form, Σ an
ABox signature, A(x) an AQ, and n = |T |. Then Points 1
and 2 of Theorem 7 still hold when

1. “there is a k ≥ 0” is replaced with “for k = 23n2

” and

2. “tree-shaped Σ-ABox A” is replaced with “tree-shaped
Σ-ABox A of outdegree at most n”.



Point 1 is established by a very careful pumping argument
(here, the presence of inverse roles complicates matters sig-
nificantly), and Point 2 relies on a selection of the relevant
individuals in tree-shaped ABoxes.

Theorem 9 immediately suggests a naı̈ve decision proce-
dure for deciding FO-rewritability: simply enumerate all tree-
shaped Σ-ABoxes up to the relevant bounds and check that
they have the required properties. To obtain better complex-
ity, we construct a tree automaton that accepts precisely those
ABoxes which violate the required properties, and use a sub-
sequent emptiness test. Specifically, we work with alternating
two-way Büchi automata on finite trees, using the two-way
feature to handle inverse roles. We obtain EXPTIME upper
bounds and establish matching lower bounds via a reduction
from subsumption in ELI, which is EXPTIME-hard [Baader
et al., 2008]. Theorem 3 lifts the upper bounds to Horn-SHI.
Theorem 10. The following problems are EXPTIME-
complete, with the lower bounds already applying to ELI
(Points 1 and 3) and ELI⊥ (Point 2), and to the full ABox
signature:

1. Given a Horn-SHI TBox T , an ABox signature Σ, and
an AQ A(x), is A(x) FO-rewritable relative to T and
Σ-ABoxes that are consistent w.r.t. T ?

2. Given a Horn-SHI TBox T and an ABox signature Σ,
is inconsistency of Σ-ABoxes FO-rewritable relative to
T and Σ?

3. Given a Horn-SHI TBox T , an ABox signature Σ,
and an AQ A(x), is A(x) FO-rewritable relative to T
and Σ?

We now discuss the actual computation of FO-rewritings.
A method for computing FO-rewritings of AQs relative to
consistent ABoxes and FO-rewritings of ABox inconsistency
is implicit in the proof (sketch) of Theorem 7. As ex-
plained in the proof of Proposition 6, these rewritings can
be combined into FO-rewritings of AQs, without the re-
striction to consistent ABoxes. By Theorem 3, this can be
lifted from ELI⊥ to Horn-SHI. The constructed rewrit-
ings are UCQs whose disjuncts are tree-shaped CQs and
whose size is at most triple exponential in the size of the
TBox. Using constructions from [Lutz and Wolter, 2010;
Nikitina and Rudolph, 2012], one can show that this is es-
sentially optimal. The lower bound already applies to EL-
TBoxes and the full ABox signature.
Theorem 11.

1. For every Horn-SHI TBox T , signature Σ, and AQ
A(x) that is rewritable relative to T and Σ, one can ef-
fectively construct a UCQ-rewriting ϕ(x) of size at most

222O(|T |2)

, in time polynomial in the size of ϕ(x).
2. There is a family of EL TBoxes T0, T1, . . . such that for

all i ≥ 0, |Ti| ∈ O(i2) and A(x) is FO-rewritable rel-
ative to Ti and the full ABox signature sig(Ti), but the

smallest UCQ-rewriting is of size at least 222i

.

4 FO-rewritability in EL
We next consider FO-rewritability relative to TBoxes formu-
lated in the popular lightweight DL EL. Unlike for Horn-

SHI and ELI⊥, we obtain different complexities depending
on whether we admit the ABox signature as an input or fix it
to be the full signature. Note that, in EL, ABox consistency
is not an issue as every ABox is consistent w.r.t. every TBox.
The results in this section can be extended to the extension
EL⊥ of EL with the ⊥ concept by dealing with inconsistent
ABoxes in essentially the same way as was done in Section 3.

Again, we can work with TBoxes in normal form.

Theorem 12. FO-rewritability of AQs relative to EL TBoxes
and the full ABox signature can be polynomially reduced to
FO-rewritability of AQs relative to EL TBoxes in normal form
and the full ABox signature.

Note that Theorem 12 differs from Theorem 3 in that we
are interested in FO-rewritability of A(x) relative to the nor-
malized TBox T ′ and the full signature sig(T ′), rather than
the original signature sig(T ) as in Theorem 3. In fact, prov-
ing Theorem 12 requires a more careful construction.

We now show the surprising result that, when the TBox
is formulated in EL and the ABox signature is full, the tree-
shaped ABoxes from Theorem 9 can be replaced with linear
ones. Formally, an ABox A is linear if it consists of role
assertions r0(a0, a1), . . . , rn−1(an−1, an) with ai 6= aj for
i 6= j and concept assertions A(a) with a ∈ {a0, . . . , an}.
Theorem 13. Let T be an EL TBox in normal form, A(x) an
AQ, n = |T |, and k = 23n2

. Then A(x) is FO-rewritable rel-
ative to T and the full ABox signature iff for all linear ABoxes
A with root ρA, A, T |= A(ρA) implies A|k, T |= A(ρA).

Proof. (sketch) In light of Theorem 9, it is sufficient to show
that if there is a tree-shaped ABox A with root ρA such that
A, T |= A(ρA) and A|k, T 6|= A(ρA) with k = 23n2

, then
there is a linear ABox A′ that satisfies the same properties.
Since EL does not allow inverse roles, we can assume w.l.o.g.
that A has the shape of a directed tree, that is, whenever
r(a, b) ∈ A, then b is further away from the root b than a.
Note that the depth of A must exceed k. We can further as-
sume that B(b) ∈ A whenever A|k, T |= B(b), since these
assertions can be added without changing the relevant prop-
erties ofA. By replacing subtrees with the concept assertions
that they entail, we can further ensure that there is only a sin-
gle individual on level k + 1, and no individuals on any level
> k + 1. The desired linear ABox A′ is then defined as the
restriction ofA to assertions that involve only the individuals
that appear on the unique path in A of length k + 1. Since
A′|k ⊆ A|k, we have A′|k, T 6|= A(ρA). Since all asser-
tions entailed by A|k and T appear in A and all individuals
in A \ A′ are on level at most k, we have A′, T |= A(ρA).
The latter argument relies on A being a directed tree.

The following example shows that, even for EL, it is not
possible to replace tree-shaped ABoxes with linear ones if
we are interested in signatures other than the full signature.

Example 14. Let

T = {Ai v Xi, Bi uXi v Yi, ∃r.Yi v Xi | i ∈ {1, 2}}∪
{X1 uX2 v X, B1 uB2 v Z, ∃r.Z v X},



choose Σ = {A1, A2, B1, B2, r}, and take the AQX(x). The
tree-shaped ABox A composed of the assertions

{r(a0, ai,0), r(ai,0, ai,1), ..., r(ai,23n2 , ai,23n2+1) | i ∈ {1, 2}}
∪ {Bi(ai,0), . . . , Bi(ai,23n2+1), Ai(ai,23n2+1) | i ∈ {1, 2}},

with n as in Theorem 9, is of depth exceeding 23n2

, and
we can show that A, T |= X(a0), but A|23n2 , T 6|= X(a0).
However, for all linear Σ-ABoxesA, we haveA, T |= X(a0)
iff A|1, T |= X(a0): since X,X1, X2 /∈ Σ, we can only
have A, T |= X(a0) if there is an r-successor b of a0 in
A where Z is entailed, or where Y1 and Y2 are entailed.
Since Y1, Y2, Z /∈ Σ, this in turn can only be the case when
B1(b), B2(b) ∈ A. But then, A|1, T |= X(a0).

Theorem 13 allows us to replace the alternating tree au-
tomata in the proof of Theorem 10 with alternating word au-
tomata, improving the upper bound to PSPACE.
Theorem 15. Deciding FO-rewritability of an AQ relative to
an EL TBox and the full ABox signature is in PSPACE.

We establish matching lower bounds.
Theorem 16. Deciding FO-rewritability of an AQ relative to
an EL TBox and an ABox signature Σ is (1) PSPACE-hard
when Σ is full and (2) EXPTIME-hard when Σ is an input.

Point 1 is proved by a reduction from the word problem for
polynomially space-bounded deterministic Turing machines.
For Point 2, we use polynomially space-bounded alternating
Turing machines. As both reductions are lengthy and some-
what subtle, we present instead a proof of CONP-hardness,
which illustrates some general ideas that are also used in the
other reductions.

We reduce propositional tautology to FO-rewritability of
AQs relative to EL TBoxes and the full signature. Let ϑ be a
propositional formula in negation normal form with variables
p1, . . . , pn, and let sub(ϑ) be the set of subformulas of ϑ.
Define a TBox T with the CIs:

∃r.(Li u Vi,i) v Li−1 V ∈ {T, F}, 1 ≤ i ≤ n
∃r.Vi,j v Vi,j−1 V ∈ {T, F}, 1 ≤ j ≤ i ≤ n
Ti,0 v Api pi ∈ sub(ϑ)
Fi,0 v A¬pi ¬pi ∈ sub(ϑ)

Aϕ uAψ v Aϕ∧ψ ϕ ∧ ψ ∈ sub(ϑ)
Aρ v Aϕ∨ψ ρ ∈ {ϕ,ψ}, ϕ ∨ ψ ∈ sub(ϑ)
Aϑ v L0

∃r.L0 v Ln

Lemma 17. ϑ is a tautology iff L0(x) is FO-rewritable rela-
tive to T and the full signature.

Proof. First assume that ϑ is not a tautology. Then there is a
truth assignment t such that t 6|= ϑ. Let k = 23|T |2 and define
a linear ABox A as the union of

{ r(a1,0, a1,1), . . . , r(a1,n, a2,0), . . . , r(ak,n−1, ak,n)}
{r(ak,n, a), L0(a) }
{Fi,j(a`,j) | 1 ≤ i ≤ n, 0 ≤ j ≤ i, 1 ≤ ` ≤ k, t(pi) = f}
{Ti,j(a`,j) | 1 ≤ i ≤ n, 0 ≤ j ≤ i, 1 ≤ ` ≤ k, t(pi) = t}.

Starting from the assertion L0(a), one can derive Ln(ak,n),
then Ln−1(ak,n−1), and so on, until one obtains L0(a1,0).

Note that the generation of L0(a1,0) cannot be ‘shortcut’ us-
ing the inclusion Aϑ v L0: since t 6|= ϑ, Aϑ is not derived
anywhere on the chain. We thus have A, T |= L0(a1,0), but
A|k, T 6|= L0(a1,0). By Theorem 13, L0 is not FO-rewritable
relative to T and the full ABox signature.

Now assume that ϑ is a tautology and that A, T |= L0(a0)
with A linear and r(a0, a1), . . . , r(am−1, am) the role asser-
tions in A. Assume to the contrary of what is to be shown
that A|k, T 6|= L0(a0), with k as above. Then m > k. By
analyzing T , it can be verified that we must have assertions
Vi,i(ai) ∈ A with V ∈ {T, F}, for 1 ≤ i ≤ n. These as-
sertions represent a truth assignment t. Since ϑ is valid, we
have t |= ϑ. Again analyzing T , this can be used to show that
A|k, T |= L0(a0), a contradiction.

5 Related Work
As observed in [Lutz and Wolter, 2011], there is a close
connection between FO-rewritability of AQs relative to DL
TBoxes and the boundedness problem for datalog programs.
In fact, the known 2EXPTIME upper bound for predicate
boundedness of connected monadic datalog programs [Cos-
madakis et al., 1988] can be used to obtain a 3EXPTIME up-
per bound for FO-rewritability of an AQ relative to an ELI
TBox; via our Proposition 6, this can be extended to ELI⊥
TBoxes. Boundedness was studied also in the context of the
µ-calculus, for which it is EXPTIME-complete [Otto, 1999],
and for monadic second order logic [Blumensath et al., 2009].
A different approach to FO-rewritability is suggested in [Bi-
envenu et al., 2013], based on a connection between query an-
swering in DLs and constraint satisfaction problems (CSPs).
This approach is different in spirit from ours and tailored to-
wards expressive DLs of the ALC family. However, it also
yields a NEXPTIME upper bound for FO-rewritability rela-
tive to Horn-SHI TBoxes. Finally, it is shown in [Bien-
venu et al., 2012a] that FO-rewritability of AQs relative to
a restricted form of EL TBoxes called classical TBoxes is
PTIME-complete; that work also analyzes acyclic TBoxes, for
which FO-rewritings always exist.

6 Future Work
It would be interesting to generalize our approach both re-
garding the query language and the ontology language cov-
ered. Regarding the latter, it would be particularly interesting
to generalize our results from Horn-SHI to Horn-SHIQ,
which we conjecture to be possible using slight extensions of
the techniques introduced in this paper. Regarding the query
language, it would be interesting to analyze FO-rewriting of
conjunctive queries. We believe that a mix of techniques from
this paper and those in [Bienvenu et al., 2012b] might provide
a good starting point. Finally, existing ontologies should be
investigated regarding FO-rewritability. Important questions
are: How many atomic queries are FO-rewritable w.r.t. natu-
ral ABox signatures? How difficult is it to find FO-rewritings
if they exist, and how large are they? Interesting ontologies
to consider are GALEN and non-acyclic versions of NCI.
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A Proofs for Section 3
A.1 Proof of Theorem 3.

Theorem 3 For every Horn-SHI TBox T and ABox signa-
ture Σ, one can construct in polynomial time an ELI⊥ TBox
T ′ such that for all AQs A(x) with A 6∈ sig(T ′) \ sig(T ),
every FO-rewriting of A(x) relative to T and Σ is an FO-
rewriting of A(x) relative to T ′ and Σ, and vice versa.

The proof is similar to reductions provided in [Hustadt et
al., 2007; Kazakov, 2009]. Nevertheless, because [Kazakov,
2009] considers reductions preserving subsumption only and
because both [Hustadt et al., 2007] and [Kazakov, 2009] do
not reduce to ELI⊥ TBoxes, we give a detailed proof.

First, we provide a reduction to Horn-SHI TBoxes whose
concept inclusions are in normal form (but which can still
contain role inclusions and transitivity assertions).

Lemma 18. For every Horn-SHI TBox T and ABox sig-
nature Σ, one can construct in polynomial time a Horn-SHI
TBox T ′ whose CIs form an ELI⊥ TBox in normal form such
that for all AQs A(x) with A 6∈ sig(T ′) \ sig(T ), every FO-
rewriting of A(x) relative to T and Σ is an FO-rewriting of
A(x) relative to T ′ and Σ, and vice versa.

