Conjunctive Regular Path Queries
in Lightweight Description Logics

Meghyn Bienvenu
Laboratoire de Recherche en Informatique
CNRS & Université Paris Sud, France

Abstract

Conjunctive regular path queries are an expressive
extension of the well-known class of conjunctive
queries and have been extensively studied in the
database community. Somewhat surprisingly, there
has been little work aimed at using such queries
in the context of description logic (DL) knowl-
edge bases, and all existing results target expressive
DLs, even though lightweight DLs are considered
better-suited for data-intensive applications. This
paper aims to bridge this gap by providing algo-
rithms and tight complexity bounds for answering
two-way conjunctive regular path queries over DL
knowledge bases formulated in lightweight DLs of
the DL-Lite and £L£ families.

1 Introduction

Recent years have seen a rapidly growing interest in using
description logic (DL) ontologies to query instance data. In
databases, similar attention has been paid to the related prob-
lem of querying graph databases which, like DL instance
data, are sets of ground facts using only unary and binary
predicates, i.e., node- and edge-labeled graphs [Consens and
Mendelzon, 1990; Barceld et al., 2010]. The relevance of
both problems lies in the fact that in many application ar-
eas, data can be naturally represented in such form. This ap-
plies, in particular, to XML and RDF data. While the DL and
database communities share some common research goals,
the research agendas they have pursued differ significantly. In
DLs, the focus has been on designing efficient algorithms for
answering (plain) conjunctive queries in the presence of on-
tological constraints. By contrast, work on graph databases
typically does not consider ontological knowledge, but in-
stead aims at supporting expressive query languages, like reg-
ular path queries (RPQs) and their extensions, which enable
sophisticated navigation of paths. Such path navigation has
long been considered crucial for querying data on the web.
Indeed, it lies at the core of the XPath language for querying
XML data, and of the property paths feature of SPARQL 1.1,
the language recently recommended as the new standard for
querying RDF data.

In this paper, we are interested in the problem of query-
ing DL knowledge bases using various kinds of regular

Magdalena Ortiz and Mantas Simkus
Institute of Information Systems
Vienna University of Technology, Austria

path queries. We mainly focus on conjunctive (two-way)
regular path queries (C(2)RPQs), which are one of the
most expressive and popular languages for querying graph
databases. CRPQs simultaneously extend plain conjunctive
queries (CQs) and basic RPQs: they allow conjunctions of
atoms that can share variables in arbitrary ways, where the
atoms may contain regular expressions that navigate the arcs
of the database (or roles, in DL parlance). In the case of
2RPQs and C2RPQs, roles can be navigated in both direc-
tions. C2RPQs have already been studied for DLs, but all ex-
isting results concern expressive DLs for which reasoning is
provably intractable. In particular, algorithms have been pro-
posed for ZZQ, ZZO, and ZOQ [Calvanese er al., 2007b;
20091, for which query answering is 2-EXPTIME hard. Even
in data complexity, that is, when the query and ontology
are assumed fixed, these algorithms need exponential time.
More recently, algorithms for answering C2RPQs in Horn-
SHOIQ and Horn-SROZQ were proposed [Ortiz et al.,
2011]. These algorithms run in polynomial time in the size
of the data, but still require exponential time in the size of
the ontology. By contrast, to the best of our knowledge, path
queries have not yet been considered for the lightweight DLs
of the DL-Lite [Calvanese et al., 2007a] and ££ [Baader et
al., 2005] families, which underly the OWL 2 QL and EL pro-
files. This is surprising given that the low complexity of these
DLs makes them better suited for data-intensive applications.
This paper aims to remedy this situation by providing
algorithms and precise complexity bounds for answering
(C)2RPQs in the ££ and DL-Lite families of lightweight
DLs. We show that in data complexity, the query answer-
ing problem for CR2PQs is NL-complete for DL-Lite and
P-complete for ££, which in both cases is the lowest com-
plexity that could be expected. For combined complexity, we
prove PSPACE-completeness for both DL-Lite and £L£, but
somewhat surprisingly obtain a tractability result for 2RPQs
for both DLs. All of our upper bounds apply to extensions of
&L and DL-Lite with role inclusions. Full proofs of all results
can be found in a technical report [Bienvenu et al., 2013].

