
Ontology-Mediated Query Answering with
Data-Tractable Description Logics?

Meghyn Bienvenu1 and Magdalena Ortiz2

1 LRI - CNRS & Université Paris Sud
meghyn@lri.fr

2 Institute of Information Systems, Vienna University of Technology
ortiz@kr.tuwien.ac.at

Abstract. Recent years have seen an increasing interest in ontology-
mediated query answering, in which the semantic knowledge provided
by an ontology is exploited when querying data. Adding an ontology has
several advantages (e.g. simplifying query formulation, integrating data
from different sources, providing more complete answers to queries), but
it also makes the query answering task more difficult. In this chapter,
we give a brief introduction to ontology-mediated query answering using
description logic (DL) ontologies. Our focus will be on DLs for which
query answering scales polynomially in the size of the data, as these are
best suited for applications requiring large amounts of data. We will de-
scribe the challenges that arise when evaluating different natural types
of queries in the presence of such ontologies, and we will present algorith-
mic solutions based upon two key concepts, namely, query rewriting and
saturation. We conclude the chapter with an overview of recent results
and active areas of ongoing research.

1 Introduction

Since the seminal works in the field [144, 53, 110, 50], there has been steadily
growing interest in ontology-mediated query answering (OMQA), in which the
semantic knowledge provided by an ontology is exploited when querying data.
Adding an ontology has several advantages. First, by providing an enriched vo-
cabulary that closely matches users’ conceptualization of the application domain,
an ontology makes it easier for users to formulate their queries. Moreover, the
ontology can be used to integrate different data sources through a single concep-
tual model, facilitating access to them in a uniform and transparent way. Finally,
OMQA can provide users with more complete answers to their queries, by taking
into account not only the facts explicitly stored in the data, but also facts that
are implicit consequences of the data and the domain knowledge. Unfortunately,
enriching data with domain knowledge also has a downside: it makes the query

? This work has been supported by ANR project PAGODA (ANR-12-JS02-007-01)
and the Austrian Science Fund (FWF) project T515.

answering task significantly more difficult, both conceptually and algorithmi-
cally. The specific challenges that arise depend upon which languages are used
for expressing the query and the ontological knowledge.

In this chapter, we consider ontologies formulated using description log-
ics (DLs), which are a family of decidable fragments of classical first-order
predicate logic that are often used for knowledge representation and reason-
ing. DLs are arguably the most popular formalisms for representing ontological
knowledge nowadays, notably providing the logical underpinnings for the W3C-
standardized OWL web ontology languages [170]. There are a multitude of differ-
ent DLs of varying expressivity, ranging from very simple to highly expressive.
Significant research efforts have been devoted to understanding the computa-
tional complexity of different reasoning tasks, including the query answering
tasks that are the focus of this chapter. The resulting complexity landscape can
be used to select the most appropriate DL for a given application. In the case
of OMQA applications involving large amounts of data, this complexity analysis
has revealed Horn DLs – so named because they are expressible in the Horn
fragment of first-order logic – as especially relevant, as query answering in the
presence of Horn DL ontologies can be performed in polynomial time in the size
of the data, for some important types of queries. Prominent Horn DLs include
the logics of the DL-Lite and EL families, which are the basis of the OWL profiles
known as OWL 2 QL and OWL 2 EL [159].

This chapter is organized as follows. We begin in Section 2 by recalling the
syntax and semantics of description logic knowledge bases and introducing some
popular Horn DLs. In Section 3, we formally introduce the problem of ontology-
mediated query answering and compare it to the closely related problem of query-
ing relational databases. We also explain how we will measure the complexity
of query answering and briefly introduce the two main algorithmic techniques
(query rewriting and saturation) that underlie most of the querying algorithms
that have been proposed for Horn DL ontologies. The following three sections
are devoted to different query languages: instance queries in Section 4, conjunc-
tive queries in Section 5, and navigational queries in Section 6. In each of these
sections, we will illustrate the kinds of natural queries that can be expressed in
the query languages, describe the challenges that arise when evaluating them in
the presence of ontologies, present algorithmic solutions involving query rewrit-
ing and/or saturation, and summarize what is known about the complexity of
the query answering task for different DLs. In Section 7, we show the difficulties
that arise when querying DL knowledge bases using more expressive query lan-
guages involving negation or recursion. The final section of this chapter provides
an overview of recent work on OMQA and areas of ongoing research.

This chapter aims to provide a relatively detailed introduction to the area
of ontology-mediated query answering with Horn DL ontologies. We chose to
focus on Horn DLs in order to showcase the versatility of query rewriting and
saturation techniques for handling a variety of different types of queries, includ-
ing navigational queries that have only recently been considered for OMQA.
Although we briefly discuss results and techniques for non-Horn DLs and try

to give a relatively complete picture of the complexity landscape, the present
chapter should by no means be considered a comprehensive survey of the field.
For a detailed treatment of OMQA as it relates to more expressive DLs, we refer
to [168, 163] and references therein. For introductions to OMQA that focus on
DL-Lite and the corresponding OWL 2 QL profile and provide more details on
the use of database systems, we direct readers to the tutorials [128, 48].

2 Horn Description Logics

In this section, we give a short introduction to description logics and how they
are used for describing ontological knowledge. We try to keep it concise, since
extensive introductory texts on the topic have been published elsewhere. Readers
less familiar with DLs may find useful the long and detailed introductions in
[190], and in the first part of [168], or the short basic overview in [137].

2.1 Description Logic Basics

In description logics, a domain of interest is described using a DL vocabulary
consisting of three countably infinite, pairwise disjoint sets of symbols:

– the set NC of concept names, to capture classes of objects
– the set NR of role names, to capture binary relations between objects
– the set NI of individual names (often abbreviated to individuals), to refer to

specific individual objects

Note that a DL vocabulary can be seen as a restricted first-order logic (FO)
vocabulary containing only unary predicates (concept names), binary predicates
(role names), and constants (individual names).

From a DL vocabulary, we can build expressions that reflect the knowledge
about our domain. In general, we use two kinds of statements:

– Terminological axioms specify general properties of concepts and roles, and
constrain the way all objects in the domain can participate in the different
concepts and roles.

– Assertions are facts about specific objects in the domain, that is, they assert
that an individual participates in some concept, or that some role holds
between a pair of individuals.

Each DL offers a different syntax for the terminological axioms and different com-
binations of concept constructors and role constructors that allow us to build
complex concept and roles from the symbols in the vocabulary. Table 1 summa-
rizes some DL concept and role constructors, as well as the most common forms
of axioms and assertions.

As the inverse role constructor occurs in many of the DLs considered in this
chapter, we introduce some dedicated notation and terminology. We use N±R to
denote the set NR ∪ {r− | r ∈ NR} and use the generic term role to refer to
elements of N±R . We define the inverse inv(R) of a role as follows: if R is a role
name r ∈ NR, then inv(R) = r−, and if R is of the form r−, then inv(R) = r.

Name Syntax Semantics

Top concept > ∆I Concepts

Bottom concept ⊥ ∅
Nominal {a} {aI}
Negation ¬C ∆I \ CI

Conjunction C1 u C2 C1
I ∩ C2

I

Disjunction C1 t C2 C1
I ∪ C2

I

Existential restriction ∃R.C {d1 | there exists (d1, d2) ∈ RI with d2 ∈ CI}
Universal restriction ∀R.C {d1 | d2 ∈ CI for all (d1, d2) ∈ RI}

(Qualified) number >mR.C {d1 | m ≤
∣∣{d2 | (d1, d2) ∈ RI and d2 ∈ CI}

∣∣}
restrictions 6mR.C {d1 | m ≥

∣∣{d2 | (d1, d2) ∈ RI and d2 ∈ CI}
∣∣}

Inverse r− {(d2, d1) | (d1, d2) ∈ rI} Roles

Role negation ¬R (∆I ×∆I) \RI

Concept inclusion C vD CI ⊆ DI TBox Axioms

Role inclusion Rv S RI ⊆ SI

Transitivity axiom trans(R) RI ◦RI ⊆ RI

Concept assertion A(a) aI ∈ AI ABox Assertions

Role assertion r(a, b) (aI , bI) ∈ RI

Table 1: Syntax and semantics of DL concept and role constructors, TBox ax-
ioms, and ABox assertions. Here a, b denote individual names, A denotes a con-
cept name, C(i) denotes a (complex) concept, r ∈ NR denotes a role name, R
denotes a role, and m ∈ N denotes a natural number.