Proof. The following rules can be used to rewrite T into an
ELI⊥ TBox in normal form (all freshly introduced concept
names are not in sig(T ) ∪ Σ ∪ {A}):
• If L is of the form L1 uL2 and R is not a concept name,

then take a fresh concept name A and replace L v R
by L v A and A v R. If R is a concept name, and
either L1 or L2 are not concept names, then take fresh
concept names A1, A2 and replace L v R by L1 v A1,
L2 v A2 and A1 uA2 v R;

• If L is of the form L1tL2 andR is a concept name, then
replace L v R by L1 v R and L2 v R. Otherwise take
a fresh concept name A and replace L v R by L v A
and A v R;

• If L is of the form ∃r.L′ and L′ is not a concept name,
then take a fresh concept name A′ and replace L v R
by L′ v A′ and ∃r.A′ v R;

• If R is of the form ¬A, then replace L v R by LuA v
⊥;

• IfR is of the formR1uR2 and L is not a concept name,
then take a fresh concept name A and replace L v R
by L v A and A v R. Otherwise take fresh concept
names A1, A2 and replace L v R by L v A1, L v A2,
A1 v R1, and A2 v R2;

• If R is of the form ¬L′ t R′, then replace L v R by
L u L′ v R′;
• If R is of the form ∃r.R′ and R′ is not a concept name,

then take a fresh concept name A′ and replace L v R
by L v ∃r.A′ and A′ v R′;
• If R is of the form ∀r.R′, then replace L v R by
∃r−.L v R.

The resulting TBox T ′ is as required. In particular, for ev-
ery Σ-ABox A and model I of A and T ′, we have that I
is also a model of T ; conversely, every model I of A and
T can be extended to a model of T by appropriately in-
terpreting the fresh concept names. Consequently, we have
certT (A(x),A) = certT ′(A(x),A) and thus, every FO-
rewriting of A(x) relative to T and Σ is an FO-rewriting of
A(x) relative to T ′ and Σ, and vice versa.

Now we show how transitivity assertions and role inclu-
sions can be eliminated. Let T be a Horn-SHI TBox whose
CIs are ELI⊥-inclusions in normal form. Add, for any two
distinct roles r, s with T |= r v s the inclusions ∃r.B v
∃s.B to T for any concept name B ∈ sig(T ) and add for all
roles s, r (with s = r not excluded) with T |= trans(r) and
T |= s v r, the inclusion ∃s.∃r.B v ∃r.B to T for any
concept name B ∈ sig(T ). Call the resulting TBox without
role inclusions and without transitivity statements T ′. Clearly
T |= T ′. Conversely, we have the following fact:
Lemma 19. Let I be a model of T ′. Then there exists a model
J of T such that ∆I = ∆J ,BI = BJ for all concept names
B, and rJ ⊇ rI for all role names r.

Proof. J is obtained from I by applying the following two
rules recursively:
• if (d, d′) ∈ rI and T |= r v s, then update I by adding

the pair (d, d′) to sI ;
• if (d, d′), (d′, d′′) ∈ rI , and trans(r) ∈ T , then update
I by adding the pair (d, d′′) to I.

Now one can show by induction over rule applications: if I
satisfies T ′ and I ′ is the result of applying any of the two
rules above to I, then I ′ satisfies T ′. To this end, it is suffi-
cient to show:

1. for every ∃r.B with B a concept name in T and every
d ∈ ∆I : d ∈ (∃r.B)I iff d ∈ (∃r.B)I

′
;

2. all inclusions ∃s.∃r.B v ∃r.B that have been added to
T hold in I ′ if they hold in I.

The proof is straightforward and omitted.

It follows from Lemma 19 that for any Σ-ABox A, a ∈
Ind(A), and AQ A(x): A, T |= A(a) iff A, T ′ |= A(a).

To prove Theorem 3, it now remains to replace the fresh
CIs of T ′ that are not in normal form by inclusions in normal
form in the same way as in the proof of Lemma 18.

A.2 Proof of Theorem 7
Theorem 7 Let T be an ELI⊥ TBox, Σ an ABox signature,
and A(x) an AQ.

1. A(x) is FO-rewritable relative to T and consistent Σ-
ABoxes iff there is a k ≥ 0 such that for all tree-shaped
Σ-ABoxes A with root ρA that are consistent w.r.t. T : if
A, T |= A(ρA), then A|k, T |= A(ρA);

2. ABox inconsistency is FO-rewritable relative to T and
Σ iff there is a k ≥ 0 such that for all tree-shaped Σ-
ABox A with root ρA: if A is inconsistent w.r.t. T and
A \ {ρA} is consistent w.r.t. T , then A|k is inconsistent
w.r.t. T .



Proof. We start with Point 1. For the “only if” direction, as-
sume that A(x) is FO-rewritable relative to T and consistent
Σ-ABoxes, and let ϕ be a concrete FO-rewriting which, by
Proposition 4, we can assume to be a UCQ. Let k be the max-
imum number of atoms in any CQ in ϕ. We show that k is the
required bound: let A be a tree-shaped Σ-ABox that is con-
sistent w.r.t. T with root ρA and such that A, T |= A(ρA).
We show that A|k, T |= A(ρA). We have IA |= ϕ[ρA].
Let A′ be obtained from A by taking the disjoint union of
A|k and A, with the individual names of A renamed. Since
IA |= ϕ[ρA] and the number of atoms in each CQ of ϕ is
bounded by k, we have IA′ |= ϕ[ρA] (note that adding the
renamed version of A is necessary since the CQs in ϕ need
not be connected). Consequently, A′, T |= A(ρA), which
implies A|k, T |= A(ρA) since A is consistent w.r.t. T .

For the “if” direction, we first establish the following
claim.

Claim 1. If there is a UCQ-rewriting of A(x) relative to T
and acyclic Σ-ABoxes that are consistent w.r.t. T , then there
is a UCQ-rewriting of A(x) relative to T and arbitrary Σ-
ABoxes that are consistent w.r.t. T .

For the proof of the claim, assume that ϕ(x) = q1∨· · ·∨qn is
a UCQ-rewriting ofA(x) relative to T and acyclic Σ-ABoxes
that are consistent w.r.t. T . We can w.l.o.g. assume all CQs
qi in ϕ(x) to be acyclic. To see this, note first that, when a
CQ qi has a match in an acyclic interpretation IA, then this
match gives rise to an acyclic CQ q′i that is obtained from
qi by identifying variables and also has a match in IA. As
a consequence, we can replace each CQ qi in ϕ(x) with the
disjunction of all acyclic CQs that can be obtained from qi
by identifying variables, and the resulting ϕ(x) will still be
an FO-rewriting of A(x) relative to T and acyclic Σ-ABoxes
that are consistent w.r.t. T .

We show that, then, ϕ(x) is a rewriting of A(x) relative to
T and arbitrary Σ-ABoxes that are consistent w.r.t. T . Let
A be a Σ-ABox that is consistent w.r.t. T . If IA |= ϕ[a],
then IA |= qi[a] for some i. Let Aqi be the acyclic Σ-ABox
that corresponds to the CQ qi, that is, each variable y of qi
gives rise to an individual name ay in Aqi . Assume first that
x is a free variable in qi. We trivially have Aqi , T |= A[ax]
and since the match of qi in A provides a homomorphism h
from Aqi to A with h(ax) = a, this yields A, T |= A[a],
as required. Assume now that x is not a free variable in qi.
Since qi has a match in Aqi it follows that Aqi , T |= A[ay]
for all individuals ay and, moreover, Aqi ∪ A′ |= A(a′) for
any acyclic Σ-Abox A′ whose individuals are disjoint from
Aqi and any individual a′ in A′. But then either T |= > v A
or Aqi is not consistent w.r.t. T . In the first case, Claim 1
is trivial. In the second case A is not consistent w.r.t. T and
we have a contradiction to the assumption thatA is consistent
w.r.t. T .

Conversely, assume that A, T |= A(a). It was observed in
[Lutz and Wolter, 2012] that every ELI⊥ TBox is unraveling
tolerant, which roughly means thatA, T |= A(a) iffA∗, T |=
A(a), withA∗ the unraveling ofA into a forest. Thus, we can
unravel the ABoxA into a (possibly infinite) acyclic Σ-ABox
A∗ withA∗, T |= A(a). By compactness of first-order logic,

there is a finite subset A′ of A∗ such that A′, T |= A(a).
Note thatA′ is acyclic (but will typically not be tree-shaped).
Hence IA′ |= q[a]. By definition of unraveling, there is a
homomorphims h from IA′ to IA with h(a) = a. Hence
IA |= q[a], as required. This finishes the proof of the claim.

Now assume there is a bound k ≥ 0 for which there does
not exist a tree-shaped Σ-ABox A with root ρA such that A
is consistent w.r.t. T , A, T |= A(ρA). We consider the set
Γ of all minimal tree-shaped Σ-ABoxes A of depth at most
k that are consistent w.r.t. T and such that A, T |= A(ρA)
and A|k, T 6|= A(ρA). It is not hard to show that Γ is finite.
Each ABox A ∈ Γ gives rise to a corresponding CQ qA(x),
where each individual name in A is viewed as a variable, and
the root ρA corresponds to the answer variable x. We aim to
show that

ϕ(x) =
∨
A∈Γ

qA(x)

is an FO-rewriting of A(x) relative to T and consistent
Σ-ABoxes. By Claim 1, it is sufficient to show that
certT (A(x),A) = ans(IA, ϕ(x)) for all acyclic Σ-ABoxes
A that are consistent w.r.t. T .
“⊇”. Assume that IA |= ϕ[a]. Then IA |= qB[a] for some
B ∈ Γ. Consequently, there is a homomorphism h from B
to A with h(ρB) = a. By definition of Γ, we have B, T |=
A(ρB). Thus, A, T |= A(a) as required.
“⊆”. Assume that A, T |= A(a) and let A′ ⊆ A be minimal
such that A′, T |= A(a). Clearly, A′ is acyclic. Since A
is consistent w.r.t. T , it can even be shown that A′ is tree-
shaped. Thus, A′ ∈ Γ (modulo isomorphism) and therefore
IA |= ϕ[a].

We come to Point 2. For the “only if” direction, assume
that ABox inconsistency is FO-rewritable relative to T and
Σ. Let ϕ() be a concrete rewriting of inconsistency relative
to T and Σ. One can argue as for Proposition 4 that we can
w.l.o.g. assume ϕ() to be a UCQ. It can be shown that for
every ABox A that is inconsistent w.r.t. T , there is a con-
nected ABox A′ ⊆ A that is inconsistent w.r.t. T . Conse-
quently, we can further assume that each disjunct of ϕ() is
connected. Let k be the maximum number of atoms in any
disjunct of ϕ(). Then k is the required bound: letA be a tree-
shaped Σ-ABox with root ρA such thatA\{ρA} is consistent
w.r.t. T and A is not consistent w.r.t. T . Hence IA |= ϕ(),
but IA\{ρA} 6|= ϕ(). By the former, there is a match of some
disjunct q of ϕ() in IA. By the latter, ρA is in the range of
this match. Since q is connected and has at most k atoms, this
yields IA|k |= ϕ() and thus A|k is not consistent w.r.t. T .

For the “if” direction, we first establish the following
claim.

Claim 2. If there is a UCQ-rewriting of ABox inconsistency
relative to T and acyclic Σ-ABoxes, then there is a UCQ-
rewriting of ABox inconsistency relative to T and arbitrary
Σ-ABoxes.

For the proof of the claim, assume that ϕ = q1 ∨ · · · ∨ qn
is a UCQ-rewriting of ABox inconsistency relative to T and
acyclic Σ-ABoxes. As in the proof of Claim 1 we can w.l.o.g.



assume all CQs qi in ϕ to be acyclic. Note that no qi contains
any free variable.

We show that ϕ is a rewriting of ABox inconsistency rel-
ative to T and arbitrary Σ-ABoxes. Let A be a Σ-ABox. If
IA |= ϕ, then IA |= qi for some i. Let Aqi be the acyclic
Σ-ABox that corresponds to the CQ qi. ThenAqi is inconsis-
tent w.r.t. T . The match of qi inA provides a homomorphism
from Aqi to A and so A is inconsistent w.r.t. T .

Conversely, assume that A is inconsistent w.r.t. T As in
the proof of Claim 1 we obtain an unraveling A∗ of A into a
forest that is inconsistent w.r.t. T . By compactness of first-
order logic, there is a finite subset A′ of A∗ such that A′ is
inconsistent w.r.t. T . A′ is acyclic. Hence IA′ |= ϕ. By
definition of unraveling, there is a homomorphims from IA′
to IA. Hence IA |= ϕ, as required. This finishes the proof of
the claim.

Now assume that there is a bound k ≥ 0 for which there
does not exist a tree-shaped Σ-ABoxAwith root ρA such that
A \ {ρA} and A|k are consistent w.r.t. T and A is not con-
sistent w.r.t. T . Let Γ′ be the set of all minimal tree-shaped
Σ-ABoxes A of depth at most k such that A is not consistent
w.r.t. T . It is not hard to show that Γ′ is finite. Let

ϕ() =
∨
A∈Γ′

∃x.qA(x).

We show that ϕ() is an FO-rewriting of inconsistency w.r.t.
T and Σ. By Claim 2, it is sufficient to show that for every
acyclic Σ-ABox A, we have that A is inconsistent w.r.t. T iff
IA |= ϕ().
“if”. Assume that IA |= ϕ(). Then IA |= qB[a] for some
B ∈ Γ′. Consequently, there is a homomorphism h from B
to A. By definition of Γ′, this implies that A is inconsistent
w.r.t. T .
“only if”. Assume that A is an acyclic Σ-ABox that is not
consistent w.r.t. T . Let A′ ⊆ A be a minimal subset of A
that is not consistent w.r.t. T . It can be shown that A′ is tree-
shaped, thus A′ ∈ Γ′ (modulo isomorphism) and so IA |=
ϕ().