2 Preliminaries

We briefly recall the syntax of DL-Liter [Calvanese erf al.,
2007a] and £LH [Baader et al., 2005] (and relevant sublog-
ics). As usual, we assume sets N¢, Ng, and N, of concept
names, role names, and individuals. We will use Ng to refer

to Nr U {r~ | » € Nr}, and if R € Ng, we use R~ to mean
r~if R = rand rif R = r~. An ABox is a set of asser-
tions of the form A(b) or r(b,c), where A € N¢, r € Ng,
and b, c € Nj. We use Ind(A) to refer to the set of individu-
als in A. A TBox is a set of inclusions, whose form depends
on the DL in question. In DL-Lite, inclusions take the form
B; C (—)Bsg, where each B; is either A (where A € N¢)
or 3R (where R € Ng). DL-Liter additionally allows role
inclusions of the form Ry C (—)Ry, where Ry, R2 € Ng.
DL-Litegrprs is obtained from DL-Liter by disallowing in-
clusions which contain negation or have existential concepts
(3R) on the right-hand side. In £L, inclusions have the form
C; C (5, where C1, Cy are complex concepts constructed
as follows: C := T | A| CnC | 3Ir.C. The DL ELH
additionally allows role inclusions of the form r C s, where
r,s € Nr. Note that in EL£(H) TBoxes, inverse roles are not
permitted. A knowledge base (KB) K = (T, .A) consists of a
TBox 7 and an ABox A.

As usual, the semantics is based upon interpretations,
which take the form Z = (A%, .7), where A is a non-empty
set and -~ maps each a € N, to aZ € AT, each A € N¢ to
AT C AT, and each r € Ng to rT € AT x AZ. The func-
tion -Z is straightforwardly extended to general concepts and
roles, e.g. (mA)T = AT\ AT, (3r.C)T = {c|3d: (c,d) €
rf,d € CT}, and (P7)% = {(c,d) | (d,g) € PT}. Anin-
terpretation Z satisfies G C H if GT C HZ; it satisfies A(a)
(resp. 7(a, b)) if aZ € AT (resp. (a®,b?) € r1). T is a model
of (T,.A) if Z satisfies all inclusions in 7 and assertions in .A.

To simplify the presentation, we will assume that ELH
TBoxes are in normal form, meaning that all concept inclu-
sions are of one of the following forms:

ACB A NACB AC3I.B IrBLCA

with A, A, As, B € NcU{T}. Itis well-known (cf. [Baader
et al., 2005] that for every £LH TBox 7T, one can construct
in polynomial time an ££H TBox 7 in normal form (possi-
bly using new concept names) such that 7’ = 7T and every
model of T can be expanded to a model of 7.

We use sig(7T) to denote the set of all concept and role
names appearing in a TBox 7. For ease of reference, we also
define sets BC of basic concepts and TCy of tail concepts
for 7 as follows: BCr = TCy = N¢ Nsig(7) if 7 is an
ELH TBox, and TC = {Ir,3r~ | r € Nr Nsig(7)} and
BC7 = (Nc Nisig(T)) U TCy for a DL-Liteg TBox 7.

Canonical Models We recall the definition of canonical mod-
els for DL-Liter and £LH KBs. For both DLs, the domain of
the canonical model Z7 4 for a KB (7T, .A) consists of paths
of the form aR1Cy ... R, C,, (n > 0), where a € Ind(A),
each C; is a tail concept, and each R; a (possibly inverse)
role. When 7 is a DL-Litex TBox, the domain AZ7-4 con-
tains exactly those paths aR13R; ... R,3R, which satisfy:
— ifn>1,then T, A = 3R (a);

—forl<i<n, T): HRz_ C HRi-&-l and Rz_ 75 Ri—i—l-
When 7 is an £L£H TBox in normal form, the domain AZ7.4
contains exactly those paths ar; Ay ...r,A, for which each
r; € Ng, and:

— ifn>1,then T, A = Ir1.41(a);

—forl<i<n,T ': Az C 3T7;+1.A7;+1.

We denote the last concept in a path p by tail(p), and define
L7, 4 by taking:

al™A =qforalla € Ind(A)
A4 ={a € Ind(A) | T, AE A(a)}
U {pe AT\ Ind(A) | T [tail(p) C A}
rIm4 ={(a,b) | r(a,b) € A}U
{(p1,p2) [p2=p1SCand T = SCr}uU
{(p2;p1) | p2=p1SCandT =SCr7}

Note that Z7 4 is composed of a core consisting of the
ABox individuals and an anonymous part consisting
of (possibly infinite) trees rooted at ABox individuals.
We will use Z7 4l to denote the submodel of Z7 4 ob-
tained by restricting the universe to paths having e as a prefix.

Regular Languages We assume the reader is familiar with
regular languages, represented either by regular expressions
or nondeterministic finite state automata (NFAs). An NFA
over an alphabet ¥ is a tuple oo = (S, %, 4, s¢, F'), where S is
a finite set of states, § C S x ¥ x S the transition relation,
sg € S the initial state, and F' C S the set of final states.
We use L(a) to denote the language defined by an NFA «,
and when the way a regular language is represented is not
relevant, we denote it simply by L.

3 Path Queries
We now introduce the query languages studied in this paper.

Definition 1. A conjunctive (two-way) regular path query
(C2RPQ) has the form ¢(Z) = 3y ¢ where & and ¥ are tuples
of variables, and ¢ is a conjunction of atoms of the forms:

(1) A(t), where A € Nc and ¢t € Ny U Z U ¢, and

(i) L(¢,t'), where L is (an NFA or regular expression
defining) a regular language over NrU{A? | A € Nc¢},
and t,t' e NNUZ U 7.