Definition 1. A TBox is a finite set of terminological axioms and an ABox is
a finite set of assertions. A knowledge base (KB) K = (T ,A) is composed of a
TBox T and an ABox A.

A signature is a set of concept and role names, and the signature of a TBox T ,
written sig(T), is the set of concept names and role names that occur in T .
Signatures of ABoxes and KBs are defined and denoted analogously. Finally, for
a given signature Σ, we say that an ABox A is a Σ-ABox if sig(A) ⊆ Σ.

Example 1. For the examples in this chapter, we will consider the domain of
food, dishes and menus offered by restaurants. The vocabulary we use to model
this domain contains concept names for food items, like IceCream or Meat, and for
more general types of food, such as vegetarian-friendly options (VegFriendly) or
spicy dishes (SpicyDish). We also use concept names for notions like Restaurant,
Menu and Dish. The role name hasIngredient is used to relate dishes and their
ingredients, and contains is a generalization (or superrole) of hasIngredient that

can also relate foods with components (such as lactose or gluten) that would not
typically be considered as ingredients. The role name hasCourse relates menus
to the dishes they contain as courses, and we may also have specialized versions
of this role like hasDessert and hasMain. We can also use role names to say
that a restaurant offers some menu, or that it serves a dish. For individuals that
represent specific menus, dishes, and restaurants, we use italic, lower-case letters.

With this vocabulary in place, we can write ABox assertions such as:

offers(r,m) hasMain(m, p1) PenneArrabiata(p1)
hasDessert(m, d1) IceCream(d1) serves(r, p2)
PizzaCalabrese(p2) serves(r, d2) Tiramisu(d2)

which intuitively express that some restaurant (r) offers a menu (m) with penne
arrabiata and ice cream, and it also serves pizza calabrese and tiramisu.

We give some examples of TBox axioms that express general knowledge about
this domain. Here C ≡ D is shorthand for the pair of axioms C vD and DvC.

∃hasCourse.>vMenu (1)

∃hasCourse−.>v Dish (2)

hasDessertv hasCourse (3)

hasMainv hasCourse (4)

Menu v 61 hasMain.> (5)

FullMenu ≡>3 hasCourse.> (6)

PizzaCalabresev Pizza u ∃hasIngredient.PizzaDough (7)

PenneArrabiatav ∃hasIngredient.Pasta (8)

PizzaDough t Tiramisu t Pastav ∃contains.Gluten (9)

GlutenFree ≡ ∀contains.¬Gluten (10)

hasIngredientv contains (11)

trans(contains) (12)

The concept inclusions (1) and (2) state respectively that the domain of hasCourse
consists of menus, and its range consists of dishes. The role inclusions (3) and
(4) express that hasDessert and hasMain are specializations (or subroles) of the
role hasCourse, since desserts and mains are types of courses. Concept inclusion
(5) stipulates that a menu can only have one main course. The axiom (6) defines
full menus as menus that have at least three courses. Axiom (7) states that pizza
calabrese is a kind of pizza that has as ingredient pizza dough. The following
axiom (8) says that penne arriabiata has pasta as an ingredient. In (9), it is
stated that pizza dough, tiramisu and pasta all contain gluten, and (10) defines
the gluten-free as the class of entities not containing gluten. The role inclusion
(11) expresses that hasIngredient is a subrole of contains, and (12) asserts the
transitivity of the relation contains. N

There are a wide range of DLs offering different shapes of axioms and dif-
ferent concept and role constructors. For example, the well-known description

logic ALC allows only for concept inclusions C v D as TBox axioms, where C
and D are complex concepts built using negation, conjunction, disjunction, ex-
istential restrictions, and universal restrictions, from the atomic concepts that
include concept names, top and bottom. The DL S extends ALC with transitiv-
ity axioms. The presence of additional constructors or axiom types is denoted by
additional letters in the name of the logics. For example, the letter H denotes the
presence of role inclusions in the TBox. The letter I denotes that inverse roles
can be used as a role constructor in the TBox axioms, O denotes the presence
of nominals as a concept constructor, and Q denotes the presence of qualified
number restrictions. In this way, we obtain a large number of different DLs like
ALCI, ALCHQ, SHIQ, SHOIQ, and so on3. We note that the knowledge base
in Example 1 is a SHIQ knowledge base.

Before moving on to the semantics of DLs, a small remark is in order concern-
ing the syntax of ABox assertions. For a DL L, an L ABox is sometimes defined
as a set of assertions of the forms C(a) and R(a, b), where C and R are possibly
complex concepts and roles in L. In this chapter, for simplicity, ABox assertions
take the forms A(a) and r(a, b) only, independently of the DL in question. For
our purposes, this simplification is without any loss of generality. Indeed, it is
well known that complex assertions C(a) can be replaced by assertions AC(a)
for a fresh concept name AC , provided that AC vC is added to the TBox. Role
assertions r−(a, b) can be replaced by r(b, a), and as inverses are the only role
constructor in almost all DLs we consider (the only exception is DL-Lite, dis-
cussed further), this is the only kind of complex assertions that could occur. It
will be clear from what follows that these transformations preserve the semantics
of KBs and that they have no impact on the computational complexity of any
of the reasoning and query answering problems we consider.

2.2 Semantics

The semantics of DLs is defined using the notion of interpretations.

Definition 2 (Interpretation, models). An interpretation I is a pair (∆I , ·I)
where ∆I is a non-empty set called the domain, and ·I is an interpretation func-
tion that maps:

– each concept name A ∈ NC to a set AI ⊆ ∆I ,
– each role name r ∈ NR to a set of pairs rI ⊆ ∆I ×∆I , and
– each individual a ∈ NI to some aI ∈ ∆I , in such a way that aI 6= bI

whenever a 6= b.

The interpretation function is extended to complex concept and roles as specified
in the upper right portion of Table 1.

3 The order of the letters is irrelevant, although some orderings are more frequent in
the literature than others, e.g., SHIQ, vs. SHQI. We also point out that some DLs
impose additional restrictions, for example, restricting the interaction of number
restrictions and transitive roles in SHIQ and SHOIQ.

Note that this is essentially the traditional notion of interpretation from
first-order logic, but restricted to unary and binary predicates, and constants.

Using interpretations, we can define the notions of models, satisfiability, and
entailment. The satisfaction I |= ξ of a TBox axiom or ABox assertion ξ in an
interpretation I is defined in the lower right part of Table 1. An interpretation I
is called a model of a TBox T , written I |= T , if I |= ξ for every axiom ξ inT .
Similarly, I is a model of an ABox A, written I |= A, if I |= ξ for every assertion
ξ in A. If both I |= T and I |= A, then we call I a model of the KB K = (T ,A),
and we write I |= (T ,A) (or, I |= K). We call a KB K satisfiable (or consistent)
if it has at least one model. Entailment is defined in the expected way: a TBox
axiom or ABox assertion ξ is said to be entailed from a KB K (in symbols:
K |= ξ) if I |= ξ for every model I of K. We can also define the corresponding
notions of entailment w.r.t. TBoxes and ABoxes: T |= ξ if (T , ∅) |= ξ, and A |= ξ
if (∅,A) |= ξ.