A.3 Proof of Theorem 9
For the pumping argument, we require some preparation. A
generalized ABox is an ABox that can contain assertions of
the form ⊥(a). Any ABox containing such an assertion is of
course inconsistent w.r.t. any TBox. For a generalized ABox
A and individual a, we set

A|a = {A(a) | A(a) ∈ A, A ∈ NC ∪ {⊥}}.
Let T be an ELI⊥ TBox in normal form and A a Σ-ABox.
We define a sequence of generalized ABoxes A0,A1, . . . by
setting A0 = A and defining Ai+1 to be Ai extended as fol-
lows:

(i) for each ∃r.B v A ∈ T such that r(a, b), B(b) ∈ Ai
and A(a) /∈ Ai, add A(a);

(ii) for each ∃r−.B v A ∈ T such that r(b, a), B(b) ∈ Ai
and A(a) /∈ Ai, add A(a);

(iii) for each A(a) such that Ai|a, T |= A(a) and A(a) /∈
Ai, add A(a).

(iv) if Ai|a is not consistent w.r.t. T , then add A(b) for any
A ∈ Σ ∪ sig(T ) ∪ {⊥} and any b ∈ Ind(A).

The T -completion AcT of A is the limit of the sequence
A0,A1, . . . .

Lemma 20. For allA(a) withA ∈ Σ∪sig(T )∪{⊥} and a ∈
Ind(A), we have A, T |= A(a) iff A(a) ∈ AcT . Moreover,
⊥(a) ∈ AcT iff A is not consistent w.r.t. T .

Proof. “if”. It can be proved by induction on i that A(a) ∈
Ai implies A, T |= A(a).
“only if”. Build a model of I and AcT that makes true pre-
cisely the concept assertions in AcT by plugging in tree mod-
els that witness existential restrictions.

For a setX of concepts and an individual u, we setX (u) =
{C(u) | C ∈ X}. Let A be a tree-shaped Σ-ABox with root
ρA and let u ∈ Ind(A). Define

AT`A(u) := {A ∈ NC ∪ {⊥} | A(u) ∈ AcT }.

Let A↓u denote the subtree of A rooted at u and let A↑u be the
ABox obtained from A by dropping A↓u from A except for
u itself. Define the transfer sequence X0,X1, . . . of (A, u)
w.r.t. T by induction as follows:

• X0 = AT`A0(u), where A0 = A↑u;

• X1 = AT`A1(u), where A1 = A↓u ∪ X0(u);

• X2i+2 = AT`A2i+2(u), where A2i+2 = A2i ∪ X2i+1(u),
for i ≥ 0;

• X2i+1 = AT`A2i+1(u), where A2i+1 = A2i−1 ∪ X2i(u),
for i ≥ 1.

The sequence of ABoxes A0,A1 . . . defined above is called
the ABox transfer sequence for (A, u) w.r.t. T .

Lemma 21. Let n = |sig(T ) ∩ NC|+ 1. Then Xn = Xm for
all m > n and An−1 ∪ An = AcT .

Proof. By definition, Xm ⊆ Xm+1, for allm > 0. Moreover,
if Xm+1 = Xm for some m > 0 then, by Lemma 20,

• all A(m+1)+2i, i ≥ 0, coincide;

• all A(m+2)+2i, i ≥ 0, coincide.

It follows that Xm′ = Xm for all m′ > m.

Lemma 22. Let A and B be tree-shaped Σ-ABoxes with a ∈
Ind(A) and b ∈ Ind(B) such that

• {A | A(a) ∈ A} = {B | B(b) ∈ B};
• the transfer sequence of (A, a) w.r.t. T coincides with

the transfer sequence of (B, b) w.r.t. T and is given by
X0, . . ..

Denote by C the ABox obtained from A by replacing the sub-
tree A↓a by B↓b . Then

• X0, . . . is also the transfer sequence of (C, b) w.r.t. T .

• Given the ABox transfer sequencesA0, . . . andB0, . . . of
(A, a) and (B, b) w.r.t. T , respectively, the ABox trans-
fer sequence C0, . . . of (C, b) w.r.t. T is given by setting
C2i = A2i and C2i+1 = B2i+1, for i ≥ 0.



Proof. Straightforward using Lemma 20.

Let T be an ELI⊥-TBox, Σ an ABox signature, A(x)
an AQ, and k ≥ 0. Then a tree-shaped Σ-ABox A is a
k-entailment witness for T , Σ, and A(x) if A is a tree-
shaped Σ-ABox consistent w.r.t. T , A, T |= A(ρA), and
A|k, T 6|= A(ρA). A is a k-inconsistency witness for T , Σ,
and A(x) if A \ {ρA} and A|k are consistent w.r.t. T , but A
is not consistent w.r.t. T (the two points of Theorem 7).

The following lemma is a straightforward reformulation of
Part 1 of Theorem 9.
Lemma 23. Let T be an ELI⊥ TBox, Σ an ABox signature
with Σ ⊆ sig(T ), A(x) an AQ, and n = |T |.

1. A(x) is not FO-rewritable relative to T and consistent
Σ-ABoxes iff there exists a k0-entailment witness for T ,
Σ, and A(x) for k0 = 23n2

.
2. ABox inconsistency is not FO-rewritable relative to T

and Σ iff there exists a k0-inconsistency witness for T ,
Σ, and A(x) for k0 = 23n2

.

Proof. (1) The direction (⇒) follows from Theorem 7. Con-
versely, assume that there is a k0-entailment witness for T ,
Σ, and A(x). We show that for every k > k0 there exists
a k-entailment witness for T , Σ, and A(x). Then non FO-
rewritability of A(x) relative to T and consistent Σ-ABoxes
follows from Point 1 of Theorem 7.

Assume A is a k-entailment witness for T , Σ, and A(x)
for some k ≥ k0. It is sufficient to construct a tree-shaped Σ-
ABoxA′ which is a k′-entailment witness for T , Σ, andA(x)
for some k′ > k. We may assume w.l.o.g. that A is minimal
in the sense that, for every individual a we have A−a , T 6|=
A(ρA), whereA−a is obtained fromA by dropping the subtree
rooted at a (including a).

Let w be a leaf node in A of maximal distance from ρA.
Then the distance of w from ρA is at least k + 1. Since by
Lemma 21 the number of transfer sequences w.r.t. T does not
exceed 2n

2

, on the path from ρA to w there must be at least
two individuals u1 and u2 for which {B | B(u1) ∈ A} =
{B | B(u2) ∈ A} and
• the transfer sequences of (A, u1) and (A, u2) w.r.t. T

coincide;
• the transfer sequences of (A|k, u1) and (A|k, u2)

w.r.t. T coincide.
We may assume that u1 is between ρA and u2. Let A′ be the
ABox obtained fromA by replacingA↓u2

byA↓u1
inA. By re-

naming nodes inA↓u1
, we can assume that the root of the sub-

tree A↓u1
of A′ is denoted by u2. It follows from Lemma 22

that A′ is consistent w.r.t. T , that A′, T |= A(ρA), and that
A′′, T 6|= A(ρA) for the ABox A′′ obtained from A′ by re-
moving the subtree rooted at w. Clearly A′′ ⊇ A′|k′ for
k′ = k+ 1. Thus,A′ is a k′-entailment witness for T , Σ, and
A(x) for some k′ > k, as required.

(2) The proof is similar to the proof of (1). Again, the
direction (⇒) follows from Theorem 7.

Conversely, assume that there is a k0-inconsistency witness
for T , Σ, and A(x). We show that for every k > k0 there ex-
ists a k-inconsistency witness for T , Σ, and A(x). Then non

FO-rewritability of ABox inconsistency follows from Point 2
of Theorem 7.

AssumeA is a k-inconsistency witness for T , Σ, andA(x)
for some k ≥ k0. It is sufficient to construct a tree-shaped Σ-
ABox A′ which is a k′-inconsistency witness for T , Σ, and
A(x) for some k′ > k. We may assume w.l.o.g. that A is
minimal in the sense that, for every individual a we have A−a
is consistent w.r.t. T .

Let w be a leaf node in A of maximal distance from ρA.
Then the distance of w from ρA is at least k + 1. Since by
Lemma 21 the number of transfer sequences w.r.t. T does not
exceed 2n

2

, on the path from ρA to w there must be at least
two individuals u1 and u2 for which {B | B(u1) ∈ A} =
{B | B(u2) ∈ A} and

• the transfer sequences of (A, u1) and (A, u2) w.r.t. T
coincide;

• the transfer sequences of (A|k, u1) and (A|k, u2)
w.r.t. T coincide;

• the transfer sequences of (A \ {ρA}, u1) and (A \
{ρA}, u2) w.r.t. T coincide.

We proceed in the same way as above: we may assume that
u1 is between ρA and of u2. Let A′ be the ABox obtained
from A by replacing A↓u2

by A↓u1
in A. By renaming nodes

in A↓u1
, we can assume that the root of the subtree A↓u1

of A′
is denoted by u2. It follows from Lemma 22 that A′ is not
consistent w.r.t. T , that A′ \ {ρ′A} is consistent w.r.t. T , and
that A′′ is consistent w.r.t. T for the ABox A′′ obtained from
A′ by removing the subtree rooted at w. Again A′′ ⊇ A′|k′
for k′ = k + 1. Thus, A′ is a k′-inconsistency witness for T ,
Σ, and A(x) for some k′ > k, as required.

The following proposition implies Part 2 of Theorem 9.

Proposition 24. Let T be an ELI⊥ TBox in normal form,
Σ ⊆ sig(T ) an ABox signature, A(x) an AQ, and k ≥ 0.
Then

1. there exists a k-entailment witness for T , Σ, and A(x)
iff there exists such a witness of outdegree at most |T |;

2. there is a k-inconsistency witness for T , Σ, and A(x) iff
there is such a witness of outdegree at most |T |.

Proof sketch. For Point 1, letA be a k-entailment witness for
T , Σ, and A(x). We have to show that there is also such a
witness of outdegree at most |T |. This is done by marking
certain individuals in A in an appropriate way, then drop all
individuals that are not marked, and finally showing the the
resulting ABox is as required.

Let A = A0,A1, . . . be the sequence of ABoxes with
limit AcT defined in Appendix A. Recall that, by Lemma 20,
A, T |= B(a) iff B(a) ∈ AcT for all assertions B(a). There-
fore, each B(a) withA, T |= B(a) is associated with a num-
ber µ(B(a)) which is minimal such that B(a) ∈ Aµ(B(a)

holds.
Now, the marking of individuals in A is as follows: for all

a1, a2 ∈ Ind(A) and ∃r.A2 v A1 such that r(a1, a2) ∈ A
with a2 a successor of a1 in the tree-shaped ABox A and



A, T |= A2(a2), mark an individual a2 with the stated prop-
erties and such that µ(A2(a2)) is minimal among all individ-
uals a2 satisfying these properties. Also mark the root ρA
of A.

Now let A′ be the restriction of A to all individuals a
such that, on the unique path from ρA to a, there are only
marked individuals. Let A′ = A′0,A′1, . . . be the sequence
of ABoxes with limit A′cT defined in Appendix A, but now
starting with A′. It can be proved by induction on i that
for all a ∈ Ind(A′), concept names B, and i ≥ 0, we have
B(a) ∈ Ai iff B(a) ∈ A′i and B(a) ∈ Ai|k iff B(a) ∈ A′i|k.
Since the outdegree of A′ is bounded by |T | (assuming that
only a minimal number of nodes is marked), A′ is the de-
sired k-entailment witness for T , Σ, and A(x) of outdegree
at most |T |.

Point 2 is proved using essentially the same argument. The
only difference is that, instead of marking the root, one now
has to mark all nodes from the root to some chosen individ-
ual a such that there is an A(a) ∈ AcT with A v ⊥ ∈ T ;
otherwise, the constucted A′ might not be inconsistent as de-
sired.

A.4 Proof of Theorem 10
We introduce two-way alternating Büchi automata on finite
trees (TWABAs). Let N denote the positive integers. A tree
is a non-empty (and potentially infinite) set T ⊆ N∗ closed
under prefixes. The node ε is the root of T . As a convention,
we take x · 0 = x and (x · c) · −1 = x. Note that ε · −1 is
undefined. We say that T is m-ary if for every x ∈ T , the
set {i | x · i ∈ T} is of cardinality at most m. W.l.o.g., we
assume that all nodes in an m-ary tree are from {1, . . . ,m}∗.
An infinite path P of T is a prefix-closed set P ⊆ T such that
for every i ≥ 0, there is a unique x ∈ P with |x| = i.

We use [m] to denote the set {−1, 0, . . . ,m} and for any
set X , let B+(X) denote the set of all positive Boolean for-
mulas over X , i.e., formulas built using conjunction and dis-
junction over the elements of X used as propositional vari-
ables, and where the special formulas true and false are al-
lowed as well. For an alphabet Γ, a Γ-labeled tree is a pair
(T, V ) with T a tree and V : T → Γ a node labeling function.

Definition 25 (TWABA). A two-way alternating Büchi au-
tomaton (TWABA) on finite m-ary trees is a tuple A =
(Q,Γ, δ, q0, R) where Q is a finite set of states, Γ is a finite
alphabet, δ : Q×Γ→ B+(tran(A)) is the transition function
with tran(A) = [m] × Q the set of transitions of A, q0 ∈ Q
is the initial state, and R ⊆ Q is a set of recurring states.

Intuitively, a transition (i, q) with i > 0 means that a copy
of the automaton in state q is sent to the i-th successor of
the current node, which is then required to exist. Similarly,
(0, q) means that the automaton stays at the current node and
switches to state q, and (−1, q) indicates moving to the pre-
decessor of the current node.

Definition 26 (Run, Acceptance). A run of a TWABA A =
(Q,Γ, δ, q0, R) on a finite Γ-labeled tree (T, V ) is a T × Q-
labeled tree (Tr, r) such that the following conditions are sat-
isfied:

1. r(ε) = (ε, q0)

2. if y ∈ Tr, r(y) = (x, q), and δ(q, V (x)) = ϕ, then there
is a (possibly empty) set S = {(c1, q1), . . . , (cn, qn)} ⊆
tran(A) such that S satisfies ϕ and for 1 ≤ i ≤ n, x · ci
is defined and a node in T , and there is a y · i ∈ Tr such
that r(y · i) = (x · ci, qi).

We say that (Tr, r) is accepting if in all infinite paths ε =
y1y2 · · · of Tr, the set {i ≥ 0 | r(yi) = (x, q) for some q ∈
R} is infinite.

A finite Γ-labeled tree (T, V ) is accepted by A if there is
an accepting run of A on (T, V ). We use L(A) to denote the
set of all finite Γ-labeled tree accepted by A.