As usual, variables and individuals are called terms, and the
variables in & are called answer variables. A query with no
answer variables is called a Boolean query.

Conjunctive (one-way) regular path queries (CRPQs) are
obtained by disallowing symbols from Ng \ Ng in atoms of
type (ii), and conjunctive queries (CQs) result from only al-
lowing type-(ii) atoms of the form r(¢,¢') with » € Ng. Two-
way regular path queries (2RPQs) consist of a single atom
of type (ii), and regular path queries (RPQs) further disallow
symbols from Ng \ Ng. Finally, instance queries (IQs) take
the form A(x) with A € N¢, or r(z,y) with r € Ng.

We now define the semantics of C2RPQs. For a regular
language L over the alphabet Ng U Ng U {A? | A € Nc},
we call do an L-successor of dy in Z if there is some w =
uy ... u, € L and some sequence e, ..., e, of elements in
AT such that eg = dy, €, = ds, and, forall 1 < i < n:

— ifu; = A?, thene;_; = e, € A
— ifu; = R € NR UNR, then {e;_1,e;) € R?

A match for a Boolean C2RPQ ¢ in an interpretation 7 is a

mapping 7 from the terms in ¢ to elements in AZ such that:

1Q (2)RPQ CQ C(Q2)RPQ
data combined data combined data combined data combined

DL-Literprs in ACp NL-c NL-¢ NL-¢ in ACop NP-c NL-¢ NP-c
DL-Lite(gry inACo NL-c NL-c P-cf inACo NP-c NL-c PSPACE-c
EL(H) P-c P-c P-c P-c P-c NP-c P-c PSPACE-c

Figure 1: Complexity of Boolean query entailment. The ‘c’ indicates completeness results. New results are marked in bold.
For existing results, we refer to [Baader er al., 2005; Calvanese er al., 2007a; Rosati, 2007; Krisnadhi and Lutz, ; Krétzsch and
Rudolph, 2007; Artale et al., 2009] and references therein. P-hardness for RPQs applies only to DL-Liter.

— m(e) =ctifceN,,

— m(t) € AT for each atom A(t) in g, and

— m(t') is an L-successor of m(t), for each L(¢,t’) in g.

We write Z = q if there is a match for g in Z, and 7, A = ¢q
if Z |= g for every model Z of T, A.

Given an C2RPQ ¢ with answer variables vy, ..., v, we
say that a tuple of individuals (a1,...,ax) is a certain an-
swer for g w.r.t. T, A just in the case that in every model Z of
T, A there is a match 7 for ¢ such that 7(v;) = a? for every
1 <4 < k. Deciding whether a tuple of individuals is a cer-
tain answer for an C2RPQ can be linearly reduced to Boolean
C2RPQ entailment. For this reason, we consider only the lat-
ter problem in what follows.

It is well known that the canonical model Z7 4 can be ho-
momorphically embedded into any model of 7, A, hence a
CQ g is entailed from 7, A if and only if there is a match
for g in Z7 4. This result can be easily lifted from CQs to
C2RPQs, as C2RPQs are also monotonic and their matches
are preserved under homomorphisms.

Lemma 2. For every DL-Liteg or ELH KB (T, A) and
Boolean C2RPQ q: T, A |=qifand only if T 4 = q.

This property will be a crucial element in establishing our
main theorem:

Theorem 3. The complexity results in Figure 1 hold.

We split the proof of this theorem into parts, with the lower
bounds shown in the next section, and the (more involved)
proofs of the upper bounds outlined in Section 5.

4 Lower Bounds

We start by establishing the required lower bounds.
Proposition 4. Boolean CRPQ entailment is

1. NL-hard in data complexity for DL-Literpfs,

2. P-hard in data complexity for EL;

3. NP-hard in combined complexity for DL-Literprs;

4. PSPACE-hard in combined complexity for DL-Lite & EL.
Statements (1) and (2) hold even for RPQs.

Proof. Statement (1) follows from the analogous result for
graph databases [Consens and Mendelzon, 1990]. It can be
shown by a simple reduction from the NL-complete directed

reachability problem: y is reachable from z in a directed
graph G if and only if (z,y) is an answer to r*(x,y) W.r.t.

the ABox A encoding G. Statement (2) is immediate given
the P-hardness in data complexity of instance checking in £L£
[Calvanese et al., 2006], and (3) follows from the well-known
NP-hardness in combined complexity of CQ entailment for
databases [Abiteboul et al., 1995].