Remark 1. Note that, by definition, interpretations give meaning to all the sym-
bols in the infinite vocabulary NC ∪ NR ∪ NI. Alternatively, interpretations can
be defined for a possibly finite signature that contains all the relevant symbols,
including the signature of the KB at hand. Since the interpretation of all symbols
not occurring in a KB or query is irrelevant to their satisfaction, both semantics
are equivalent. Moreover, in definitions and examples, we will allow interpreta-
tions to be (finitely) specified for the relevant signature only, and disregard the
interpretation of all irrelevant symbols.

Remark 2. Observe that in Definition 2 we require distinct constants to be inter-
preted as different objects in ∆I . That is, we make the unique name assumption
(UNA). This assumption is sometimes made in DLs, and sometimes not. We
have chosen to adopt the UNA because it is closer to the intended semantics of
ABoxes as data repositories, and hence more natural for the OMQA setting we
consider. We should emphasize that this assumption is not central to the results
and techniques presented in this chapter, which are valid both with or without
the UNA. It can be noted however that there do exist cases, not covered in this
chapter, in which the complexity of query answering depends on whether the
UNA is adopted (see e.g., [10]).

2.3 Some Popular Horn Description Logics

In this chapter, we focus on a specific class of DLs known as Horn DLs, whose
core feature is that they are incapable of expressing any form of disjunction.
This lack of disjunction means that Horn DL knowledge bases can be translated
into the Horn fragment of first-order logic.

We first introduce two important sub-families of Horn DLs based upon the
‘lightweight’ logics DL-Lite and EL, which support efficient reasoning at the cost
of limited expressiveness.

DL-Lite Family The constructors available in the different DLs of the DL-
Lite family were selected in order to express the main features present in con-
ceptual and data models, like ISA-relations between classes, class disjointness,
domain and range restrictions on roles, functionality constraints, and mandatory
(non-)participation constraints. This makes (large fragments of) the formalisms
used in databases and software engineering, like entity-relationship and UML
class diagrams, expressible as DL-Lite knowledge bases. At the same time, the
DL-Lite family (first proposed in [50, 52]) was designed to support efficient rea-
soning in data-oriented applications, even in the presence of large amounts of
data. Due to their carefully tailored expressivity and good computational prop-
erties, DLs of the DL-Lite family have become extremely popular as ontology
languages. This can be witnessed by the recent inclusion of the OWL 2 QL profile
[159], based upon DL-Lite, in the latest version of the OWL standard.

In the DL-Lite family, there are no universal restrictions, and existential
restrictions can only be of the form ∃R.> and are thus abbreviated to ∃R.
The basic DL-Lite dialect, sometimes denoted DL-Litecore , only allows concept
inclusions of the forms B1vB2 and B1v¬B2, where each Bi is either a concept
name or an existential restriction ∃R with R ∈ N±R . We note that negative concept
inclusions of the form B1 v ¬B2 can also be written as (concept) disjointness
constraints B1 u B2 v ⊥; both syntaxes are widely used. Axioms of the form
∃r vB are often called domain restrictions, since they enforce that the domain
of role r is contained in the concept B; similarly, axioms of the form ∃r− v B
are called range restrictions. In DL-Lite, it is also common to allow negative
concept and role assertions ¬B(a) and ¬R(a, b) in the ABox. We do not allow
them explicitly here, since ¬B(a) can be simulated using an assertion B̄(a) for
a fresh concept name B̄(a), and adding B̄v¬B to the TBox. Likewise, ¬R(a, b)
can be simulated via R̄(a, b) and R̄v ¬R, where R̄ fresh role name.

One of the most popular dialects of DL-Lite is DL-LiteR, which additionally
allows for role inclusions of the forms RvS and Rv¬S, where R,S ∈ N±R . We will
focus on DL-LiteR when discussing the DL-Lite family in this chapter. Another
prominent dialect of DL-Lite is DL-LiteF , which extends DL-Lite by allowing
axioms of the form (funct P), which are just an abbreviation of >v 61R.>.
There are a great many other DL-Lite dialects that have been considered, see [10]
for a detailed discussion.

Example 2. Among the axioms in Example 1, only (1) and (2) are expressible
in the core dialect of DL-Lite. They would usually be written as follows:

∃hasCoursevMenu ∃hasCourse− v Dish

In DL-LiteR, we can also have (3), (4) and (11), and we can simulate (7) using
an additional role name hasIngredientPizzaDough as follows:

PizzaCalabresev Pizza

PizzaCalabresev ∃hasIngredientPizzaDough

∃hasIngredientPizzaDough− v PizzaDough

hasIngredientPizzaDoughv hasIngredient

We can simulate the existential restrictions in the right-hand-side of axioms
(8) and (9) in a similar fashion, and replace the axiom with disjunction on
the left-hand side by three axioms, each with one concept name. However, we
cannot express qualified existential restrictions on the left-hand side of axioms,
nor number restrictions as in (5) and (6), universal restrictions as in (10), or
transitivity axioms.

In DL-LiteF , we have a restricted form of number restrictions, and we can
express (5) using func(hasMain). N

EL Family Like DL-Lite, the EL description logic offers tractable reasoning at
the cost of limited expressivity. The constructors offered by EL and its extensions
[19] make them particularly well suited for medical and life science terminologies.
Several important large-scale ontologies are written using DLs of the EL family,
including the Gene Ontology [205], the NCI thesaurus [199] (a cancer ontology),
and most notably, SNOMED CT, a comprehensive medical ontology4 that is
used by the health-care systems of several countries (including the US and UK).

EL is the fragment of ALC that allows for arbitrary use of concept conjunc-
tion and existential restrictions, but no negation, concept disjunction, or uni-
versal restrictions. Atomic concepts consist of concept names and >, but do not
include ⊥. As EL cannot express any form of contradictory or negative informa-
tion, EL KBs are trivially satisfiable. In order to be able to express disjointness
of concepts, it is common to extend EL by allowing ⊥ as an atomic concept. The
resulting DL, which has essentially the same computational properties as plain
EL [19], is usually denoted EL⊥.

Like ALC, EL and EL⊥ can be extended with the additional features from
Table 1 to obtain DLs like ELH, ELHO, ELI⊥, ELHI⊥, etc. Some additions,
like role hierarchies, have no impact on the positive computational properties of
EL and EL⊥, while others, like inverse roles, significantly increase the complexity
of reasoning. A detailed discussion of the complexity of reasoning in EL and
extensions can be found in [19, 20].

The OWL 2 EL profile [159] is based on the EL family, and in particular
on a DL sometimes called ELRO+, which is in turn a variant of EL++ [19].
Both of these languages extend ELH⊥ with additional features like nominals
and complex role inclusion axioms of the form r1 · . . . · rn v r, which intuitively
mean that the pairs of objects in the composition of the ri also belong to r.
In particular, transitivity can be expressed using axioms of the form r · r v r.
ELRO+ also allows range restrictions (without allowing inverses in general).
We do not consider these logics in detail here, but we remark that OWL 2
EL corresponds to the so-called regular fragment of ELRO+, which imposes
a regularity condition on the complex role inclusions to ensure that the set
{r1 · . . . · rn | T |= r1 · . . . · rn v r} of role chains implying a role name r can be
represented using a finite automaton.

4 http://www.ihtsdo.org/snomed-ct

TBox axioms DL-LiteR EL ELHI⊥ Horn-SHIQ

A1 u · · · uAn v B X(n = 1) X X X
A1 u · · · uAn v ⊥ X(n = 2) X X

A v ∃R.B X(B = >) X(R ∈ NR) X X
∃R.B v A X(B = >) X(R ∈ NR) X X

A v 61R.B X
A v >mR.B X
R v S X X X
R v ¬S X
trans(R) X

ABox assertions

A(a) X X X X
r(a, b) X X X X

Table 2: Syntax of normalized Horn KBs. X(conds) means that only axioms
satisfying conds are allowed for the form in question. Here A(i) and B denote
atomic concepts from NC ∪ {>}, while R and S are from NR ∪ {r− | r ∈ NR}.