It is known (and easy to see) that TWABAs are closed
under complementation, i.e., for any TWABA A over finite
Γ-labeled m-ary trees, there is a TWABA A over finite Γ-
labeledm-ary trees such that L(A) is the set of those finite Γ-
labeledm-ary trees (T, V ) such that (T, V ) /∈ L(A). It is also
known that TWABAs are closed under union and intersection,
and that their emptiness problem is EXPTIME-complete.

Theorem 27 ([Vardi, 1998]). Given a TWABA A, it is
EXPTIME-complete to decide whether L(A) = ∅.

Let Σ be an ABox signature, let rol(Σ) denote the set of
(possibly inverse) roles over role names from Σ, and let ΓΣ

be the alphabet that consists of all sets σ ∈ 2Σ∪rol(Σ) which
contain exactly one element of rol(Σ). Each ΓΣ-labeled finite
tree (T, V ) represents the Σ-ABox A

{A(ax) | x ∈ T and A ∈ V (x)} ∪
{r(ax, ax·c) | x · c ∈ T, r a role name, and r ∈ V (x · c)} ∪
{r(ax·c, ax) | x · c ∈ T, r a role name, and r− ∈ V (x · c)}

with root aε (the role in the label of the root node is ignored).
Clearly, every Σ-ABox except the empty ABox is represented
by some finite ΓΣ-labeled tree. Note that these translations
preserve the outdegree. As the next step, we aim to prove the
following.

Proposition 28. For every ELI⊥ TBox T in normal form,
ABox signature Σ, AQ A(x), and m > 0, there is

1. a TWABA AT ,Σ,A,m over finite m-ary ΓΣ-trees such
that (T, V ) ∈ L(AT ,Σ,A,m) iff (T, V ) represents a tree-
shaped Σ-ABox A such that A, T |= A(aε);

2. a TWABA AT ,Σ,⊥,m over m-ary ΓΣ-trees such that
(T, V ) ∈ L(AT ,Σ,A,m) iff (T, V ) represents a tree-
shaped Σ-ABox A such that A is consistent w.r.t. T .

Moreover, the mentioned automata can be constructed in time
exponential in the size of T , Σ, and m, and the number of
states is O(|T |) in both cases.

To prove Proposition 28, it is convenient to first charac-
terize entailment of AQs in terms of derivation trees. Fix an
ELI⊥ TBox T in normal form and an ABoxA. Let T∃ be the
restriction of T to CIs of the form ∃r.A v B, with r a (poten-
tially inverse) role. A derivation tree for an assertion A0(a0)
in A with A0 ∈ NC ∪ {⊥} is a finite Ind(A) × (NC ∪ {⊥})-
labeled tree (T, V ) that satisfies the following conditions:

• V (ε) = (a0, A0);

• if x 6= ε, then V (x) is not of the form (a,⊥);



• if V (x) = (a,A) and A(a) ∈ A or > v A ∈ T , then x
is a leaf;
• if V (x) = (a,A) and neither A(a) /∈ A nor > v A ∈
T , then one of the following holds:

– x has successors y1, . . . , yk, k ≥ 1 with V (yi) =
(a,Ai) for 1 ≤ i ≤ k and T |= A1u· · ·uAk v A;

– x has a single successor y with V (y) = (b, B) and
there is an ∃r.B v A ∈ T∃ (with r possibly an
inverse role) such that r(a, b) ∈ A.

We call a TBox T satisfiable if it has a model. The main
property of derivation trees is the following.
Lemma 29.

1. A, T |= A(a) iff A is inconsistent w.r.t. T or there is
a derivation tree for A(a) in A, for all assertions A(a)
with A ∈ NC and a ∈ Ind(A);

2. A is inconsistent w.r.t. T iff T is unsatisfiable or there is
a derivation tree for ⊥(a) in A, for some a ∈ Ind(A).

Proof. “if”. Can be proved straightforwardly by induction on
the depth of derivation trees.
“only if”. For Point 1, assume thatA, T |= (a). IfA is incon-
sistent w.r.t. T , we are done. Thus assume that A is consis-
tent w.r.t. T . Consider the sequence of ABoxes A0,A1, . . .
with limit AcT defined in Appendix A. When A, T |= A(a),
then A(a) ∈ AcT by Lemma 20. It is thus sufficient to pro-
duce, for every assertion α = A(a) ∈ AcT , a derivation tree
(Vα, Eα, `α) for α in A. We proceed by induction over the
sequence A0,A1, . . . as follows:
• if A(a) ∈ A0 = A, then Vα = {x}, Eα = ∅, and
`α(x) = (a,A).
• if A(a) was added to Ai because of rule (i) for some
i > 0, then there is an ∃r.B v A ∈ T and there are
r(a, b), B(b) ∈ Ai−1. Let β = B(b). The derivation
tree (Vα, Eα, `α) is constructed by taking the derivation
tree (Vβ , Eβ , `β) for β in A (which exists by induction
hypothesis), adding a fresh root x with V (x) = (a,A),
and adding (x, y) to Eα, with y the root of (Vβ , Eβ , `β).
• if A(a) was added to Ai because of rule (ii) for some
i > 0, then there is an ∃r−.B v A ∈ T and there are
r(b, a), B(b) ∈ Ai−1. We can proceed as in the previous
case.
• if A(a) was added to Ai because of rule (iii) for some
i > 0, then Ai−1|a, T |= A(a). Let β0, . . . , βk be all
assertions of the formB(a) inAi−1. The derivation tree
(Vα, Eα, `α) is constructed by taking the derivation trees
(Vβi , Eβi , `βi), i ≤ k (which exists by induction hy-
pothesis), adding a fresh root x with `(x) = (a,A), and
adding (x, yi) to Eα, with yi the root of (Vβi

, Eβi
, `βi

),
for all i ≤ k.
• rule (iv) is not applied since A is consistent w.r.t. T .

Now for Point 2. Since T is in normal form, A is consistent
w.r.t. T iff (i) T is unsatisfiable or (ii) there are an a ∈ Ind(A)
and concept names A1, . . . , Ak such that A, T |= Ai(a) and
T |= A1 u · · · uAk v ⊥. By Point 1, (ii) is the case iff there
are an a ∈ Ind(A) and concept names A1, . . . , Ak such that

there is a derivation tree of Ai(a) in A and T |= A1 u · · · u
Ak v ⊥. By definition derivation trees, it is easy to see that
this is the case if there is an a ∈ Ind(A) such that there is a
derivation tree of ⊥(a) in A.

We are now ready to prove Proposition 28.

Proof of Proposition 28. We start with Point 2. If T is un-
satisfiable, we simply choose as AT ,Σ,⊥,k a TWABA that ac-
cepts the empty language. Otherwise, let CN(T ) denote the
set of all concept names in T and set A = (Q,ΓΣ, δ, q0, R)
with

Q = {q0} ] {qA | A ∈ CN(T ) ∪ {⊥}} ]
{qA,r | A ∈ CN(T ) ∪ {⊥}, r ∈ rol(Σ)}

and R = ∅ (i.e., exactly the finite runs are accepting); define
the transition function δ by setting

• δ(q0, σ) = q⊥ ∨
∨

i∈1..m

[i]q0 for all σ ∈ ΓΣ;

• δ(qA, σ) = true whenever A ∈ σ or > v A ∈ T ;

• δ(qA, σ) =
∨

T |=A1u···uAnvA

([0]qA1
∧ · · · ∧ [0]qAn

) ∨

∨
∃r.BvA∈T , r∈rol(Σ)

([−1]qB,r− ∨
∨

i∈1..m

[i]qB,r)

whenever A ∈ CN(T ) ∪ {⊥} and A /∈ σ;

• δ(qA,r, σ) = [0]qA whenever r ∈ σ;

• δ(qA,r, σ) = false whenever r /∈ σ.

It is not hard to show that A accepts a finite m-ary ΓΣ-tree
(T, V ) which represents a tree-shaped Σ-ABox A iff there
is a derivation tree for ⊥(a) in A, for some a ∈ Ind(A).
By Lemma 29 and since T is satisfiable, this is the case iff
A is inconsistent w.r.t. T . To obtain the desired TWABA
AT ,Σ,⊥,m, it thus remains to take the complement of A.

For Point 1, we can construct a TWABA A that accepts a
finite m-ary ΓΣ-tree (T, V ) which represents a tree-shaped
Σ-ABox A that is consistent w.r.t. T iff there is a derivation
tree for A(aε) in A, analogously to what was done above.
The desired automaton AT ,Σ,A,m is then obtained by taking
the union of A and AT ,Σ,⊥,m.

To proceed, we endow the representation of tree-shaped
Σ-ABoxes as finite ΓΣ-trees with an additional component
that explicitly states the depth of nodes in the tree, up to
some bound. Let k > 0 be such a bound. We use ΓkΣ
to denote the alphabet that consists of all pairs (σ, `) with
σ ∈ ΓΣ and ` ≤ k. A ΓkΣ-labeled tree is valid if the second
components of node labels correctly represent node levels in
the following sense: each node x on level ` ≤ k satisfies
V (x) = (σ, `) for some σ, and each node on level ` > k sat-
isfies V (x) = (σ, k + 1) for some σ. Every finite ΓkΣ-labeled
tree represents a tree-shaped Σ-ABox (also if it is not valid),
namely the same ABox that is represented by the projection
of the tree to a ΓΣ-tree. Clearly, every Σ-ABox (except the
empty one) is represented by some finite valid ΓkΣ-labeled
tree. The outdegree is preserved.



Theorem 30. For every ELI⊥ TBox in normal form, ABox
signature Σ, AQ A(x), and all k,m > 0, there is

1. a TWABA A over m-ary Γk+1
Σ -trees such that (T, V ) ∈

L(A) iff (T, V ) is valid and represents a tree-shaped Σ-
ABox A that is a k-entailment witness for T , Σ, and
A(x);

2. a TWABA A over m-ary Γk+1
Σ -trees such that (T, V ) ∈

L(A) iff (T, V ) is valid and represents a tree-shaped Σ-
ABox A that is a k-inconsistency witness for T , Σ, and
A(x).

Moreover, the automata can be constructed in time exponen-
tial in the size of T and Σ and m, and in time polynomial in
k; the number of states is O(|T |+ log(k)) in both cases.

Proof. We only provide a sketch of Point 1. The construction
for Point 2 is similar. The desired TWABA A is constructed
as the intersection of the following TWABAs:

• A1 accepts iff the input is valid;

• A2 accepts iff the input represents an ABox A with
A, T |= A(aε);

• A3 accepts iff the input represents an ABox that is con-
sistent w.r.t. T ;

• A4 accepts iff the input represents an ABox A with
A|k, T 6|= A(aε).

The TWABA A1 ensures via its initial state that the root
node has a label of the form (σ, 0). At every node of the
tree, it first guesses (via a disjunction) whether the maximum
counter value is reached. If this is the case, then it is veri-
fied that the current node has a label of the form (σ, k + 1),
and that the same is true for all successors. If the maximum
counter value is not reached, then A1 guesses for every i-th
bit whether the bit is currently odd or even, and whether it
is toggled or not when moving to successors. The guesses
are then verified in the current node and in the successor. In
particular, the guess to toggle a bit requires that, at the cur-
rent node, all less significant bits must be one and the guess
to not toggle a bit requires that, at the current node, there is
a less significant bit that is zero. Checking whether the i-th
bit has value b amounts to switching to a state qi,b such that
δ((σ, `), qi,b) = false if the i-th bit of the binary representa-
tion of ` is b, and δ((σ, `), qi,b) = true afterwards.

The TWABA A2 is obtained by taking the automaton from
Point 1 of Proposition 28 and modifying it so that it runs on
ΓkΣ-labeled trees instead of on ΓΣ-labeled ones, simply ignor-
ing the additional componant of node labels. The TWABA A3

is obtained in the same way from Point 2 of Proposition 28.
The TWABA A4 is obtained by taking the complement of

the automaton from Point 1 of Proposition 28, modifying it
so that it runs on ΓkΣ-labeled trees, and further modifying it
to ignore all nodes that have the maximum value k + 1 in the
second component.

We now come to the actual proof of Theorem 10. We sepa-
rate here the upper bound (Theorem 31) and the lower bound
(Theorem 32).

Theorem 31. The following problems are in EXPTIME:

1. Given a Horn-SHI TBox T , an ABox signature Σ, and
an AQ A(x), is A(x) FO-rewritable relative to T and
Σ-ABoxes that are consistent w.r.t. T ?

2. Given a Horn-SHI TBox T and an ABox signature Σ,
is inconsistency of Σ-ABoxes FO-rewritable relative to
T and Σ?

3. Given a Horn-SHI TBox T , an ABox signature Σ, and
an AQ A(x), is A(x) FO-rewritable relative to T and
Σ?

Proof. By Theorem 3, it suffices to consider ELI⊥ TBoxes
in normal form. First for Point 1 of Theorem 31. Let T be
an ELI⊥ TBox, Σ an ABox signature, and A(x) an AQ. Set
m = |T | and k = 23|T |2 , and let A be the automaton from
Point 1 of Theorem 30. By Theorem 9, L(A) = ∅ iff A(x) is
FO-rewritable relative to T and Σ-ABoxes that are consistent
w.r.t. T . As a consequence of the “moreover” statement in
Theorem 30, the automaton A can be constructed in time ex-
ponential in |T | and has a number of states that is polynomial
in |T |. By Theorem 27, it can thus be checked in EXPTIME
whether L(A) = ∅.

The same statements are true when “Point 1” is replaced
with “Point 2” in all mentioned theorems. Finally, Point 3 of
Theorem 31 is a consequence of Points 1 and 2 of the same
theorem, together with Proposition 6.

Theorem 32. The three decision problems in Theorem 10 are
EXPTIME-hard. This holds even for ELI TBoxes and the full
ABox signature.

Proof. The proof employs the EXPTIME-hardness proof for
subsumption in ELI given in [Baader et al., 2008]. Recall
that the subsumption problem in ELI is the problem to de-
cide whether a CI C v D is entailed by an ELI TBox T ,
in symbols T |= C v D. EXPTIME-hardness of the sub-
sumption problem in ELI is shown in [Baader et al., 2008]
by defining a class X of ELI TBoxes T and concept names
Init and Good such that

• The following problem is EXPTIME-hard: given T ∈
X , does T |= Init v Good hold?

• The concept names Init and Good occur in T in three
CIs: (i) a CI Init v C with neither Good nor Init in C,
and (ii) two CIs of the form Init u E v Good, where E
is a concept name.

We prove the EXPTIME-hardness results by reduction of the
subsumption problem T |= Init v Good for T ∈ X .