For statement (4), we give a reduction from the problem of
emptiness of the intersection of an arbitrary number of regular
languages, which is known to be PSPACE-complete [Kozen,
1977]. Let Ly, ..., L, be regular languages over alphabet Y.
We will use the symbols in X as role names, and we add a
concept name A. Let A = {A(a)} and ¢ = 3z Li(a,x) A
...A Ly(a,z). For DL-Lite, we will use the following TBox:
T={AC3Ir|reX}u{adr C3s|rse X} For
EL,wecanuse T = {A C Ir.A | r € £}. Notice that in
both cases the canonical model Z7 4 consists of an infinite
tree rooted at a such that every element in the interpretation
has a unique r-child for each » € ¥ (and no other children).
Thus, we can associate to every domain element the word
over X given by the unique path from a, and moreover, for
every word w € ¥* we can find an element e,, whose path
from a is exactly w. This means thatif w € Ly N ... N Ly,
we obtain a match for ¢ in the canonical model by mapping
x to e,. Conversely, if ¢ is entailed, then any match in the
canonical model defines a word which belongs to every L;,
which means L; N...N L, is non-empty. [

For (2)RPQs in DL-Litegrprs and £L, we inherit combined
complexity lower bounds of NL and P respectively from IQs.
For DL-Lite, we establish a P lower bound for 2RPQs, which
contrasts with the NL-completeness of instance checking.

Proposition 5. Boolean 2RPQ entailment in DL-Lite is P-
hard in combined complexity, assuming an NFA representa-
tion of the regular language.

Proof sketch. Consider the P-complete entailment problem
in which one is given a propositional formula T’ = p; A ... A
Pm A\ v1 over variables vy, ..., v, With p; = vy, Avy, = vy,
and the problem is to decide whether T' |= v,,. We construct
a DL-Lite TBox 7 and 2RPQ ¢ such that 7, {A(a)} = ¢ if
and only if T = v,,. We let 7 consist of the axioms:

— AC3r ,forl1 <i<m,je{l,2}

— 3y 5y B 3riy . for 1 <vdgip <mand jy, j2 € {1,2}
and ¢ = Jz a(z,z), where o = (5,3, 4, sg, {vS"'}) is the
NFA defined as follows:

— S={so}U{vi}U{vim vut|2<i<n}U{p;|1<i<m}

= X ={AU{rijr; |1 <i<m,1<j<2}

— & contains (sg, A?,vi"), and for each p; = v A\ Uk — g,
the following transitions: (v§™, 7 1,v5"), (03,1, pi),

n out ,.— out . :
(pisTi2,vy"), and (v, r; 5, vg""). Note: we use v; in

n out
place of v{" and v{“*.

The first transition in § enforces that z must be mapped
to a and that there must be a loop at a from state v'" to
v;’l“t. Intuitively, a state v};" indicates that v, needs to be
proven, and v§“* signals that v, has been successfully de-
rived. From a state U}j", the available transitions correspond
to the rules in 7" which conclude on v,: selecting transition
(g, 74,1, v") means choosing to use p; to derive vy. The
transitions (v§"!, 7, p;) and (p;, 73,2, v}") allow us to move
to the second variable of p; once the first variable of p; has
been derived. When both variables have been proven, the

transition (vp"f, r.,, v"") allows us to exit the derivation of

vg. Thus, any loop from v™ to v2*! in Z7 {A(a)} corresponds
to a derivation of v,, and conversely, any derivation of v,
yields a path witnessing the entailment of q. O

As a corollary, we get P-hardness of RPQs in DL-Liter, by
using role inclusions to simulate the inverse roles in the query.
We leave open whether the preceding hardness result applies
when regular languages are given as regular expressions.

S Upper Bounds

The main objective of this section will be to define a proce-
dure for deciding Z7, 4 = ¢ for a KB (T,.A) and C2RPQ g.
The procedure comprises two main steps. First, we rewrite ¢
into a set Q of C2RPQs such that Zr 4 = ¢ if and only if
Zr A = ¢ for some ¢ € Q. The advantage of the rewrit-
ten queries is that in order to decide whether Z7 4 = ¢/, we
will only need to consider matches which map the variables
to Ind(A). The second step decides the existence of such re-
stricted matches for the rewritten queries.

In order to more easily manipulate regular languages, it
will prove convenient to use NFAs rather than regular expres-
sions. Thus, in what follows, we assume all binary atoms take
the form a(t,t'), where a is an NFA over Ng U Ng U {A? |
A € Nc}. Given e = (S, %, 0, 50, F'), we use ¢ to denote
the NFA (S, 3, 4, s, G), i.e., the NFA with the same states and
transitions as « but with initial state s and final states G.