Example 3. Of the TBox axioms in the example, (1), (7), and (8), are all in the
core EL, while (9) can be split into three EL axioms. ELH can also express (3),
(4) and (11). The axiom restricting the range of hasCourse is expressible in ELI
and ELRO+. The inclusion GlutenFreev ∀contains.¬Gluten can be equivalently
expressed in ELI⊥ as

Gluten u ∃contains−.GlutenFreev⊥

However, the other direction, ∀contains.¬GlutenvGlutenFree is not expressible in
any DL of the EL family. The transitivity axiom (12) is expressible in (regular)
ELRO+ and EL++. N

It is sometimes convenient to assume that EL and ELHI⊥ TBoxes are in
a normal form that only allows axioms of the forms indicated in Table 2. It is
well known that TBoxes can be efficiently transformed into this normal form
by introducing fresh concept names. For the sake of comparison, we have also
included in the table the syntax of DL-LiteR, assuming a similar normalization.

We introduce another important Horn DL, called Horn-SHIQ, that is not part
of the DL-Lite or EL families.

Horn-SHIQ The description logic Horn-SHIQ is the disjunction-free frag-
ment of the well-known DL SHIQ. It supports many of the expressive features
of SHIQ, like transitivity and number restrictions, but as we will see later, it
is better behaved computationally. The formal definition of Horn-SHIQ syn-
tax is rather complicated, since fully eliminating disjunction requires taking into

account complex interactions between constructors, and in particular, which sub-
formulas occur implicitly under the scope of negation. The full definition can be
found in [136]. Here we instead give only the definition of normalized TBoxes,
which allow for axioms of all the forms listed in Table 2 except for R v ¬S.5

Additionally, in a (Horn-)SHIQ TBox T , all roles R occurring in a number
restriction >nR.C or 6nR.C must be simple, which means that there does not
exist a role S such that trans(S) ∈ T and T |= S v R. We note that axioms of
the form Av ∀R.B are usually allowed in Horn-SHIQ. We have omitted them
from our syntax, but they can be equivalently expressed as ∃inv(R).AvB.

Example 4. Most of the axioms in our example TBox are expressible in Horn-
SHIQ, with the exception of axioms (6) and (10), for which we can only express
one half of the stated equivalences:

FullMenuv >3 hasCourse.> (6′)

∃contains−.GlutenFree u Glutenv⊥ (10′)

The other halves of (6) and (10)

∀contains.¬Glutenv GlutenFree >3 hasCourse.>v FullMenu

cannot be expressed in Horn-SHIQ, nor in any other Horn DL. N

Horn Logics and Universal Models We have mentioned that the main
distinguishing feature of Horn DLs is that they can be viewed as subsets of the
well-known Horn fragment of first-order logic. Semantically, the crucial property
this ensures is that, for every satisfiable KBK, there exists a universal model ofK
that can be homomorphically embedded into any other model. Intuitively, this
model satisfies all the constraints expressed by K in the minimal, most general
way, and it witnesses all entailments. We will present later in the chapter a
concrete way of constructing such a model and explain how it can be exploited
for answering different kinds of queries.

Unfortunately, this crucial property is lost in non-Horn DLs, which provide
means of expressing disjunctive knowledge. The complexity results we will dis-
cuss in this chapter illustrate how the lack of a universal model has a negative
impact on the complexity of reasoning.

Example 5. Consider the KB consisting of one ABox assertion and two TBox
axioms:

PastaDish(d) PastaDishv Dish PastaDishv ∃hasIngredient.Pasta

The following interpretation, with ∆I = {od, op}, is a model of this KB:

dI = od hasIngredientI = {(od, op)} PastaDishI = {od}
DishI = {od} PastaI = {op}

5 SHIQ does not support negative role inclusions. These could be added at no com-
putational cost, and they are expressible in extensions of SHIQ for which reasoning
has the same complexity, like ZIQ [57] and the simple fragment of SRIQ [109].

This model is universal: every model of the KB contains an object interpreting
d as an instance of Dish and PastaDish, related via hasIngredient to some object
that is an instance of Pasta. This is the minimal structure that needs to be
present in an interpretation for it to be a model of the KB.

Now suppose we add the axiom Pasta v freshPasta t driedPasta. We exhibit
two interpretations I1 and I2, with the same domain as I, which are both models
of the extended KB:

hasIngredientI1 = {(od, op)} PastaDishI1 = {od} freshPastaI1 = {op}
DishI1 = {od} PastaI1 = {op} driedPastaI1 = ∅

hasIngredientI2 = {(od, op)} PastaDishI2 = {od} freshPastaI1 = ∅
DishI2 = {od} PastaI2 = {op} driedPastaI2 = {op}

Observe that I1 is not (homomorphically) contained in I2, and I2 is not (ho-
momorphically) contained in I1, which shows that there is no universal model
of this KB. N

3 Ontology-Mediated Query Answering

In this section, we will formally define the problem of ontology-mediated query
answering, discuss how the complexity of this task can be measured, and in-
troduce two key algorithmic techniques for OMQA. This will lay the necessary
foundations for later sections, in which we will present concrete algorithms and
complexity results for different query languages and DLs.

As ontology-mediated query answering is closely related to the more well-
studied problem of querying relational databases, the first part of this section
will recall some key notions from databases and discuss the important differences
between the two settings.

3.1 Databases and ABoxes

Recall from the preceding section that in description logics, data is stored in
the ABox as a set of assertions of the forms A(a) and r(a, b), where A is a
concept name, r a role name, and a, b are individuals. From the first-order logic
point of view, ABox assertions are simply facts built from unary and binary
relation symbols and constants. ABoxes provide an incomplete description of
the considered application domain, in the sense that everything stated in the
ABox is assumed to be true, but facts which are not present in the ABox are
not assumed to be false. This is known as the open-world assumption and is a
desirable property in our setting as it allows us to leave the truth of some facts
unspecified and to be able to infer new pieces of information from the explicit
information asserted in ABox and TBox.

Relational databases constitute one of the most common ways of storing data
in modern information systems. Relational database instances (which we will of-
ten abbreviate to databases) can be defined similarly to ABoxes as finite sets of

facts P (a1, . . . , an), where P is a relation symbol of arity n ≥ 0. In addition to
allowing facts of arbitrary arity, databases differ from ABoxes in another impor-
tant respect: they are interpreted under the closed-world assumption, meaning
that all facts that are contained in the database are assumed true and those that
are absent are assumed to be false. Concretely, this means that every database
instance D corresponds to the unique first-order interpretation ID whose domain
∆ID contains all constants appearing in D and which interprets every relation
symbol P as {a | P (a) ∈ D} and every constant as itself.

Remark 3. Databases make the standard names assumption, which consists in
interpreting constants as themselves. Note that this is strictly stronger than the
unique names assumption discussed in Section 2.1.

The next example illustrates the difference between ABoxes and databases.

Example 6. LetD andA1 be respectively the database and ABox corrresponding
to the following set of facts (assertions):

Cake(d1) IceCream(d2) Dessert(d3) hasDessert(m, d4)

The database D corresponds to the interpretation ID defined as follows:

– ∆ID = {m, d1, d2, d3, d4}
– CakeID = {d1}
– IceCreamID = {d2}
– DessertID = {d3}
– hasDessertID = {(m, d4)}
– cID = c for every c ∈ {m, d1, d2, d3, d4}

According to the interpretation ID, there are five entities (m, d1, d2, d3, d4), and
only d3 belongs to Dessert.