We first prove EXPTIME-hardness of the problem to de-
cide whether ABox consistency is FO-rewritable relative to
an ELI⊥ TBox and the full ABox signature. Let T ∈ X .
Let M and X be fresh concept names and r a fresh role
name, and let T ′ be obtained from T by (i) replacing the CIs
Init u E v Good by Init u E v ⊥, and (ii) adding the CIs
∃r.X v X , X uM v ⊥, and M v Init.

Claim. T |= Init v Good iff ABox consistency is FO-
rewritable relative to T ′ and the full ABox signature.



“if”. Assume that T 6|= Init v Good. Then ABoxes that con-
sist of longer and longer r-chains with an X at the end and
an M at the beginning witness non-FO-rewritability of ABox
consistency. In detail, let for k > 0

Ak = {r(a0, a1), . . . , r(ak, ak+1),M(a0), X(ak+1)}

Let ρAk
= a0. Then Ak is not consistent w.r.t. T ′ but

Ak \{ρAk
} andAk|k are consistent w.r.t. T ′. Hence, by The-

orem 7, ABox consistency is not FO-rewritable relative to T ′
and the full ABox signature. To see that Ak|k is consistent
w.r.t. T ′ take a model I of T with d ∈ InitI and d 6∈ GoodI .
Since T ∈ X , we may assume that InitI = {d}. Take copies
I0, . . . , Ik of I with domains ∆Ii = ∆I × {i} and interpret
ai as (d, i), r as the set of pairs ((d, i), (d, i+ 1)), for i < k,
andM as {(d, 0)}. The resulting interpretation, J , is a model
of Ak|k and T . J is a model of T ′ since d 6∈ EI because
d 6∈ GoodI and I is a model of T .

“only if”. Assume that T |= Init v Good. Then the
FO-rewriting of ABox consistency w.r.t. T ′ is ¬(∃x.M(x) ∨
∃x.Init(x)).

Recall that FO-rewritability of ABox consistency can be
reduced to FO-rewritability of AQs by introducing the AQ
A(x) for a fresh concept name A. It follows that FO-
rewritability of AQs relative ELI⊥ TBoxes and the full ABox
signature is EXPTIME-hard as well.

Finally, we show EXPTIME-hardness of the problem to de-
cide FO-rewritability relative to ELI TBoxes and consistent
ABoxes over the full ABox signature. The reduction is simi-
lar to the reduction above. Let T ∈ X . LetM andX be fresh
concept names and r a fresh role name, and let T ′ be obtained
from T by adding the CIs ∃r.X v X , X uM v Good, and
M v Init to T .

Claim. T |= Init v Good iff Good(x) is FO-rewritable rel-
ative to T ′ and consistent ABoxes over the full ABox signa-
ture.

“if”. Assume that T 6|= Init v Good. Then ABoxes that
consist of longer and longer r-chains with an X at the end
and an M at the beginning witness non-FO-rewritability of
Good(x). In detail, let for k > 0 again

Ak = {r(a0, a1), . . . , r(ak, ak+1),M(a0), X(ak+1)}

and ρAk
= a0. Then Ak is consistent w.r.t. T ′ but Ak, T ′ |=

Good(ρAk
) and Ak|k, T ′ 6|= Good(ρAk

). Hence, by Theo-
rem 7, Good(x) is not FO-rewritable relative to T ′ and con-
sistent ABoxes over the full ABox signature.

“only if”. Assume that T |= Init v Good. Then the FO-
rewriting of Good(x) relative to T ′ is Good(x) ∨ M(x) ∨
Init(x).

A.5 Proof of Theorem 11
Theorem 11.

1. For every Horn-SHI TBox T , signature Σ, and AQ
A(x) that is rewritable relative to T and Σ, one can ef-
fectively construct a UCQ-rewriting ϕ(x) of size at most

222O(|T |2)

, in time polynomial in the size of ϕ(x).

2. There is a family of EL TBoxes T0, T1, . . . such that
for all i ≥ 0, |Ti| ∈ O(i2) and A(x) is FO-rewritable
relative to Ti and the full ABox signature sig(Ti), but

the smallest UCQ-rewriting is of size at least 222i

.

Proof. We start with Point 1. By Theorem 3, it suffices to
consider ELI⊥-TBoxes. Thus let T be an ELI⊥-TBox, Σ
a signature, and A(x) an AQ that is rewritable relative to T
and Σ. The proof of Theorem 7 yields a way to effectively
construct an FO-rewriting ϕ(x) of A(x) relative to T and
consistent Σ-ABoxes, and an FO-rewriting ψ(x) of ABox in-
consistency relative to T and Σ. Both ϕ(x) and ψ(x) are
UCQs that consist only of tree-shaped CQs and use only
symbols from Σ ⊆ sig(T ). In fact, these queries are CQ-
representation of tree-shaped Σ-ABoxes that are inconsistent
w.r.t. T and do not exceed the depth bound k from the The-
orem. By Point 1 of Theorem 9, it suffices to generate only
tree-shaped CQs of depth at most 23n2

in the rewritings, with
n = |T |. Moreover, using a selection argument as in the
proof of Proposition 24, one can show that every tree-shaped
Σ-ABoxA that is inconsistent w.r.t. T contains a tree-shaped
Σ-ABox that is also inconsistent w.r.t. T and has outdegree
at most n. Thus, the outdegree of the tree-shaped CQs gen-
erated in the rewritings need also not be larger than n. It is
not hard to verify that, up to equivalence, the number of CQs

of the described form is 222O(n2)

. We obtain the same bound
for the size of UCQs that consist only of CQs of this form. It
remains to note that ϕ(x) ∨ ψ(x) is an FO-rewriting of A(x)
relative to T and Σ, see the proof of Proposition 6.

For Point 2, we utilize a construction from [Nikitina and
Rudolph, 2012], itself inspired by a similar construction in
[Lutz and Wolter, 2010]. For every n > 0, let Tn be the
following EL TBox:

A1 v X0 u . . . uXn

A2 v X0 u . . . uXn

uσ∈{r,s}∃σ.(Xi uX0 u . . . uXi−1) v Xi i ≤ n
uσ∈{r,s}∃σ.(Xi uX0 u . . . uXi−1) v Xi i ≤ n

uσ∈{r,s}∃σ.(Xi uXj) v Xi j < i ≤ n
uσ∈{r,s}∃σ.(Xi uXj) v Xi j < i ≤ n

X0 u . . . uXn v B

Note that B is not FO-rewritable relative to Tn. Indeed, let
k = 23|T |2 and consider the linear ABox

A ={Xi(a0) | 1 ≤ i < n} ∪ {r(ai, ai+1) | 0 ≤ i ≤ k}∪
{X1(ai) | 1 ≤ i ≤ k + 1} ∪ {Xn(ak+1)}

Then A, Tn |= B(a0) but A|k, T 6|= B(a0). To force the



FO-rewritability of B, we add the following CIs:

∃σ.> v Y0 u . . . u Yn σ ∈ {r, s}
∃σ.(Yi u Y0 u . . . u Yi−1) v Yi σ ∈ {r, s}, i ≤ n
∃σ.(Yi u Y0 u . . . u Yi−1) v Yi σ ∈ {r, s}, i ≤ n

∃σ.(Yi u Yj) v Yi σ ∈ {r, s}, j < i ≤ n
∃σ.(Yi u Yj) v Yi σ ∈ {r, s}, j < i ≤ n
Y0 u . . . u Yn v B

Call the resulting TBox T ′n (notice that |T ′n| ∈ O(n2)). The
inclusions in T ′n \ Tn ensure that the concept B is entailed
at an individual whenever that individual has an outgoing
path of length 2n+1. As a consequence, we have that for ev-
ery linear ABox A with root ρA, A, T ′n |= B(ρA) implies
A|2n+1 , T ′n |= B(ρA). It follows then by Theorem 13 that
B(x) is FO-rewritable relative to T ′n and the full signature
sig(T ′n). Let ϕ(x) be any UCQ-rewriting of B(x) relative to
T ′n and sig(T ′n). Because T ′n is an EL TBox, we can assume
w.l.o.g. that every disjunct q(x) of ϕ(x) is a connected CQ,
since otherwise we could simply drop any connected compo-
nent of q(x) which does not contain the answer variable x.

To establish Point 2, it is sufficient to show that the UCQ
ϕ(x) has at least 222n

disjuncts. To this end, define in-
ductively sets Ci of concepts by setting C0 = {A1, A2}
and Ci+1 = {∃r.C1 u ∃s.C2 | C1, C2 ∈ Ci}, for every
0 ≤ i < 2n+1− 2. Let C = C2n+1−1. It is shown in [Nikitina
and Rudolph, 2012] that:

(a) C contains 222n+1−1

distinct concepts, and
(b) each concept C ∈ C is such that Tn |= C v B, and

hence T ′n |= C v B
It is also not hard to see that the concepts in C cannot be
weakened while still implying B. Formally:
(c) if C ∈ C, then there is no C ′ such that |= C v C ′,
6|= C v C ′, and Tn |= C ′ v B.

where the notation |= G v H is used to denote subsumption
w.r.t. the empty TBox.

For every C ∈ C, we let AC be a tree-shaped ABox with
root a0 which instantiates the concept C, defined in the obvi-
ous way (cf. the proof of Theorem 12). One can show that
for every EL concept D, and every EL TBox T , we have

AC , T |= D(a0) iff T |= C v D (∗)

In particular, by properties (b) and (∗), we must have
AC , T ′n |= B(a0). It follows that there is some disjunct q(x)
of ϕ(x) such that a0 ∈ ans(IAC

, q). Let π be a match for
q(x) in IAC

such that π(x) = a0, and let q′(x) be the CQ
obtained by merging variables in q(x) whenever they have
the same image under π. We remark that since IAC

has the
shape of a directed tree rooted at a0, the CQ q′(x) must take
the form of a directed tree rooted at x. This means that we
can “roll up” the query q′ into a concept Dq′ , such that for
every ABox B and b ∈ Ind(B), we have B |= Dq′(b) iff
b ∈ ans(IB, q′). Since a0 ∈ ans(IAC

, q′), we must have
AC |= Dq′(a0). Applying (∗) with T the empty TBox, we
obtain |= C v Dq′ . On the other hand, we have that for every

ABox B and b ∈ Ind(B), B |= Dq′(b) implies T ′n,B |= B(b).
It follows that T ′n |= Dq′ v B. Using property (c), we obtain
|= Dq′ v C, and hence |= C ≡ Dq′ .

We have thus shown that for every concept C ∈ C, there
is some disjunct q of ϕ(x) and some tree-shaped CQ q′ ob-
tained by merging variables in q such that |= Dq′ ≡ C, where
Dq′ is the concept corresponding to q′. If every concept C is
associated with a different disjunct q, then we are done. In-

deed, since C contains 222n+1−1

pairwise non-equivalent con-

cepts, and 222n+1−1

> 222n

, this would imply that there are
at least 222n

disjuncts in ϕ(x). To complete the argument,
suppose for a contradiction that there are distinct concepts
C1, C2 ∈ C, a disjunct q of ϕ(x), and tree-shaped CQs q1, q2

obtained by merging variables in q such that |= Dq1 ≡ C1

and |= Dq2 ≡ C2 (with Dq1 and Dq2 the concepts associated
with q1, q2). Since C1 and C2 are different, there must ex-
ist some sequence w1 . . . w2n+1−1 of roles from {r, s} such
that C1 and C2 differ on the concept name (A1 or A2) ap-
pearing in the scope of the chain of existential quantifiers
w1 . . . w2n+1−1. Say that |= C1 v ∃w1∃w2 . . . ∃w2n+1−1.A1

and |= C2 v ∃w1∃w2 . . . ∃w2n+1−1.A2. It follows that
we must have |= Dq1 v ∃w1∃w2 . . . ∃w2n+1−1.A1 and
|= Dq2 v ∃w1∃w2 . . . ∃w2n+1−1.A2. The first subsumption
means that the query q1(x) contains a w1 . . . w2n+1−1-path
from x to some y with A1(y) ∈ q1. Now let ν1 be such that
q1 is the result of applying ν1 to the variables in q, and let
z1, . . . , z` be the variables in q such that ν1(z) = y. Since
q is connected, for every variable zi, there is a path pzi from
x to zi. It follows that in q1, there is a path pzi from x to
y, for every 1 ≤ i ≤ `. However, since q1 is tree-shaped,
there is a unique path to every variable, and so all paths pzi
must be the same and equal to w1 . . . w2n+1−1. The pres-
ence of atom A1(y) in q1 implies that A1(zi) ∈ q for some
1 ≤ i ≤ `. It follows that q contains a w1 . . . w2n+1−1-
path from x to some z with A1(z) ∈ q. By applying
the same argument to q2, we can show that q contains a
w1 . . . w2n+1−1-path from x to some z′ with A2(z′) ∈ q.
These two paths must also be present in the queries q1 and
q2, which implies that |= Dq1 v ∃w1∃w2 . . . ∃w2n+1−1.A2

and |= Dq2 v ∃w1∃w2 . . . ∃w2n+1−1.A1. We thus ob-
tain |= C1 v ∃w1∃w2 . . . ∃w2n+1−1.A2 and |= C2 v
∃w1∃w2 . . . ∃w2n+1−1.A1. This gives us the desired contra-
diction since the definition of the concepts in C forbids A1

and A2 from appearing in the scope of the same chain of ex-
istential restrictions in the same concept.

B Proofs for Section 4
The notion of a canonical model is used in the proof of The-
orem 12, so we recall the definition here. Let T be an EL
TBox and A an ABox. For a ∈ Ind(A), a path for A and
T is a finite sequence a r1 C1 r2C2 · · · rn Cn, n ≥ 0, where
the Ci are concepts that occur in T (potentially as a subcon-
cept) and the ri are roles such that the following conditions
are satisfied:
• a ∈ Ind(A),
• A, T |= ∃r1.C1(a) if n ≥ 1,
• T |= Ci v ∃ri+1.Ci+1 for 1 ≤ i < n.



The domain ∆IA,T of the canonical model IA,T for T and
A is the set of all paths for A and T . If p ∈ ∆IA,T \ Ind(A),
then tail(p) denotes the last concept Cn in p. Set

AIA,T := {a ∈ Ind(A) | A, T |= A(a)}∪
{p ∈ ∆IA,T \ Ind(A) | T |= tail(p) v A}

rIA,T := {(a, b) | r(a, b) ∈ A}∪
{(p, q) ∈ ∆IA,T ×∆IA,T |

q = p · r C for some C}
aIA,T := a for all a ∈ Ind(A)

It is standard to prove the following.