5.1 Loop Computation

A key to defining our rewriting procedure will be to under-
stand how an atom L(¢, ') can be satisfied in the anonymous
part of the canonical model Z7 4. A subtlety arises from
the fact that the path witnessing the satisfaction of an atom
L(t,t") may be quite complicated: it may move both up and
down, passing by the same element multiple times, and pos-
sibly descending below ¢’. This will lead us to decompose
an atom L(¢, ") into multiple “smaller” atoms corresponding
to segments of the L-path which are situated wholly above
or below an element. Importantly, we know that the canon-
ical model displays a high degree of regularity, since when-
ever two elements p; and ps in the anonymous part end with

the same concept (i.e., Tail(p;) = Tail(pz2)), the submod-
els Zr alp, and Z7 4lp, are isomorphic. In particular, this
means that if Tail(py) = Tail(p2), then p; is an L-successor
of itself in the interpretation Z 4 7|,, just in the case that po
is an L-successor of itself in the interpretation Z 4 7|, .

We will require a way of testing for a given TBox 7 and
NFA « with states s, s’ whether Tail(e) = C' ensures that
there is a loop from e back to itself, situated wholly within
Z7.4le. which takes o from state s to state s’. To this end, we
construct a table Loop,, which contains for each pair s, s’ of
states in «, a subset of TCy. If 7 is a DL-Liteg TBox, then
Loop,, is defined inductively using the following rules:

1. forevery s € S: Loop,[s,s] = TCr

2. if C € Loop,[s1,s2] and C' € Loop,,[s2, s3], then C' €
Loop,,[s1, $3]

3.iff C € TCy, T = C C A, and (s1,A?,82) € 0, then
C € Loop,,[s1, s2]

4. fTECC3IRTERCR,T =R C R
(s1,R',s2) € 6, AR~ € Loop,[s2, s3], (s3, R",s4) € 6,
C € TCy, and C # 3R, then C' € Loop,,[s1, 4]

For £L7H, we replace the last rule by:
£ T ECC ID,TErC,TETTLC,

(s1,7',82) € 0, D € Loop,[se, s3], (53,77, s4) € 6,
and C' € TCr, then C € Loop,[s1, s4]

Example 6. Consider a DL-Liteg TBox 7 containing the
inclusions B C 3r, 3r— C B, B C 3t;, and ¢; C ¢, and
consider the query ¢ = Jxy.r*titer™ (z,y), B(y), or equiv-
alently, ¢ = Jzy.a(x,y), B(y), where o« = ({so, s1, 52, 83},
{T7 t1, 1o, T_}, 67 50, {83}> and 6 = {(8077"7 SO)) (SOatla 81)7
(s1,t2,82), (s2,77, s3)}. In the first step of the loop compu-
tation, we infer that Loop,, [s;, s;] is the set of all tail concepts
for0 <4 < 4. Next,byrule4,andusing 7 = BC 31, T =
Ir~ C 3y, T Et] Cia (s0,t1,51), 3t € Loop,[s1,s1]s
and (s1,t2,$2), we can infer that B € Loop,[so, s2] and
Ir~ € Loop,[so,s2]. In a further step, we can use 7
B C 3r, (so,7,80), Ir~ € Loop,[so, s2], and (s2,77, s3) to
obtain B € Loop,[so, $3]-

Note that the table Loop,, can be constructed in polynomial
time in |7| and || since entailment of inclusions is poly-
nomial for both DL-Liteg and ££H. The following lemma
shows that Loop,, has the desired meaning:

Lemma 7. For every element p € ATAT\ Ind(A): Tail(p) €
Loop,[s, s'] if and only if p is an L(a ¢)-successor of itself
in the interpretation T 4 |p.

5.2 Query Rewriting

Our aim is to rewrite our query in such a way that we do
not need to map any variables to the anonymous part of the
model. We draw our inspiration from a query rewriting pro-
cedure for Horn-SHZ Q described in [Eiter et al., 2012]. The
main intuition is as follows. Suppose we have a match 7 for
q which maps some variable y to the anonymous part, and
no other variable is mapped below 7(y). Then we modify
q so that it has essentially the same match except that vari-
ables mapped to 7(y) are now mapped to the (unique) parent
of m(y) in Z1 4. The delicate point is that we must “split”

PROCEDURE rewrite(q, T')
1. Choose either to output g or to continue.

2. Choose a non-empty set Leaf C vars(g) and y € Leaf.
Rename all variables in Leaf to y.

3. Choose C' € TCy such that 7 = C C B whenever
B(y) is an atom of ¢. Drop all such atoms from gq.
4. For each atom «(t,t") where o = (S,%,6,s, F) is an
NFA and y € {¢,t'},
e choose a sequence s1, . .
S such that s,, € F,
o replace a(,t') by the atoms s 5, (£,Y), sy 55 (Y, Y)s
tcr asn—Zysn—l (y’ y)’ asn—175n (y7 tl)'
5. Drop all atoms «; s (y, y) such that C' € Loop,[s, §].

6. Choose some D € BCr and R, Ry, Ry € Ng such that:

(@) C =3R™ and T = D C 3R [for DL-Liteg], or
ReNgpand 7T E D C3R.C [for ELH].