The interpretation ID is a model of the ABox A1, but A1 has (infinitely)
many other models, including the interpretation J defined as follows6:

– ∆ID = {m,m′, d1, d2, d3, d4, d7, e, f4, g}
– CakeID = {d1, d3, e}
– IceCreamID = {d2, f4}
– DessertID = {d1, d2, d3, d4, e, f4}
– hasDessertID = {(m, d4), (m′, d3)}
– cID = c for every c ∈ {m, d1, d2, d3, d4}

The interpretation J contains additional domain elements that are not explicitly
mentioned in A1, and it also makes true some assertions that are not present
in A1. For example, there are now six entities (including the ABox individuals
d1, d2, d3, and d4) that belong to the class Dessert. Since some models of A1

state that d1 is a dessert, and others do not, the truth of this assertion is left
undefined by A1. However, if we add a TBox containing the information that all
cakes are desserts (Cakev Dessert), then this will eliminate some of the models
and allow us to infer that d1 is a dessert. N
6 Note that for simplicity, and to facilitate the comparison with ID, the interpreta-

tion J interprets individuals as themselves. However, we could instead have chosen
domain elements distinct from the individual names.

3.2 Querying Databases

Queries provide the means of accessing the data stored in database instances.
There are several different query languages that have been proposed for rela-
tional databases, each providing a formal syntax for constructing queries and a
semantics that defines the result of evaluating a query on a given database. For-
mally, the semantics of a query q specifies for every database D the set ans(q,D)
of answers of q over D, where the answers take the form of tuples of constants
from D. Since databases correspond to interpretations, we can alternatively view
database queries as mappings from interpretations to tuples of domain elements.
Note that although databases correspond to finite interpretations, it is typically
straightforward to extend the semantics of queries to arbitrary interpretations,
and so we may assume that ans is defined for all interpretations, finite or infinite.
Thus, for the purposes of this chapter, a query q of arity n ≥ 0 associates with
every interpretation I a subset ans(q, I) ⊆ (∆I)n. Note that when n = 0, the
query q is called Boolean, and ans(q, I) can take one of two values: the empty
tuple () (meaning q holds in I) or ∅ (q does not hold).

We introduce next two specific database query languages that will play an
important role in this chapter, namely, first-order queries and Datalog queries.

First-order Queries A common way of specifying queries is to use formulas
from some logic, with first-order logic being the standard choice. A first-order
(FO) query is a first-order formula built from relational atoms P (t1, . . . , tn) and
equality atoms t1 = t2 (with each ti a constant or variable) using the Boolean
connectives (∨,∧,¬,→) and universal and existential quantifiers (∀x, ∃x). The
free variables of FO queries will be called answer variables, and the arity of an
FO query is defined as its number of answer variables. Given an interpretation I,
an FO query ϕ with answer variables (x1, . . . , xn), and a tuple (e1, . . . , en) of
elements from ∆I , we use I |= ϕ[(x1, . . . , xn) 7→ (e1, . . . , en)] to denote that the
FO formula ϕ is satisfied in I under the variable assignment that maps each xi
to ei. The semantics of an FO query ϕ with answer variables x = (x1, . . . , xn)
is defined using this notion of satisfaction:

ans(q, I) = {e = (e1, . . . , en) ∈ (∆I)n | I |= ϕ[x 7→ e]}

An FO query ϕ is called domain independent if ans(ϕ, I) = ans(ϕ,J) for every
pair of interpretations I,J such that ·I = ·J , i.e., I and J interpret all predicate
and constant symbols identically.

We remark that domain-independent first-order queries provide the logical
underpinnings of SQL, which is the most widely used query language in com-
mercial database systems. Every domain independent first-order quey can be
translated into an equivalent SQL query, which means that such queries can be
evaluated using standard relational database management systems.

Remark 4. Unless stated otherwise, all first-order queries considered in this
chapter are domain independent.

Datalog Queries Datalog is a rule-based formalism that originated from work
on logic programming and has been extensively studied within the database
community as a powerful language for expressing recursive queries (see e.g. [66]
and Chapters 12-13 of [1]). A Datalog rule takes the form

Pn(tn)← P1(t1), . . . , Pn−1(tn−1)

where each Pi(ti) is a relational atom. We call Pn(tn) the head of the rule and
P1(t1), . . . , Pn−1(tn−1) the rule body. Datalog rules are required to satisfy the
following safety condition: every variable that appears in the rule head must also
occur in one of the atoms of the rule body. A Datalog program consists of a finite
set of Datalog rules, and a Datalog query is a pair (Π,Q) where Π is a Datalog
program and Q is a relation symbol that appears in Π.

Every Datalog rule can be viewed as a first-order sentence7: simply reverse
the direction of the implication symbol, take the conjunction of the body atoms,
and quantify universally over all variables. For example, consider the following
Datalog rule and its corresponding FO sentence:

Q(v, u)← P (v, x), T (x, u, w) ∀xuvw (P (v, x)∧T (x, u, w))→ Q(v, u)

We will say that a first-order interpretation I is a model of a Datalog rule if I is
a model of the corresponding FO sentence, and we call I a model of a Datalog
program Π just in the case that I is a model of every rule in Π.

Recall that we view sets of facts as interpretations, hence the semantics of a
Datalog program is defined relative to a given interpretation that corresponds
to an (extensional) database. Given an interpretation J and a Datalog program
Π, we will call an interpretation I a minimal model of Π relative to J just in
the case that the following conditions hold:

1. ∆I = ∆J

2. cI = cJ for every constant c
3. I is a model of Π
4. for every other interpretation I ′ that satisfies the three preceding conditions,

we have that P I ⊆ P I′ for every relation symbol P .

In fact, it can be shown that for every interpretation J and Datalog program Π
there is a unique minimal model of Π relative to I. Using the minimal model,
we may define the semantics of Datalog queries as follows:

ans((Π,Q), I) = QJ where I is the minimal model of Π relative to J

Remark 5. Datalog queries can also be given a procedural semantics, in which
the minimal model is computed by an exhaustive application of the Datalog
rules starting from the initial set of facts in the database (or the initial relations
in the interpretation).

7 More precisely, Datalog rules correspond to function-free Horn clauses.

3.3 Querying Description Logic Knowledge Bases

In principle, any query language defined for databases can be used to query
description logic knowledge bases. From the syntactic point of view, the only
difference is that in place of arbitrary relation symbols, we will use concept and
role names. It is less obvious how to lift the semantics of queries to DL knowl-
edge bases, as DL KBs typically have multiple models, whereas the semantics
of queries only states how to obtain answers from a single interpretation. The
solution is to adopt so-called certain answer semantics8, in which we consider
those answers that hold with respect to each of the KB’s models. The intuition
is that since we do not know which of the KB’s models provides the correct
description of the application domain, we can only be confident in those answers
that can be obtained from every model of the KB.

Definition 3 (Certain answers). Let K = (T ,A) be a DL KB, and let q be
an n-ary query. The set cert(q,K) of certain answers to q over K is defined as
follows:

{(a1, . . . , an) ∈ Ind(A)n | (aI1 , . . . , aIn) ∈ ans(q, I) for every I ∈ Mods(K)}

Remark 6. Observe that certain answers are defined as tuples of individuals,
rather than tuples of domain elements. This distinction is important since we do
not make the standard names assumption, and so an individual may be mapped
to different elements in different models of the KB.

Remark 7. If we consider Boolean FO queries, then certain answer semantics
corresponds to logical entailment. Indeed, the DL KB can be expressed as a FO
theory, and the problem is to determine whether the query (an FO sentence)
holds in every model of the KB. By contrast, the evaluation of Boolean FO
queries over databases corresponds to model checking, since we need to check
whether the query (FO sentence) holds w.r.t. to a given FO interpretation. It is
well known that logical entailment is more difficult than model checking, and so
it is no surprise that ontology-mediated query answering is a more challenging
computational task than query answering in databases.

We illustrate the notion of certain answers on an example.