Lemma 33. IA,T is a model of T and A such that:

• for any a ∈ Ind(A) and EL conceptC, we have aIA,T ∈
CIA,T iff A, T |= C(a),

• for any CQ q(~x) of arity k and k-tuple ~a ∈ Ind(A), we
have ans(IA,T , q(~x)) = certT (q(~x),A).

We use the same normal form for EL TBoxes that was in-
troduced in the context of ELI⊥. Every EL TBox can be put
into normal form as follows. Let T be an EL TBox, Σ be an
ABox signature, and A(x) be an AQ. We use sub(T ) to de-
note the set of subconcepts C of (concepts that occur in) T .
For every C ∈ sub(T ) that is neither a concept name nor >,
introduce a concept name XC that does not occur in T nor in
Σ and is distinct from the concept name A. Set

σ(C) =


C if C ∈ NC ∪ {>}
XD1

uXD2
if C = D1 uD2

∃r.XD if C = ∃r.D

and define T ′ as⋃
CvD∈T

XC v XD ∪
⋃

C∈sub(T )

{XC v σ(C), σ(C) v XC}.

After replacing CIs A v B1 uB2 with A v B1 and A v B2,
and then replacing CIs A v B by A u A v B, T ′ is of the
required form.

The following lemma resumes some properties of the nor-
malized TBoxes obtained via this procedure.

Lemma 34.
1. For any FOQ ϕ and ABox signature Σ with Σ∩T ′ ⊆ T ,
ϕ(x) is an FO-rewriting of A(x) relative to T and Σ iff
ϕ(x) is an FO-rewriting of A(x) relative to T ′ and Σ.

2. For every concept name B ∈ sig(T ) and individual a,
A, T |= B(a) iff A, T ′ |= B(a)

Because EL does not allow inverse roles, it will prove rel-
evant to consider ABoxes and queries which have the form of
directed trees. Formally, an ABox A is called dtree-shaped
if the directed graph (Ind(A), E = {(a, b) | r(a, b) ∈ A})
is a tree and r(a, b), s(a, b) ∈ A implies r = s. A CQ is a
dtree-CQ if it is dtree-shaped and its root is the only answer
variable; a dtree-UCQ takes the form q1∨· · ·∨qn where each
qi is dtree-CQ rooted at the same answer variable.

The following lemma is easy to show.

Lemma 35. Let T be an EL TBox, A be a tree-shaped
ABox, and a ∈ Ind(A). Then T ,A |= A(a) if and only if
T ,Aa |= A(a), where Aa is the restriction of A to those in-
dividuals which are reachable from a in the directed graph
(Ind(A), E = {(a, b) | r(a, b) ∈ A}).

By combining the preceding lemma and the proof of
Point 1 of Theorem 7, we obtain:

Lemma 36. Let T be an EL TBox, Σ an ABox signature, and
A(x) an AQ. If A(x) is FO-rewritable relative to T and Σ,
then there is a dtree-UCQ that is an FO-rewriting of A(x)
relative to T and Σ.

B.1 Proof of Theorem 12
Theorem 12. FO-rewritability of AQs relative to EL TBoxes
and the full ABox signature can be polynomially reduced to
FO-rewritability of AQs relative to EL TBoxes in normal form
and the full ABox signature.

Proof. Let T be an EL TBox, A(x) be an AQ, and T ′ be
obtained by applying the normalization procedure to T de-
scribed above. We show that A(x) is FO-rewritable relative
to T and the full signature sig(T ) if and only if A(x) is FO-
rewritable relative to T ′ and the full signature sig(T ′). Since
T ′ can be computed from T in polynomial time, this yields
the desired reduction.

For the first direction, suppose that A(x) is FO-rewritable
relative to T and the full signature sig(T ). Then by
Lemma 36, there exists a dtree-UCQ ϕ(x) such that
certT (A(x),A) = ans(IA, ϕ) for every Σ-ABox A, where
Σ = sig(T ). We can assume w.l.o.g. that ϕ(x) only uses
symbols from Σ. We aim to modify ϕ(x) to obtain a FO-
rewriting ϕ′(x) of A(x) relative to T ′ and the full signa-
ture sig(T ′). Intuitively, ϕ′(x) will be a UCQ consisting
of all CQs which are obtained by taking a disjunct of ϕ(x)
and replacing some of the subqueries by concept names in-
troduced in T ′. Formally, to every dtree-CQ q and variable
v ∈ vars(q), we associate an EL concept Cq,v as follows:

Cq,v = u
A(v)∈q

A u u
r(v,v′)∈q

∃r.Cq,v′ .

We say that q′ is obtained from a dtree-CQ q by definition
replacement if there exist a concept name XD ∈ sig(T ′) \
sig(T ) and variable v ∈ vars(q) such that q′ is the result of
applying the following operations to q:

1. add the atom XD(v)

2. for every atom A(v) ∈ q such that T ′ |= XD v A,
remove A(v) from q

3. for every term v′ such that r(v, v′) ∈ q and T ′ |= XD v
∃r.Cq,v′ , remove all atoms involving v′ or its descen-
dants in q

and at least one atom of q is removed during this process. We
call q′ a definition-rewriting of q if q′ can be obtained from
q by zero or more definition replacements. Let ϕ′(x) be the
disjunction of all queries q′ which are definition-rewritings
of some disjunct q of ϕ(x). Note that ϕ′(x) is well-defined
since there can be only finitely many definition-rewritings of
a given CQ.



We aim to show that ϕ′(x) is an FO-rewriting of A(x) rel-
ative to T ′ and the full signature sig(T ′). To this end, let A′
be a sig(T ′)-ABox. First suppose that a ∈ certT ′(A(x),A′).
We define a sig(T )-ABox which intuitively corresponds to
replacing each assertion XD(b) with XD 6∈ sig(T ) by the in-
stantiation of D at b. Formally, to every assertion XD(b) ∈
A′, we can associate the set of assertions inst(D, b) defined
as follows:

inst(D, b) = {A(b)} if D = A

inst(D, b) = inst(E1, b) ∪ inst(E2, b) if D = E1 u E2

inst(D, b) = {r(b, c)} ∪ inst(E, c) if C = ∃r.E
[where c is a fresh
individual name]

We require that if c is a fresh individual name used
in inst(D, b), then c does not appear in inst(D′, b′), for
(D′, b′) 6= (D, b). It is easy to see that the definition of
inst(D, b) guarantees that inst(D, b) |= D(b). The ABox A
is then obtained fromA′ by replacing each assertionXD(b) ∈
A′ by the set of assertions inst(D, b). Note thatA is a sig(T )-
ABox, since D is a sig(T )-concept whenever XD ∈ sig(T ′).

We next observe that by construction XD(b) ∈ A′ implies
A |= D(b). As T ′ |= XD ≡ D, we obtain A, T ′ |= XD(b),
and hence A, T ′ |= A′. Because a ∈ certT ′(A(x),A′), we
must also have a ∈ certT ′(A(x),A). As the answers to AQs
are preserved under the normalization procedure (cf. point 2
of Lemma 34), we must also have a ∈ certT (A(x),A). Us-
ing our assumption that ϕ(x) is a FO-rewriting of A(x) rel-
ative to T and sig(T ), we obtain a ∈ ans(IA, ϕ). It follows
that there must exist a dtree-CQ q which is a disjunct of ϕ
such that a ∈ ans(IA, q). Take some match π for q in IA with
π(x) = a. We define inductively a sequence q0, q1, q2 . . . , of
dtree-CQs by setting q0 = q and letting qi+1 be obtained by
applying the following rule to qi:
(∗) select an atom α ∈ qi such that either (a) α = B(v),

B ∈ sig(T ), π(v) ∈ Ind(A′), and B(π(v)) 6∈ A′, or
(b) α = r(v, v′), π(v) ∈ Ind(A′), and π(v′) 6∈ Ind(A′).
Let D be such that π(α) ∈ inst(D,π(v)). Add the atom
XD(v) and remove (i) all atoms B(v) such that T ′ |=
XD v B, and (ii) all atoms involving variable u or its
descendants, whenever s(v, u) ∈ qi and T ′ |= XD v
∃s.Cqi,u.

Note that each qi+1 is a definition replacement of qi. Indeed,
by the choice of α, we are guaranteed to remove either B(v)
(case (a)) or r(v, v′) (case (b)). It follows that after a finite
number of steps, we obtain a dtree-CQ for which neither rule
is applicable. Call this query q′, and let π′ be the restriction
of π to the variables in q′. We aim to show that π′ is a match
for q′ in IA′ . Let α be an atom in q′. There are three cases to
consider.
• Case 1: α = B(v), where B ∈ sig(T ). First note that
B(v) ∈ q, since the rule (*) only adds concept assertions
involving the new concept names from T ′. Next note
that π(v) ∈ inds(A′), since otherwise B(v) would have
been removed when treating a role assertion involving v
or an ancestor of v. Likewise, we must have B(π(v)) ∈
A′, since otherwise the rule (∗) would be applicable with

α = B(v), a contradiction. As π′(v) = π(v), we obtain
B(π′(v)) ∈ A′.

• Case 2: α = XD(v), where XD ∈ sig(T ′) \ sig(T ).
Then XD(v) must have been added by an application of
rule (∗). Then it must be the case that inst(D,π(v)) ⊆
A, and hence that XD(π(v)) ∈ A′ (by the construction
of A). Since π′(v) = π(v), we have XD(π′(v)) ∈ A′.

• Case 3: α = r(v, v′). Since the rule (∗) never adds any
role atoms, we must have r(v, v′) ∈ q. If v 6∈ Ind(A′),
then r(v, v′) would have been removed while apply-
ing (∗) to some ancestor of v. Hence, v ∈ Ind(A′).
The rule (∗) is not applicable to q′, so we must also
have v′ ∈ Ind(A′). As π is a match for q, we have
r(π(v), π(v′)) ∈ A. As A has the same role assertions
as A′ when restricted to individuals in A′, we obtain
r(π(v), π(v′)) ∈ A′, and thus r(π′(v), π′(v′)) ∈ A′.

We have thus found a match π′ for q′ in IA′ with π′(x) = a.
As q′ is a definition-rewriting of q ∈ ϕ, it appears as a disjunct
of ϕ′(x). It follows that a ∈ ans(IA′ , ϕ′).

Next suppose that a ∈ ans(IA′ , ϕ′). Then there exists a
disjunct q′ of ϕ′(x) such that a ∈ ans(IA′ , q′). We know
from the construction of ϕ′(x) that there exists a dtree-CQ
q which is a disjunct of ϕ(x) such that q′ is a definition-
rewriting of q. Let q0 = q, q1, . . . , qn = q′ be the sequence
of definition replacements taking q to q′. We create a se-
quence of ABoxesA0,A1, . . . ,An = A′ such that (a) for ev-
ery 0 ≤ i ≤ n, a ∈ ans(IAi , qi), and (b) for every 0 ≤ i < n,
there is a homomorphism from IAi,T ′ to IAi+1,T ′ . The base
case is i = n, in which case (a) is immediate, and (b) is in-
applicable. For the induction step, suppose that statement (a)
holds for all k + 1 ≤ i ≤ n and (b) holds for k + 1 ≤ i < n.
We know that qk+1 is obtained from qk by definition replace-
ment, so there is a unique atomXD(v) which appears in qk+1

but not qk. Define the ABox Ak as follows:

Ak =Ak+1 \ {XD(πk+1(v))}
∪ {B(πk+1(v)) | B(v) ∈ qk, T ′ |= XD v B}

∪
⋃

r(v,v′)∈qk,T ′|=XDv∃r.Cqk,v′

inst(∃r.Cqk,v′ , πk+1(v))

By the induction hypothesis, we have that a ∈
ans(IAk+1

, qk+1), and so there is a match πk+1 for
qk+1 in IAk+1

. We use πk+1 to define a function πk as
follows:

• if v appears both in qk and qk+1, then πk(v) = πk+1(v)

• if r(v, v′) ∈ qk, v appears in qk+1, but v′ does not appear
in qk+1, then πk maps v′ and its descendants to the cor-
responding individuals in inst(∃r.Cqk,v′ , πk+1(v)) (de-
fined in the obvious way)

It is easily verified that πk defines a match for qk in IAk
,

so point (a) is satisfied. For (b), it is sufficient to exhibit a
homomorphism from IAk

to IAk+1,T ′ . For every individual
b ∈ Ind(Ak) ∩ Ind(Ak+1), we set h(b) = b. This ensures
that if B(b) ∈ Ak ∩ Ak+1, then h(b) ∈ B

IAk+1,T ′ and
likewise for role assertions in Ak ∩ Ak+1. Also note that if
B(πk+1(v)) ∈ Ak \Ak+1, then T ′ |= XD v B. Since πk+1



is a match for qk+1 in IAk+1,T ′ and XD(v) ∈ qk+1, we must

have πk+1(v) ∈ X
IAk+1,T ′

D , hence πk+1(v) ∈ B
IAk+1,T ′ .

The remaining individuals b ∈ Ind(Ak) \ Ind(Ak+1) belong
to the union of the sets inst(∃r.Cqk,v′ , πk+1(v)). Since

πk+1(v) ∈ X
IAk+1,T ′

D and T ′ |= XD v ∃r.Cqk,v′ , we

must have πk+1(v) ∈ ∃r.C
IAk+1,T ′

qk,v′
. We can thus extend

h to the individuals in Ind(Ak) \ Ind(Ak+1) so as to
satisfy all assertions in the sets inst(∃r.Cqk,v′ , πk+1(v)),
thereby obtaining the desired homomorphism from IAk

to
IAk+1,T ′ and completing our inductive argument. Now since
a ∈ ans(IA0 , q) and the query q uses only symbols from
Σ = sig(T ), it follows that the Σ-reduct A of A0 is such
that a ∈ ans(IA, q). We thus have a ∈ ans(IA, ϕ), hence
A, T |= A(a) and A0, T |= A(a). Since T ′ |= T , we must
also have A0, T ′ |= A(a), or equivalently, a ∈ AIA0,T ′ . By
composing the homomorphisms h0, . . . , hn−1, we obtain a
homomorphism from IA0,T ′ to IAn,T ′ = IA′,T ′ . It follows
that a ∈ AIA′,T ′ , hence A′, T ′ |= A(a).