(b) TERCRiandT = RLC Ry

(c) for each atom a(y,z) with a = (5,%,9,s, F),
there exists s € S such that (s, Ry, s") €4.

(d) for each atom «(x,y) with « = (S,%,0,s, F),
there exist s” € S, sy € F with (s”, Ry, sf) € 4.

For atoms of the form a(y, y), both (c) and (d) apply.

., 8y, of distinct states from

7. Replace
e cach atom a(y, z) with x # y by oy r(y, x)
o cach atom a(x, y) with x # y by a, s (z,y)
e cach atom a(y, y) by atoms ay s (Y, y)
with s, s’, s”, F as in Step 6.
8. If D € Nc is the concept chosen in Step 6, add D(y)

toq. If D = 3P~, add ap(z,y) to g, where z is a fresh
variable and L(ap) = {P}. Go to Step 1.

Figure 2: Query rewriting procedure rewrite.

atoms of the form (¢, ¢') withy € {¢,¢'} into the parts which
are satisfied in the subtree 77 4|x(,). and those which occur
above 7(y), whose satisfaction still needs to be determined
and thus must be incorporated into the new query. With each
iteration of the rewriting procedure, we obtain a query which
has a match which maps variables “closer” to the core of
ZT,4, until eventually we find some query that has a match
which maps all terms to Ind(.A).

In Figure 2, we give a recursive non-deterministic query
rewriting procedure rewrite which implements the above in-
tuition. Slightly abusing notation, we will use rewrite(q, T)
to denote the set of queries which are output by some execu-
tion of rewrite on input ¢,7 .

Example 8. We illustrate two different ways to apply the
rewriting step to the query ¢ = Jzy.r*titar™ (z,y), B(y)
in Example 6. First, let Leaf = {z} be the set chosen in
step 2. There is no renaming to do, so we proceed to step 3
and choose 3r~. In step 4, we choose the sequence ss, S3,

and replace a(z,y) by sg.s,(Z,2), sy 5 (2, y). Since
Ir~ € Loop,[so, $2], we drop the first atom and keep only
Qisy 55 (2, y). In step 6, we can choose B for D, and r for the
roles R, Rq, R>. This ensures (a) and (b). For (c), we can take
sg since (s2,77, 53) € d. In step 7, we replace o, s, (2, Y)
by @, s5(2,y). At the end of step 8, we are left with the
query ¢’ = Jxyz.r(2,Y), Osy.s5 (2, y), B(y), which is output
as a rewriting when we return to step 1. We remark that ¢
is equivalent modulo 7 to the simpler Jyz.r(z,y) since by
choosing z = y, the atom «, s, (z,y) is trivially satisfied,
and B(y) is enforced by r(z,y) and the inclusion 3r~ C B.
Intuitively, this rewriting captures the fact that, whenever we
have an element e in an interpretation that satisfies 3, then
we can map z to e, thereby ensuring that the initial segment
r*tyty is satisfied below e. Moreover, by mapping y to the
r-predecessor of e, we satisfy the remaining .

As further illustration, suppose that in step 2, we choose
Leaf = {z,y}, and let y be the selected variable. After
renaming, we obtain ¢ = Jy.a(y,y), B(y). In step 3, we
choose 3r~, which leads us to drop the atom B(y), leaving
us with Jy.a(y, y). In step 4, we choose the sequence that
contains only s3, so the atom «(y, y) is left untouched. Since
Ir~ € Loop,[so, s3], we can drop this atom in step 5, ob-
taining the empty query. In step 6, we choose D = B and
R = Ry = Ry = r. Step 7 is inapplicable since there are no
binary atoms. Finally, in step 8, we add B(y) to obtain the
query ¢ = Jy.B(y). Intuitively, this rewriting captures that
if some element e satisfies B, then we can map both = and y
to it to obtain a query match in which the regular expression
r*t1tor™ (z,y) is fully satisfied below e.

The next lemma shows that using rewrite(q, 7'), we can re-
duce the problem of finding an arbitrary query match to find-
ing a match involving only ABox individuals.

Lemma 9. 7, A |= q if and only if there exists a match 7
for some query q' € rewrite(q, T) in Za 7 such that ©(t) €
Ind(A) for every term t in ¢’

We remark that the number of variables and atoms in each
query in rewrite(q, 7) is linearly bounded by |g|. This is the
key property used to show the following:

Lemma 10. There are only exponentially many queries in
rewrite(g, T) (up to equivalence), each having size polyno-
mial in |q|.

5.3 Query Evaluation

Even when all terms are mapped to ABox individuals, the
paths between them may need to pass by the anonymous part
in order to satisfy the regular expressions in the query. This
leads us to define a relaxed notion of query entailment, which
exploits the fact that if all variables are mapped to Ind(A),
only loops (that is, paths from an individual a to itself in
T A,7|) may participate in the paths between them. Hence,
we look for paths in the ABox that may use such loops to skip
states in the query automata.