Example 7. We consider the KB K1 consisting of the ‘dessert’ ABox A1 from
Example 6 and the following TBox T1:

Cakev Dessert IceCreamv Dessert hasDessertv hasCourse

∃hasCoursevMenu ∃hasDessert− v Dessert

Suppose that we are interested in finding all desserts, i.e., we wish to find all
certain answers to the query q1 = Dessert(x). Since there are five individuals in
the ABox, there are five potential certain answers. We argue that four of them
are indeed certain answers:
8 The certain answer semantics is also used in other contexts, such as incomplete

databases [112], data integration [142], and data exchange [6].

– d1 ∈ cert(q,K1), since Cake(d1) ∈ A1 and Cake v Dessert ∈ T1, and so we
must have dI1 ∈ DessertI for every model I of K1

– d2 ∈ cert(q1,K1), since IceCream(d2) ∈ A1 and IceCreamv Dessert ∈ T1
– d3 ∈ cert(q1,K1), since Dessert(d3) appears explicitly in A1

– d4 ∈ cert(q1,K1), since hasDessert(m, d4)∈A1 and hasDessert−vDessert ∈ T1

The fifth individual, m, is not a certain answer to q1 w.r.t. K1. To see why, let
us extend the interpretation J from Example 6 by setting:

– hasCourseJ = {(m, d4), (m, g), (m′, d3), (m′, g)}
– MenuJ = {m,m′}

It can be verified that J is a model of K1, yet mJ = m does not belong to
DessertJ . N

In this chapter, our main focus will be on the problem of ontology-mediated
query answering, which will consist in computing the certain answers of queries
over a DL KB. We will be particularly interested in understanding how the com-
plexity of this task varies depending on the query language and description logic
considered. For the purposes of analyzing the complexity of ontology-mediated
query answering, we will recast OMQA as a decision problem9:

Problem: Q answering in L (with Q a query language and L a DL)

Input: An n-ary query q ∈ Q, an ABox A, a TBox T formulated in L,
and a tuple a ∈ Ind(A)n

Question: Does a belong to cert(q, (T ,A))?

To solve the problem of Q answering in L, we must devise a decision procedure,
that is, an algorithm that satisfies the following three requirements:

– Termination: the procedure is guaranteed to halt on any input
– Soundness: if the procedure returns ‘yes’, then a ∈ cert(q,K)
– Completeness: if a ∈ cert(q,K), then the procedure returns ‘yes’

We remark that if we have such a decision procedure, then we can use it to solve
the original task of computing all certain answers. Indeed, we can enumerate
all tuples of the same arity as the query, and for each, we can use the decision
procedure to check whether or not the tuple is a certain answer.

According to certain answer semantics, if we pose an n-ary query q to an
unsatisfiable KB K, then every n-tuples of individuals from K is a certain answer,
and so we will answer ‘yes’ for every tuple. Thus, query answering is trivial when
the KB is unsatisfiable. It follows that to obtain a decision procedure for Q
answering in L, it suffices to provide decision procedures for the following two
problems: (i) satisfiability of L KBs, and (ii) Q answering over satisfiable L KBs.

9 We recall that a decision problem (alternatively known as a recognition problem) is
a problem with a yes-or-no answer.

3.4 Complexity of Query Answering

We have seen in the previous subsection how the problem of ontology-mediated
query answering can be formulated as a decision problem. Database query evalu-
ation can be similarly recast as a decision problem: we are given as input a query
q, database D, and tuple of constants a, and the problem is to decide whether
a ∈ cert(q, ID). When we speak of the complexity of OMQA or database query
evaluation, we will always mean the complexity of these decision problems. In
what follows, we assume that we have a function | · | that assigns to each of the
objects (queries, TBoxes, ABoxes, databases, tuples) appearing in the input a
natural number corresponding to the size of the object, e.g. the length of its
string representation according to some suitable encoding. For example, |T | will
denote the size of TBox T .

The complexity of decision problems can be measured in different ways, de-
pending on which inputs we choose to count and which we treat as fixed. When
analyzing the complexity of query answering, there are two commonly considered
complexity measures [209]:

– Combined complexity is measured as a function of the size of the whole input,
that is, |q|+ |T |+ |A|+ |a| in the case of OMQA and |q|+ |D|+ |a| in the
case of database query evaluation10.

– Data complexity is with respect to the size of the data, that is, |A| for OMQA
and |D| in the database setting. The sizes of all other inputs are treated as
fixed constants and so they do not contribute to the complexity.

Combined complexity corresponds to the ‘classical’ way of measuring complex-
ity, in which we consider all of the inputs to the decision problem and treat
them equally. If we show that a problem is in polynomial time for combined
complexity, then this is a good indication that the problem can be efficiently
solved in practice. However, a problem that is intractable in combined complex-
ity may nonetheless be prove feasible on typical inputs. Indeed, database query
evaluation has been proven intractable in combined complexity for all of the
commonly considered query languages, yet modern database systems are able
to answer most user queries instantaneously. The key observation is that the
queries encountered in practice are typically quite small, and their size is neg-
ligible when compared to the size of the (typically very large) database, and
so the real predictor of performance is how querying algorithms scale with re-
spect to the size of the database. For this reason, data complexity is generally
considered the more useful complexity measure for databases. In the setting of
ontology-mediated query answering, in addition the query and ABox, we have a
TBox whose size can vary widely, from a few dozen axioms up to tens (or even
hundreds) of thousands. However, it seems reasonable to assume that in most
OMQA applications the ABox will be significantly larger than the TBox, so data
complexity is also very relevant in this setting.

Computational complexity [172, 9] provides a hierarchy of different complex-
ity classes that can be used to classify problems according to the amount of

10 We typically omit |a| since we have |a| ≤ |q| · |A| (or |a| ≤ |q| · |D|).

resources (time, space) that are required in order to solve them. In this paper,
we will make use of the following complexity classes, which are ordered according
to inclusion with each class being included in those later in the list:

– AC0: problems that can be solved by a uniform family of circuits of constant
depth and polynomial size, with unlimited fan-in AND gates and OR gates

– NLogSpace: problems that can be solved in non-deterministic logarithmic
space

– P: problems that can be solved in polynomial time
– NP (resp. coNP): problems that can be solved (resp. whose complement

can be solved) in non-deterministic polynomial time
– PSpace: problems that can be solved in polynomial space
– Exp: problems that can be solved in single-exponential time

It is known that AC0 is strictly contained in the class LogSpace of all problems
solvable in deterministic logarithmic space, which in particular means that it is
a proper subclass of P.

The following theorems summarize what is known about the complexity of
evaluating first-order and Datalog queries over databases:

Theorem 1 ([209, 210]). First-order query evaluation is in AC0 in data com-
plexity and PSpace-complete in combined complexity.

Theorem 2 ([209, 113]). Datalog query evaluation is P-complete in data com-
plexity and Exp-complete in combined complexity.

In later sections, we will investigate the complexity of answering different
forms of queries over knowledge bases formulated using the Horn DLs introduced
in Section 2. As we shall see, in contrast to expressive DLs, for which answering
even the simplest queries is coNP-hard in data complexity, it is possible to
design query answering algorithms for Horn DLs that scale polynomially in the
size of the ABox. It is for this reason that we sometimes use the term ‘data-
tractable’ when referring to Horn DLs.

3.5 Techniques for Ontology-Mediated Query Answering

We have seen that in general, ontology-mediated query answering is more com-
plex than database query evaluation, since we must consider all models of a KB
rather than the single interpretation associated with a database. Query rewrit-
ing and saturation are two techniques that can be used to bridge this gap and
enable the use of existing database systems for OMQA. These two techniques
underlie most of the OMQA algorithms that have been developed for Horn DLs,
including those that will be presented in this chapter.

Query Rewriting The basic idea behind query rewriting is as follows. In a first
step, we rewrite the input query into a new query that contains all the relevant
information from the TBox. In a second step, we pass the rewritten query to

a database system for evaluation over the ABox, which is treated as a (closed-
world) database instance. Query rewriting thus provides a means of reducing the
OMQA problem to the more well-studied problem of database query evaluation.