For the other direction, suppose that A(x) is FO-rewritable
relative to T ′ and the full signature sig(T ′). Then there ex-
ists a UCQ ϕ′(x) such that certT (A(x),A′) = ans(I ′A, ϕ)
for every sig(T ′)-ABox A′. Let ϕ(x) be the UCQ obtained
from ϕ′(x) by removing all CQs in the disjunction which use
symbols outside sig(T ). Then for every sig(T )-ABox A, we
have the following equivalences:

a ∈ certT (A(x),A)⇔ a ∈ ans(IA, ϕ′)
⇔ a ∈ ans(IA, ϕ)

It follows that ϕ(x) is a FO-rewriting of A(x) relative to T
and the full signature sig(T ).

B.2 Proof of Theorem 13
We aim at proving Theorem 13. In view of Theorem 9, it is
clearly sufficient to show the following.

Lemma 37. Let T be an EL TBox in normal form, A(x) be
an AQ, and k = 23n2

. If there is a tree-shaped ABox A with
root a0 such that A, T |= A(a0) and A|k, T 6|= A(a0), then
there is a linear ABox A′ with the same properties.

Proof. Let A be a tree-shaped ABox with root a0 such that
A, T |= A(a0) and A|k, T 6|= A(a0), where k = 23n2

. Be-
cause of Lemma 35, we may assume that A is dtree-shaped.

We first show that we can w.l.o.g. assume that inA, there is
only a single individual on level k + 1, and no individuals on
any level> k+1. To this end, let b0, . . . , bn be the individuals
in A on level k + 1. Moreover, let Ai be the ABox obtained
from A by dropping all subtree-ABoxes rooted at b0, . . . , bi
and let ` be smallest such that A`, T |= A(a0). Note that
` < n since A` = A|k. The ABox B is obtained from A as
follows:

1. whenever ∃r.A v B ∈ T , A, T |= A(bi) with i > `,
and ci is the predecessor of bi in A, then add the asser-
tion B(ci);

2. remove the subtrees rooted at b0, . . . , b`−1, b`+1, . . . , bn.

We have B, T |= A(a0) and B|k, T 6|= A(a0). The former is
a consequence of A`, T |= A(a0), the latter a consequence
of A`+1, T 6|= A(a0). Moreover, B has only a single indi-
vidual on level k + 1, which is b`. Manipulate B further by
adding B(b`) whenever ∃r.A v B ∈ T and B, T |= A(c)
for some individual c with r(b`, c) ∈ B, and then removing
all individuals on level > k + 1. We can now use B instead
of A.

We can also assume w.l.o.g. that when A|k, T |= B(b) for
any assertion B(b), then B(b) ∈ A: if this is not the case,
simply add the missing assertions. Now, let a0, . . . , ak+1 be
the only path in A of length k + 1, and let A′ be the re-
striction of A to assertions that involve only the individuals
a0, . . . , ak+1. Clearly, A is linear and since A′|k ⊆ A|k,
we have A′|k, T 6|= A(a0). It thus remains to show that
A′, T |= A(a0). Since A, T |= A(a0) and T is in nor-
mal form, it clearly suffices to argue that if r(ai, b) ∈ A
with i ≤ k, A, T |= A(b), and ∃r.A v B ∈ T , then
A′, T |= B(ai). This is straightforward: if A, T |= A(b),
then A|k, T |= A(b) since the subtree rooted at b is identical
in A and A|k. Thus, A|k, T |= B(ai) and, by assumption,
we have B(ai) ∈ A, thus B(ai) ∈ A′.

B.3 Proof of Theorem 15
Theorem 15. Deciding FO-rewritability of an AQ relative to
an EL TBox and the full ABox signature is in PSPACE.

Proof. Let T be an EL TBox, Σ the full ABox signature,
and A(x) an AQ. Set m = 1 and k = 23|T |2 , and let A
be the automaton from Point 1 of Theorem 30. By Theo-
rem 13, L(A) = ∅ iff A(x) is FO-rewritable relative to T and
Σ-ABoxes that are consistent w.r.t. T . Observe that, since
m = 1, A is an alternating automaton on finite words, rather
than on finite trees. It is well-known that the emptiness prob-
lem for such automata is PSPACE-complete, see for example
[Serre, 2006]. To obtain an overall PSPACE decision pro-
cedure, it is additionally necessary to construct the automa-
ton A on the fly while checking its emptiness, which is stan-
dard.

B.4 Proof of Theorem 16
We first present the reduction for Point 1 of Theorem 16.
Let M = (Q,Ω,Γ, δ, q0, qacc, qrej) be a DTM that solves
a PSPACE-complete problem and p(·) its polynomial space
bound. To simplify technicalities, we w.l.o.g. make the fol-
lowing assumptions about M . We assume that, when started
in any (not necessarily initial) configuration C, then the com-
putation of M terminates and uses at most p(n) tape cells
when n is the number of tape cells that are non-blank in C.
We also assume that M always terminates with the head on
the right-most tape cell, that it never attempts to move left on
the left-most end of the tape, and that there are no transitions
defined for qacc and qrej. Let x ∈ Ω∗ be an input to M of
length n. Our aim is to construct a TBox T and select a con-
cept name B such that B is not FO-rewritable relative to T
and the full signature iff M accepts x.

By Theorem 7, non-FO-rewritability of B w.r.t. T is wit-
nessed by a sequence of tree-shaped ABoxes of increasing
depth. In the reduction, such witness ABoxes take the form



of longer and longer chains representing the computation
of M on x, repeated over and over again. Specifically, the
tape contents, the current state, and the head position are
represented using the elements of Γ ∪ (Γ × Q) as concept
names. Each ABox element represents one tape cell of one
configuration, the role name r is used to move between
consecutive tape cells, the role name s is used to move be-
tween successor configurations inside the same computation,
and the role name t is used to separate computations. To
illustrate, suppose the computation of M on x = ab consists
of the two configurations qab and aq′b.1 This is represented
by ABoxes of the form

{r(b1, b0), s(b2, b1), r(b3, b2), t(b4, b3), r(b5, b4), . . . , r(bm, bm−1)}

where additionally, the concept (a, q) is asserted for
b0, b4, b8, . . . , b is asserted for b1, b5, b9, . . . , a for
b2, b6, b10, . . . , and (b, q′) for b3, b7, b11, . . . . If M ac-
cepts x, then B is propagated backwards along these chains
(from b0 to b1 etc.) unboundedly far, starting from a single
explicit occurrence of B asserted for b0. To ensure that the
chain in the ABox properly represents the computation of
M on x, we will make sure that B is already implied by
a subchain of bounded length when there is a defect in the
computation, and thus the unbounded propagation of B gets
disrupted resulting in FO-rewritability of B relative to T .

The following CI in T results in backwards propagation
of B provided that every ABox individual is labeled with
at least one symbol from Γ ∪ (Γ × Q). It also makes sure
that t-transitions occur exactly after the accepting state was
reached:

∃r.(A uB) v B for all A ∈ Γ ∪ (Γ× (Q \ {qacc, qrej})) (1)

∃s.(A uB) v B for all A ∈ Γ ∪ (Γ× (Q \ {qacc, qrej})) (2)

∃t.(A uB) v B for all A ∈ Γ× {qacc}. (3)

There are many properties of witness ABoxes that need to be
taken care of. We start with enforcing that every tape cell has
a unique label:

A uA′ v B for all distinct A,A′ ∈ Γ ∪ (Γ×Q) (4)

We next enforce that there is not more than one head position
per configuration:

(a, q) v H for all (a, q) ∈ Γ×Q (5)

∃ri.H u ∃rjH v B for i < j < p(n) (6)

and that there is at least one head position per configuration:

a v H for all a ∈ Γ (7)

H u ∃r.H u · · · u ∃rp(n)−1.H v B (8)

where H is a concept name indicating that the head is on the
current cell and H indicating that this is not the case. Note
that, whenever one of the desired properties is violated in an
ABox, thenB is implied by a subchain of length at most p(n),
thus its unbounded propagation is disrupted.

1uqv ∈ Γ∗QΓ∗ means that M is in state q, the tape left of the
head is labeled with u, and starting from the head position, the re-
maining tape is labeled with v.

For technical reasons, we also want to ensure that configu-
rations have length exactly p(n) (with the possible exception
of the first configuration, which can be shorter), again via dis-
ruption of propagation:

∃rp(n).> v B (9)

∃S.∃ri.∃S′.> v B for all i < p(n)− 1 (10)
and S, S′ ∈ {s, t}

We now enforce that the transition relation is respected
and that the content of tape cells which are not under the
head does not change. Let forbid denote the set of all tuples
(A1, A2, A3, A) with Ai ∈ Γ ∪ (Γ × Q) such that whenever
three consecutive tape cells in a configuration c are labeled
with A1, A2, A3, then in the successor configuration c′ of c,
the tape cell corresponding to the middle cell cannot be la-
beled with A.

A u ∃ri.∃s.∃rp(n)−i−2.(A3 u ∃r.(A2 u ∃r.A1)) v B (11)

for all 0 ≤ i < p(n) and (A1, A2, A3, A) ∈ forbid.
It remains to set up the initial configuration. Recall that

witness ABoxes consist of repeated computations of M ,
which ideally we would all like to start in the initial config-
uration for input x. It does not seem possible to enforce this
for the first computation in the ABox, so we live with this
computation starting in some unknown configuration. Then,
we utilize the final states qacc and qrej to enforce that all com-
putations in the ABox except the first one must start with the
initial configuration for x. Let A(0)

0 , . . . , A
(0)
p(n)−1 be the con-

cept names that describe the initial configuration, i.e., when
the input x is x0 · · ·xn−1, then A(0)

0 = (x0, q0), A(0)
i = xi

for 1 ≤ i < n, and A
(0)
i = xi is the blank symbol for

n ≤ i < p(n). Now put

∃ri.∃t.> v A(0)
i for all 0 ≤ i < p(n). (12)

The following lemma establishes the correctness of our re-
duction.

Lemma 38. B is not FO-rewritable relative to T and the full
signature iff M accepts x.

Proof. “if”. (sketch) Assume that M accepts x. By Theo-
rem 9, it is enough to show that there is a tree-shaped ABox
A with root a0 such that A, T |= B(a0) and A|k, T 6|=
B(a0), where k = 23|T |2 . Let C1, . . . , Cm be a sequence
of configurations of length p(n) obtained by sufficiently of-
ten repeating the accepting computation of M on x so that
|C1|+ · · ·+ |Cm| > k. We can convert C1, . . . , Cm into the
desired witness ABox A in a straightforward way: introduce
one individual name for each tape cell in each configuration,
use the role name r to connect cells within the same config-
uration, the role name s to connect configurations, the role
name t to connect computations, and the concept names from
Γ∪ (Γ×Q) to indicate the tape inscription, current state, and
head position. We obtain a linear ABoxA of depth > k. Add
B(a) with a the only leaf of A. It can be verified that A is as
required.



“only if”. Assume that B is not FO-rewritable relative to
T . Let stepM be the maximum number of steps M makes
starting from any configuration of length p(n) before enter-
ing a final state, and let = (2 · stepM + 2) · p(n) + p(n).

Claim 1. There is a dtree-shaped ABox A with root a0

such that A is closed under applications of CIs (4) to (10),
A, T |= B(a0), and A|k, T 6|= B(a0).

Proof of claim. By Theorem 9, non-FO-rewritability of B
relative to T implies the existence of a tree-shaped ABox A′
with root a0 such thatA′, T |= B(a0) andA′|k+p(n)+1, T 6|=
B(a0). By Lemma 35, we can assume that A′ is dtree-
shaped. The desired ABoxA is obtained by closingA′ under
CIs (4) to (10). Clearly, we have A, T |= B(a0). Now con-
sider the ABoxes A|k and A′|k. Since the CIs (4) to (10) are
non-recursive and of role depth at most p(n) + 1, all atoms
α ∈ A|k \ A′|k are such that A′|k+p(n)+1, T |= α. Since
A′|k+p(n)+1, T 6|= B(a0), we thus have A|k, T 6|= B(a0), as
required. This finishes the proof of Claim 1.

Let T − be the restriction of T to CIs (1) to (3). Since
A and thus also A|k is closed under applications of CIs (4)
to (10), all CIs in T − are of the form C v B, and B does
not occur on the left-hand sides of CIs (4) to (10), we have
A, T − |= B(a0) and A|k, T − 6|= B(a0). We can assume
w.l.o.g. that there is an individual a on level k + 1 of A
such that A−, T − 6|= B(a0), where A− is A with the sub-
tree rooted at a dropped. Let b0, . . . , bk+1 be the (backwards)
path in A from a to a0.

Claim 2. For 1 ≤ i ≤ k + 1, we have
(a) A, T − |= B(bi);
(b) A−, T − ∪ {B(bi)} |= B(a0).

Proof of claim.
(a) Follows from the fact that A, T − |= B(a0), A−, T − 6|=
B(a0), and that all CIs in T − are of the form C v B with C
of role depth one.

(b) Fix a bi with 1 ≤ i ≤ k+1. LetA+ be the ABox obtained
from A by
• dropping all subtrees rooted at successors of bi and
• adding all concept assertions X(bi) with A, T − |=
X(bi).

Since A, T − |= B(b0) and all CIs in T − are of role depth
one, we have A+, T − |= B(b0). We have A+ ⊆ A− ∪
{B(bi)} as all CIs in T − are of the form C v B. Thus,
A−, T − ∪ {B(bi)} |= B(a0) and the proof of Claim 2 is
finished.

For 1 ≤ i ≤ k + 1 and R ∈ {r, s, t}, we say that bi is
an R-individual if R(bi, bi−1) ∈ A. Let o be smallest index
i such that bi is an s-individual or t-individual. By CI (9),
Point (b) of Claim 2, and since A−, T − 6|= B(a0) we have
o ≤ p(n). Similarly, by CIs (9) and (10) we can split the chain
bo, . . . , bk+1 into consecutive subchains of length precisely
p(n) such that the first individual in each subchain is an s-
individual or t-individual and all others are r-individuals. By
CIs (4) to (8), each such subchain represents a unique config-
uration of M of length p(n). We thus obtain a sequence of

configurationsC1, . . . , C` with ` > 2·stepM+1. By CIs (11),
for all Ci, Ci+1 where Ci+1 starts with an s-individual, Ci+1

must be a successor configuration of Ci. Since M terminates
after at most stepM steps starting from any configuration,
there is a Ci with i < stepM such that Ci is a final configu-
ration. By CI (2) and qacc and qrej are excluded in Point (a)
of Claim 2, Ci+1 must start with a t-individual. By CI (12),
Ci+1 must be the initial configuration of M on input x. The
sequence Ci+1, . . . , C` is still of length exceeding stepM +1.
It follows that an initial piece of this sequence represents the
computation of M on x, say Ci+1, . . . , Cj with j < `. As
above, we can argue that Cj+1 must start with a t-individual.
Moreover, since qrej is excluded in CI (3), Cj must be an ac-
cepting configuration, thus the computation of M on x is ac-
cepting.