As part of our query evaluation procedure, we will need
to decide for a given individual ¢ whether a is an L(«; o)-
successor of itself in Z 4 7|,. We cannot use Loop,, directly,
since it does not take into account the concepts which are

entailed due to ABox assertions. We note however that the set
of loops starting from a given individual is fully determined
by the set of basic concepts which the individual satisfies.
We thus define a new table ALoop,, such that ALoop,,[s, s']
contains all subsets G C BCy such that a is an Lo, s)-
successor of itself in Z 4 7|, whenever G = {C' € BCy |
a € CIT4}. Note that the table ALoop,, is exponential in
|7, but the associated decision problem is in P:

Lemma 11. Ir can be decided in polytime in |T| and |a/
whether G € ALoop,,[s, §'].

We use ALoop,, to define a relaxed notion of query match.

Definition 12. We write 7, A k= ¢ if there is a mapping 7
from the terms in ¢ to Ind(.A) such that:

(a) m(c) = cforeachc € Ny,
(b) T, A= A(r(t)) for each atom A(t) in ¢, and

(c) for each a(t,t') € g with « = (S, %, 0, s, F'), there is
a sequence (ag, Sg), - - - , (an, $p) of distinct pairs from
Ind(A) x S such that ag = 7(t), an, = 7(t'), so = s,
Sn € F, and for every 0 < i < n, either:

(i) a; = ajy1 and {C € BCr | T,A): C(al)} S
ALoop,,[si, si41], or
(i) T, A= R(a;,a;4+1) and (s;, R, $;+1) €0 for some R.

The following lemma characterizes C2RPQ entailment in
terms of relaxed matches.

Lemma 13. 7, A = q ifand only if T, A | ¢ for some
q € rewrite(q, T).

By applying the preceding characterization, we obtain our
C2RPQ upper bounds:

Proposition 14. Boolean C2RPQ entailment is

1. NL in data complexity for DL-Liter and DL-Literprs;

2. P in data complexity for ELH,;

3. NP in combined complexity for DL-Literprs;

4. PSPACE in combined complexity for DL-Liter and ELH.

Proof sketch. By Lemmas 9 and 13, T, A = ¢ justin the case
that 7, A |r ¢ for some ¢’ € rewrite(g, 7). For statements 1
and 2, if 7 and ¢ are fixed, then computing rewrite(q, 7)
requires only constant time in |.A]. To decide whether T, A R
q for ¢’ € rewrite(q, T), we guess a mapping 7 from the
terms in ¢’ to Ind(.A) and verify that it satisfies the conditions
in Definition 12. Note that for condition (c), we cannot keep
the whole sequence (ag, So), - - ., (an, S») in memory at once,
so we use a binary counter that counts up to |Ind(A4) x S| and
store only one pair of nodes (a, s;), (a;4+1, S;+1) at a time.
The data complexity of verifying conditions (b) and (c) is the
same as for instance checking in the corresponding DL: AC
for DL-Lite, and P for £LH. This yields the desired upper
bounds of NL and NL? =P, respectively.

For statement 4, instead of building the whole set
rewrite(g, 7), which can be exponential, we generate a sin-
gle ¢’ € rewrite(q, 7') non-deterministically. By Lemma 10,
every query in rewrite(q, 7) can be generated after at most
exponentially many steps, so we can use a polynomial-size
counter to check when we have reached this limit. Since each

rewritten query is of polynomial size (Lemma 10), and we
keep only one query in memory at a time, the generation
of a single query in rewrite(q, 7') requires only polynomial
space. We can then use the same strategy as above to de-
cide in polynomial space whether 7, A = ¢’. This yields
a non-deterministic polynomial space procedure for decid-
ing 7, A E ¢. Using the well-known fact that NPSPACE
= PSPACE, we obtain the desired upper bound.

For statement 3, we note that if 7 is an DL-Literprs TBoX,
rewrite(q, 7) = {q}. Thus, it suffices to decide 7, A k ¢,
which can be done by guessing a mapping 7 and verifying in
polytime that 7 satisfies the conditions of Definition 12. [

By moving to 2RPQs, we can achieve tractability even in
combined complexity.

Proposition 15. Boolean 2RPQ entailment is
1. NL in combined complexity for DL-Literprs,
2. P in combined complexity for DL-Liter and ELH.

Proof sketch. For (1), we can iterate over all mappings 7 of
the (at most two) query variables, and for each mapping, we
check whether the conditions of Definition 12 are met using
the same strategy as in the proof of point 1 of Proposition 14.
Recall that in DL-Literpfs, instance checking is in NL w.r.t.
combined complexity [Calvanese er al., 2007al.