We now formalize the notion of a rewriting of a query. Note that we will
use IA to denote the finite interpretation obtained by viewing A as a database.
More precisely: ∆IA = Ind(A), AIA = {a | A(a) ∈ A} (for every A ∈ NC), rIA =
{(a, b) | r(a, b) ∈ A} (for every r ∈ NR), and aIA = a (for every a ∈ Ind(A)).

Definition 4 (Rewriting of a Query). Let T be a DL TBox, let Σ be a
finite signature, and let q, q′ be two queries. We say that q′ is a rewriting of
q w.r.t. T , Σ just in the case that cert(q, (T ,A)) = ans(q′, IA) for every Σ-
ABox A. We call q′ a rewriting of q w.r.t. T , Σ relative to consistent ABoxes if
cert(q, (T ,A)) = ans(q′, IA) for every Σ-ABox A such that (T ,A) is satisfiable.

Remark 8. The signature Σ specifies the concept and role names that can appear
in ABoxes of the considered application. To simplify the presentation, we will
sometimes omit mention of Σ, when it is unimportant to the discussion at hand.

Example 8. Reconsider the query q1 = Dessert(x) and KB K1 = (T1,A1) from
Example 7. It can be verified that the query

q′1 = Dessert(x) ∨ Cake(x) ∨ IceCream(x) ∨ ∃y.hasDessert(y, x)

is a rewriting of q1 w.r.t. T1. Intuitively, this is because q′1 captures the four ways
to infer, using the axioms in T1, that a given ABox individual is an instance of
the concept Dessert.

If we evaluate q′1 over IA1 (which is identical to ID from Example 6), we
obtain ans(q′1, IA1

) = {d1, d2, d3, d4}. Indeed:

– d1 is an answer to the disjunct Cake(x), due to the assertion Cake(d1)
– d2 is an answer to the disjunct IceCream(x), due to the assertion IceCream(d2)
– d3 is an answer to the disjunct Dessert(x), due to the assertion Dessert(d3)
– d4 is an answer to the disjunct ∃y.hasDessert(y, x), due to the assertion

hasDessert(m, d4)

We can therefore conclude that cert(q1,K1) = {d1, d2, d3, d4}. N

We can define an analogous notion of rewriting for testing KB satisfiability.

Definition 5 (Rewriting of Unsatisfiability). Let T be a DL TBox, let Σ
be a finite signature, and let q⊥ be a Boolean query. We call q⊥ a rewriting of
unsatisfiability w.r.t. T , Σ if for every Σ-ABox A, we have cert(q, (T ,A)) = ()
iff (T ,A) is unsatisfiable.

The preceding notions of rewriting can be further specialized by adding to
the above definitions the requirement that the query q′ (resp. q⊥) be an FO or
Datalog query, yielding the notions of FO rewritings and Datalog rewritings.

In the same way as query answering can be decomposed into satisfiability
checking and query answering w.r.t. satisfiable KBs, one can show that it is

sufficient to be able to construct rewritings of unsatisfiability and rewritings of
queries relative to consistent ABoxes. Indeed, if we have an FO rewriting q⊥
of unsatisfiability w.r.t. T , Σ and an FO rewriting q′ of q w.r.t. T , Σ relative
to consistent ABoxes, then these can be combined to obtain an FO rewriting
of q w.r.t. T , Σ (over arbitrary Σ-ABoxes). Basically, if q has answer variables
x1, . . . , xn, then the desired rewriting takes the form q′ ∨ (q⊥ ∧ qΣind(x1) ∧ . . . ∧
qΣind(xn)), where qΣind is a unary query that retrieves all of the individuals that
occur in a given Σ-ABox. Using a similar construction, we can show that it is
possible to construct a Datalog rewriting of a query by combining a Datalog
rewriting of the query relative to consistent ABoxes with a Datalog rewriting of
unsatisfiability.

It is important to keep in mind that the existence of a rewriting is not
guaranteed: it is possible to find queries and TBoxes for which no FO (resp.
Datalog) rewriting exists. Moreover, as the next example illustrates, the existence
of a rewriting depends upon the type of rewriting we consider.

Example 9. The query Spicy(x) has no FO rewriting w.r.t. the TBox

{∃hasIngredient.Spicy v Spicy}.

Intuitively, we would like to use the following (infinite) query, which looks for
hasIngredient chains that start at x and end at an individual asserted to be Spicy:

Spicy(x)∨ ∃x′(hasIngredient(x, x′) ∧ Spicy(x′))

∨ ∃x′x′′(hasIngredient(x, x′) ∧ hasIngredient(x′, x′′) ∧ Spicy(x′′)) ∨ . . .

It can be proven, using techniques from finite model theory (see the introductory
texts [76, 145]), that no FO query that is equivalent to this infinite disjunction.

However, this same query and TBox possesses a Datalog rewriting. Indeed,
it suffices to take the single-rule Datalog program

Π = {Spicy(x)← hasIngredient(x, y),Spicy(y)}

and use Spicy as the distinguished relation. In this particular case, the Datalog
program is just a translation of the TBox, but this is not the case in general. N

Most of the work to date has focused on FO rewritings, since (domain-
independent) FO queries can be translated into SQL statements and evaluated
using highly optimized relational database management systems. However, Dat-
alog rewritings, which can be passed to Datalog engines for evaluation, are also
popular as they are applicable to a wider range of DLs.

Saturation We have seen that standard database querying algorithms are in-
complete for OMQA since they do not take into account the information pro-
vided by the TBox. Query rewriting addresses this problem by rewriting the
query so as to incorporate the relevant information from the TBox. By con-
trast, saturation-based approaches to OMQA work by rendering explicit (some

of) the implicit information contained in the KB, making it available for query
evaluation. In simple cases, saturation involves completing the ABox by adding
those assertions that are logically entailed from the KB, and then evaluating
the query over the saturated ABox. In more complex cases, we might have to
have to enrich the ABox in other ways (perhaps adding new ABox individuals
to act as witnesses for the existential restrictions), or we may need to combine
saturation with query rewriting. Indeed, unlike query rewriting, for which we
could formulate precise definitions of what constitutes a rewriting, saturation is
a more abstract concept that englobes a variety of different approaches whose
commonality is that they enrich the KB with some additional information, which
can then be exploited for various reasoning tasks (in our case, query answering).
Saturation-based reasoning techniques have been employed in a variety of areas,
sometimes under different names: forward chaining, materialization, deductive
closure, and consequence-based reasoning.

Example 10. We return to our running example about desserts. By ‘applying’
the inclusions in the TBox T1 to the ABox A1, we obtain a new saturated KB
K′1 with the following additional assertions:

– Dessert(d1), using Cake(d1) and Cakev Dessert
– Dessert(d2), using IceCream(d2) and IceCreamv Dessert
– hasCourse(m, d4), using hasDessert(m, d4) and hasDessertv hasCourse
– Menu(m), using hasCourse(m, d4) and ∃hasCoursevMenu
– Dessert(d4), using hasDessert(m, d4) and ∃hasDessert− v Dessert

Once we have computed K′1, answering our query Dessert(x) is as simple as
reading off the individuals that appear in a Dessert assertion: d1, d2, d3, d4. We
observe that this is the same result as was obtained in Example 8 by means of
query rewriting. Note however that the saturation process is performed inde-
pendently of the query, so we infer not only those assertions needed to answer
the specific query at hand, but also those needed to answer future queries. For
example, using the same saturated KB K′1, we find that m is the unique certain
answer to the query Menu(x). N

4 Instance Queries

In this section, we begin our exploration of ontology-mediated query answering
by considering a very simple type of query that can be used to find all individ-
uals that belong to a given concept or role. Up until the mid-2000s, work on
querying DL knowledge bases focused almost exclusively on such queries, which
are commonly known as instance queries.