Now we turn to Point 2 of Theorem 16, which is proven
by a reduction from the word problem for polynomially
space-bounded alternating Turing machines (ATMs). Let
M = (Q∃, Q∀,Ω,Γ, δ, q0, qacc, qrej) be a polynomially space-
bounded ATM that solves an EXPTIME-complete problem.
We assume qacc, qrej /∈ Q∃ ∪ Q∀, and thus no transitions
are defined for qacc, qrej. We may also assume w.l.o.g. that
both for existential and universal states, there are exactly
two transitions. Each transition has the form (q, a,m) with
m ∈ {−1,+1}, i.e., the Turing machine cannot make a tran-
sition without moving its head. Let x ∈ Ω∗ be an input of
length n to M . We construct a TBox T and signature Σ such
that a selected concept name B /∈ Σ is not FO-rewritable rel-
ative to T and Σ iff M accepts x. The construction differs in
some crucial aspects from the PSPACE one given before:

(i) witness ABoxes are be tree-shaped and represent re-
peated computation trees rather than repeated linear
DTM computations;

(ii) an individual represents a whole configuration rather
than only one tape cell;

(iii) the computation will proceed forward along role edges
rather than backward.

In Point (i), “repeated computation trees” means that one
copy of the tree is repeatedly appended to at least one leaf
of another copy of the tree. The concept name B then propa-
gates bottom-up through these repeated trees.

We use concept names from the set

C = (Γ× [1, . . . , p(n)]) ∪ (Γ×Q× [1, . . . , p(n)]) ⊆ Σ

to specify contents of the tape cells, the head position and
the current state. For easy reference, we use Ci to denote the
restriction of C to all tuples with last component i. Auxilliary
concept names P1, . . . , Pp(n), which are not in Σ, indicate
that the contents of a given tape cell have been specified:

A v Pi for all A ∈ Ci, 1 ≤ i ≤ p(n) (13)

The concept Tape /∈ Σ does the same for the whole tape:

P1 u · · ·Pn v Tape (14)

We use the role name r1 to link successor configurations of
existential restrictions and first successor configurations of



universal configurations, and r2 to link second successor con-
figurations of universal configurations. The following CIs
make sure that (i) whenever an individual describes a con-
figuration, then every tape cell is labeled with some symbol
in this configuration and (ii) the appropriate successors are
present: for all (a, q, i) ∈ C with q ∈ Q∃, put

Tape u (a, q, i) u ∃r1.(Tape uB) v B. (15)

For all (a, q, i) ∈ C with q ∈ Q∀, put

Tape u (a, q, i) u ∃r1.(Tape uB) u ∃r2.(Tape uB) v B (16)

By disrupting the propagation ofB, we can ensure that every
cell is labeled with at most one symbol, that there is exactly
one head and state, and that symbols that are not under the
head do not change when the TM makes a transition. Techni-
cally, this is achieved with the help of a concept nameE /∈ Σ,
which signals an error. We also use auxiliary concept names
Hi, Hi /∈ Σ. The axioms to enforce at most one symbol per
cell and exactly one head per configuration are as follows:

A uA′ v E for all distinct A,A′ ∈ Ci, 1 ≤ i ≤ p(n) (17)

(a, q, i) v Hi for all (a, q, i) ∈ Ci, 1 ≤ i ≤ p(n) (18)

(a, i) v Hi for all (a, i) ∈ Ci, 1 ≤ i ≤ p(n) (19)

Hi uHj v E for 1 ≤ i < j ≤ p(n) (20)

H1 uH2u · · · uHp(n) v E (21)

Let Cai denote the restriction of Ci to those tuples with first
component a. To ensure that the symbol under the head does
not change, we include the following axiom

Hi uAa,j u ∃r`.Bb,j v E (22)

for every Aa,j ∈ Caj and Bbj ∈ Cbj with a 6= b, all distinct
pairs i, j ∈ [1, . . . , p(n)], and ` ∈ {1, 2}. where Cai denotes
the restriction of Ci to those tuples with first component a.
Errors in a computation tree imply B at the root of that tree:

Tape u ∃r`.E v E for ` ∈ {1, 2} (23)

E v B (24)

To ensure that the transition relation is respected, we use
the following CIs: for all (a, q, i) ∈ C with q ∈ Q∃
and δ(q, a) = {(q1, a1,m1), (q2, a2,m2)}, and all tuples
(a′, q′, i′), (a′′, i) ∈ C with (q′, i′) 6= (q`, i+m`) or a′′ 6= a`
for all ` ∈ {1, 2}, put

(a, q, i) u ∃r1.((a
′′, i) u (a′, q′, i′)) v E (25)

For all (a, q, i) ∈ C with q ∈ Q∀ and δ(q, a) =
{(q1, a1,m1), (q2, a2,m2)}, put for ` ∈ {1, 2}:

(a, q, i) u ∃r`.(a′, q′, i′) v E for all (a′, q′, i′) ∈ C with (26)

(q′, i′) 6= (q`, i + m`)

(a, q, i) u ∃r`.(a′, i) v E for all a′ ∈ Γ with a′ 6= a` (27)

We did not yet introduce a way to start the propagation of
B (except errors). This is achieved via an additional concept
name Start ∈ Σ. To ensure that the represented computation
is accepting, Start implies B only at accepting final configu-
rations of the TM:

Start u (a, qacc, i) v B (28)

Since the depth of computation trees is bounded, we did not
yet achieve unbounded propagation. The following CI al-
lows the propagation of B along multiple computation trees
plugged together in the way described above. It also sets up
the initial configuration in all computation trees except the
topmost one. Note that we use a different role name t for
plugging trees together:

(a, qacc, i) u ∃t.(A0
1 u . . . uA0

p(n) uB) v B (29)

where (abusing notation) we use A0
1, . . . , A

0
p(n) to denote the

sequence of symbols from C that corresponds to the initial
configuration. We also have to prevent continued travel along
r when the computation has stopped: for all (a, q, i) ∈ C with
q ∈ {qacc, qrej}, put

(a, q, i) u ∃r`.> v E for ` ∈ {1, 2} and (30)
q ∈ {qacc, qrej}.

Lemma 39. B is not FO-rewritable relative to T and Σ iff
M accepts x.

Proof. “if”. (sketch) Assume thatM accepts x. Then there is
an accepting computation tree T of M on x. By Theorem 9,
it is enough to show that there is a tree-shaped ABox A with
root a0 such thatA, T |= B(a0) andA|k, T 6|= B(a0), where
k = 23|T |2 . Note that the computation tree T can be con-
verted into a tree-shaped ABox AT in a straightforward way:
introduce one individual name for each configuration, use the
concept names from C to describe the actual computations at
their corresponding individual names, and use the role names
r and s to connect configurations in the intended way. By re-
peatedly appending copies of the ABox AT to leaves of this
ABox using the role name t, generate a tree-shaped ABox A
of depth exceeding k (it is enough to start with one copy of
AT , append a second copy at a single leaf of the first copy,
a third copy at a single leaf of the second copy, and so on).
Finally, add the concept name Start to all leaves of A. It can
be verified that A is as required.

“only if”. Assume that B is not FO-rewritable relative to
T , let stepM be the maximum length of a path in a computa-
tion tree of M (starting at any configuration, not necessarily
an initial one), and let k = 2 · stepM + 1. By Theorem 7 and
Lemma 35, we find a dtree-shaped ABox A of depth with
root a0 such that A, T |= B(a0) and A|k, T 6|= B(a0). We
can assume w.l.o.g. that there is an individual a on level k+1
of A such that A−, T 6|= B(a0), where A− is A with the
subtree rooted at a dropped. Let a0, . . . , ak+1 be the path in
A from a0 to a, and call an ai with i > 0 on this path an
R-individual if R(ai−1, ai) ∈ A, for R ∈ {r1, r2, t}. Let
a0, . . . , ap be the longest prefix of a0, . . . , ak+1 that does not
contain any t-individuals. In what follows, a configurationC ′
is a 1-successor configuration of C when C is existential and
C ′ is a successor configuration or C is universal and C ′ is the
first successor configuration; C ′ is a 2-successor configura-
tion of C when C is universal and C ′ is the second successor
configuration. We show by induction on i that

1. A−, T 6|= E(ai);
2. A, T |= Tape(ai) and the assertions A(ai) ∈ A with
A ∈ C represent a proper configuration Ci of M ;



3. if ai is an r`-individual, ` ∈ {1, 2}, then Ci is an `-
successor configuration of Ci−1.

for every i ≤ p.

For the induction start (i = 0), Point 1 is true sinceA−, T 6|=
B(a0) and by CI (24), and Point 3 is vacuously true. For
Point 2, first note that

(∗) for each right-hand side C of the CIs (17), (20), (21),
(22), we have A, T 6|= C(a0).

Otherwise, we obtainA−, T |= C(a0) by the claim, implying
A−, T |= E(a0), which is a contradiction to Point 1. Since
A, T |= B(a0) and A−, T 6|= B(a0) and all concepts in T
are of role depth at most one, some concept name must be
‘propagated up’ from a1 to a0, which can only be due to one
of the CIs (15), (16), or (23). Since all these CIs have Tape
on their left-hand side, we have A, T |= Tape(a0). By (13)
and (14) and since Tape /∈ Σ, for 1 ≤ i ≤ p(n) we have
A(ai) ∈ A for some A ∈ Ci. By (∗), these assertions indeed
represent a proper configuration C0.

For the induction step, we start with Point 1. Assume to
the contrary that A−, T |= E(ai). By Point 2 of IH and
the claim, we have A−, T |= Tape(ai−1). By CI (23),
A−, T |= E(ai−1), in contradiction to Point 1 of IH. The
proof of Point 2 is exactly as in the induction start. It remains
to deal with Point 3, which is a consequence of CIs (25)-(27)
and the fact that, by Point 1 of IH, A−, T 6|= E(ai−1). This
finishes the proof of Points 1-3.

By Point 3, the length of the configuration sequence
C0, . . . , Cp is bounded by stepM + 1, and so p is bounded
by stepM . Since k > 2 · stepM + 1, we have k > p and
the individual ap+1 exists. By choice of a0, . . . , ap, ap+1

must be a t-individual, but cannot be an r`-individual for any
` ∈ {1, 2}. Since A, T |= B(a0), A−, T 6|= B(a0), and
all concepts in T are of role depth one, some concept name
must be ‘propagated up’ from ap+1 to ap. Since CI (29) is
the only CI referring to the role name t, this CI must be used
in the propagation. By the left-hand side of CI (29), the set
{A | A(ap+1) ∈ A} includes all concept names that repre-
sent the initial configuration for x.

We can now select a set of individial names I ⊆ Ind(A)
such that the restrictionA|I ofA to those assertions that refer
only to individuals in I is tree-shaped, rooted at ap+1, and
satisfies the following conditions, for all nodes a ∈ I:

(a) A, T |= B(a) and A−, T 6|= E(a);

(b) A, T |= Tape(a) and the assertions A(a) ∈ A with
A ∈ C represent a proper configuration Ca of M ;

(c) if Ca is an existential configuration, then a has a single
successor b that is an r1-individual;

(d) if Ca is a universal configuration, then a has two suc-
cessors b1, b2 in B with b1 an r1-individual and b2 an
r2-individual;

(e) if r`(a, b) ∈ B, then Cb is an `-successor configuration
of Ca, ` ∈ {1, 2}.

Let ap+1, . . . , aq be the shortest prefix of ap+1, . . . , ak that
consists only of r`-individuals, for some ` ∈ {1, 2}. We

start the selection of individual names with setting I :=
{ap+1, . . . , aq}. We can argue as in the analysis of the chain
a0, . . . , ap above that ap+1, . . . , aq satisfies Points 1 to 3, for
p + 1 ≤ i ≤ q. Thus, Points (b) and (e) from above are
also satisfied, and so is the second part of Point (a). Note
that q ≤ 2 · stepM , and thus the individual aq+1 exists and
is a t-individual, but not an r`-individual for any `. A con-
cept name X must be propagated up from aq+1 to aq which
must be due to CI (29). Thus, X must actually be B and we
have A, T |= B(aq). An analysis of the CIs in T reveals
that the upwards propagation of B from aq+1 to aq cannot
result in any other concept name than B being propagated
further up to aq−1, . . . , a0. Since we know that some concept
name is propagated up along this path, we can derive that
A, T |= B(ai) for all i ≤ q. Thus, the first part of Point (a)
is satisfied.

To also satisfy Points (c) and (d), we may have to select
additional individual names to be included in I . During this
extension of I , we will always maintain Properties (a), (b),
and (e). We only treat the case of universal configurations,
and leave existential ones to the reader. Assume that there is
some a ∈ I such that Ca is a universal configuration. By (a),
we have A, T |= B(a). Since B /∈ Σ, this must be due to
some CI. Since Ca is universal, this CI must be CI (16), and
thus we find an ri-successor ai of a inAwithA, T |= Tapeu
B(ai), for i ∈ {1, 2}. We also have A−, T 6|= E(ai) for
i ∈ {1, 2} since the contrary would imply A−, T |= B(a0),
and thus Point (a) is satisfied for a1 and a2. We can argue
as before that (b) and (e) are also satisfied. This finishes the
definition of I . Note that the depth of the resulting ABoxA|I
is bounded by stepM.

Since ap+1 makes true all concept names that represent the
initial configuration for x, Point (b) ensures that Cap+1

is the
initial configuration for x. Thus A|I represents the computa-
tion of M on x and it remains to show that this computation
is accepting. To this end, consider a leaf a of A|I . Then Ca
is a final configuration, i.e., the state is qacc or qrej. By Point
(a) and CI (24), we have A, T |= B(a) and A−, T 6|= E(a).
By CI (30), a does thus not have any r1- or r2-successors in
A. Consequently, A, T |= B(a) is due to CI (28) or (29). In
both cases, we have that A(a) ∈ A for some A of the form
(a, qacc, i), thus by Point (b), Ca is an accepting final config-
uration.