For (2), we first give a polynomial reduction to the problem
of deciding whether 7, A R ¢’ with ¢’ a 2RPQ. When ¢ =
Jxy L(z,y) with # y, we can simply replace ¢ by ¢ =
Jry ¥* - L - ¥*(z,y), where X = Nk UNgR U {A? | A €
Nc}, since T, A = q iff T, A & ¢'. For queries of the
form 3z L(z, x), the proof is more involved and passes by the
definition of an alternative rewriting procedure for 2RPQs,
which is similar in spirit to rewrite but is guaranteed to run in
polynomial time. We can then check for a match of a 2RPQ in
the ABox using essentially the same strategy as for (1), except
that we must now perform some polynomial-time AlLoop,
tests to verify condition (c) of Definition 12. O]

6 Conclusion and Future Work

In this paper, we established tight complexity bounds for an-
swering various forms of regular path queries over knowl-
edge bases formulated in lightweight DLs from the DL-Lite
and £L families. Our results demonstrate that the query an-
swering problem for these richer query languages is often not
much harder than for the CQs and IQs typically considered.
Indeed, query answering remains tractable in data complex-
ity for the highly expressive class of C2RPQs, and for 2RPQs,
we even retain polynomial combined complexity.

In future work, we plan to explore other useful exten-
sions of regular path queries, such as nested path expressions
(along the lines of [Pérez et al., 2010]), and the addition of
path variables (recently explored in [Barceld et al., 2010]).

Acknowledgements The authors were supported by a Uni-
versité Paris-Sud Attractivité grant and the ANR project
PAGODA ANR-12-JS02-007-01 (Bienvenu), the FWF
project T515-N23 (Ortiz), and the FWF project P25518-N23
and the WWTF project ICT12-015 (Simkus).

References

[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and
Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[Artale et al., 2009] Alessandro Artale, Diego Calvanese,
Roman Kontchakov, and Michael Zakharyaschev. The
DL-Lite family and relations. Journal of Artificial Intel-
ligence Research, 36:1-69, 2009.

[Baader et al., 2005] Franz Baader, Sebastian Brandt, and
Carsten Lutz. Pushing the £L£ envelope. In Proc. of 1J-
CAI, pages 364-369, 2005.

[Barceld et al., 2010] Pablo Barcelé, Carlos A. Hurtado,
Leonid Libkin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. In Proc. of
PODS, pages 3—14, 2010.

[Bienvenu et al., 2013] Meghyn Bienvenu, Magdalena Ortiz,
and Mantas Simkus. Conjunctive Regular Path Queries
in Lightweight Description Logics. Technical Report IN-
FSYS RR-1843-13-01, Institute of Information Systems,
Vienna University of Technology. Available at http://
www.kr.tuwien.ac.at/research/reports/.

[Calvanese et al., 2006] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Data complexity of query answering in de-
scription logics. In Proc. of KR, pages 260-270, 2006.

[Calvanese et al., 2007a] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. Journal
of Automated Reasoning, 39(3):385-429, 2007.

[Calvanese et al., 2007b] Diego Calvanese, Thomas Eiter,
and Magdalena Ortiz. Answering regular path queries in
expressive description logics: An automata-theoretic ap-
proach. In Proc. of AAAI, pages 391-396, 2007.

[Calvanese et al., 2009] Diego Calvanese, Thomas Eiter, and
Magdalena Ortiz. Regular path queries in expressive de-
scription logics with nominals. In Proc. of IJCAI, pages
714-720, 2009.

[Consens and Mendelzon, 1990] Mariano P. Consens and
Alberto O. Mendelzon. Graphlog: a visual formalism
for real life recursion. In Proc. of PODS, pages 404-416,
1990.

[Eiter et al., 2012] Thomas Eiter, Magdalena Ortiz, Mantas
Simkus, TrungKien Tran, and Guohui Xiao. Query rewrit-
ing for Horn-SHZ Q plus rules. In Proc. of AAAL 2012.

[Kozen, 1977] Dexter Kozen. Lower bounds for natural
proof systems. In Proc. of FOCS, pages 254-266, 1977.

[Krisnadhi and Lutz,] Adila Krisnadhi and Carsten Lutz.
Data complexity in the ££ family of description logics.
In Proc. of LPAR, pages 333-347.

[Krétzsch and Rudolph, 2007] Markus Krétzsch and Sebas-
tian Rudolph. Conjunctive queries for ££ with composi-
tion of roles. In Proc. of DL, 2007.

[Ortiz er al., 2011] Magdalena Ortiz, Sebastian Rudolph,
and Mantas Simkus. Query answering in the Horn frag-
ments of the description logics SHOZQ and SROZQ. In
Proc. of IJCAI, pages 1039-1044, 2011.

[Pérez et al., 2010] Jorge Pérez, Marcelo Arenas, and Clau-
dio Gutierrez. nSPARQL: A navigational language for
RDF. Journal of Web Semantics, 8(4):255-270, 2010.

[Rosati, 2007] Riccardo Rosati. On conjunctive query an-
swering in £L. In Proc. of DL, 2007.