Definition 6 (Instance queries). An instance query (IQ) takes one of the
following two forms:

– A(x) where A ∈ NC (concept instance query)
– r(x, y) where r ∈ NR (role instance query)

Algorithm ComputeSubsumees
Input: DL-LiteR TBox T , concept B ∈ NC ∪ {∃R | R ∈ N±R }

1. Initialize Subsumees = {B} and Examined = ∅.
2. While Subsumees \ Examined 6= ∅

(a) Select D ∈ Subsumees \ Examined and add D to Examined.
(b) For every concept inclusion C vD ∈ T

– If C 6∈ Subsumees, add C to Subsumees
(c) For every role inclusion Rv S ∈ T such that D = ∃S.

– If ∃R 6∈ Subsumees, add ∃R to Subsumees
(d) For every role inclusion Rv S ∈ T such that D = ∃inv(S).

– If ∃inv(R) 6∈ Subsumees, add ∃inv(R) to Subsumees.
3. Return Subsumees.

Fig. 1: Algorithm for computing subsumees of a given concept in DL-LiteR.

Remark 9. The restriction to concept names in the preceding definition is with-
out loss of generality. Indeed, suppose that we want to find all individuals that
belong to C, where C is an arbitrary concept formulated in the DL we are con-
sidering. This can be accomplished by taking a fresh concept name AC , adding
the inclusion C v AC to the TBox, and using the instance query AC(x).

In the remainder of this section, we will see how the techniques of query
rewriting and saturation introduced in Section 3.5 can be applied to the problem
of IQ answering (which is more commonly referred to as instance checking). We
will consider three representative Horn DLs: DL-LiteR, EL, and ELHI⊥.

4.1 Instance Checking in DL-LiteR via Query Rewriting

We begin by considering the problem of instance checking over DL-LiteR knowl-
edge bases. Both query rewriting and saturation-based approaches have been
proposed in the literature [52]. We present a procedure based upon rewriting
IQs into first-order queries since this is the more commonly used approach for
DLs in the DL-Lite family. Moreover, it provides us with a simple setting in
which to demonstrate this technique.

As mentioned in Section 3.5, to construct an FO-rewriting of an instance
query q w.r.t. T , Σ, it suffices to construct

– an FO-rewriting of q w.r.t. T , Σ relative to consistent ABoxes, and
– an FO-rewriting of unsatisfiability w.r.t. T , Σ.

Indeed, if we have these two rewritings, then they can be straightforwardly com-
bined to obtain an FO-rewriting of q that works for all Σ-ABoxes.

As a first step, we present in Figure 1 a procedure ComputeSubsumees that
takes as input a DL-Lite concept B (that is, either a concept name or an exisen-
tial concept ∃R with R ∈ N±R) and a DL-LiteR TBox T and outputs the set of

Algorithm ComputeSubroles
Input: DL-LiteR TBox T , role R ∈ N±R

1. Initialize Subroles = {R} and Examined = ∅.
2. While Subroles \ Examined 6= ∅

(a) Select S ∈ Subroles \ Examined and add S to Examined.
(b) For every role inclusion U v S or inv(U)v inv(S) in T

– If U 6∈ Subsumees, add U to Subsumees
3. Return Subroles.

Fig. 2: Algorithm for computing subroles of a given role in DL-LiteR.

all DL-Lite concepts C such that T |= C vB. Such concepts are called the sub-
sumees of B w.r.t. T , and intuitively they capture all of the different reasons for
an individual to be counted as a member of B. The algorithm ComputeSubsumees
uses a backward chaining mechanism to iteratively compute the subsumees of B.
The set Subsumees is used to store the subsumees that have been identified so
far, and Examined keeps track of which concepts in Subsumees have already been
examined. When examining a concept D, we add to Subsumees all those concepts
that are direct subsumees of D, i.e., those for which we can infer the subsumption
relationship using a single inclusion from T .

We illustrate the functioning of ComputeSubsumees on an example.

Example 11. Consider the DL-LiteR TBox T2 consisting of the following axioms:

ItalianDishv Dish VegDishv Dish Dishv ∃hasIngredient

∃hasCourse− v Dish hasMainv hasCourse hasDessertv hasCourse

We run ComputeSubsumees on the input (T2,Dish) in order to compute all of the
concepts that imply Dish. In Step 1, we initialize Subsumees to {Dish}. In the
first iteration of the while loop, we have no choice but to select Dish. In Step
2(b), we will add ItalianDish, VegDish, and ∃hasCourse− to Subsumees due to the
inclusions ItalianDishvDish, VegDishvDish, and ∃hasCourse−vDish respectively.
Note that we cannot use the inclusion Dishv∃hasIngredient to add ∃hasIngredient,
since Dish appears on the left-hand side of the inclusion. Steps 2(c) and 2(d)
are inapplicable since Dish is not an existential restriction. We will therefore
return to the start of the while loop and select a new unexamined concept from
Subsumees. Nothing new will be added to Subsumees when examining ItalianDish
and VegDish, since these concepts do not appear on the right-hand side of any
inclusions in T2. However, when we examine ∃hasCourse−, we will add both
hasMain− and hasDessert−, due to the role inclusions hasMain v hasCourse and
hasDessertvhasCourse (this occurs in Step 2(c)). It can be verified that no further
concepts will be added, and so the output of ComputeSubsumees will be

{Dish, ItalianDish,VegDish,∃hasCourse−,∃hasMain−,∃hasDessert−}.

We remark that these concepts capture all of the different ways of inferring that
an individual is a member of Dish using the knowledge expressed in T2. N

Observe that there are at most 3|T | concepts that can be added to Subsumees,
since there are at most |T | concept names appearing in T and at most 2|T |
concepts of the forms ∃r(−) with r a role name occurring in T . As concepts are
never removed from Subsumees, and each concept in Subsumees is examined at
most once, it follows that ComputeSubsumees runs in polynomial time in |T |.
One can further show that on input (A, T) the algorithm outputs exactly the
set of subsumees of A w.r.t. T .

In Figure 2, we introduce an analogous procedure ComputeSubroles for roles.
One can show that the procedure runs in polynomial time in |T | and a role S
belongs to ComputeSubroles(R, T) just in the case that T |= S vR.

Next, we introduce a function ρx that translates concepts into FO queries.
The variable x in the subscript of ρx indicates that the query should use x as
the answer variable. The definition of ρx is what one would expect:

– ρx(A) = A(x) for A ∈ NC

– ρx(∃r) = ∃y.r(x, y) for r ∈ NR

– ρx(∃r−) = ∃y.r(y, x) for r ∈ NR

We can similarly introduce a function ρxy that maps roles to FO queries, using
x, y as the first and second distinguished variables:

– ρxy(r) = r(x, y) for r ∈ NR

– ρxy(r−) = r(y, x) for r ∈ NR

We now have the necessary machinery to construct the desired FO-rewritings.
To obtain a rewriting of A(x) w.r.t. T relative to consistent ABoxes, we simply
take the disjunction of the queries obtained by applying ρx to the concepts in
ComputeSubsumees(A, T):

RewriteIQ(A, T) =
∨

C∈ComputeSubsumees(A,T)

ρx(C)

The construction is similar if we have a role instance query r(x, y):

RewriteIQ(r, T) =
∨

S∈ComputeSubsumees(r,T)

ρx,y(S)

Observe that an individual a belongs to the answer of RewriteIQ(A, T) on IA
just in the case that there is an assertion in A that asserts the membership of a
in one of the subsumees of A w.r.t. T . Under the assumption that the KB (T ,A)
is satisfiable, we can show that the latter statement holds iff a is a certain answer
to A(x) over (T ,A). Similar considerations apply to role instance queries.

Theorem 3. For every finite signature Σ, concept name A (resp. role name r)
and DL-LiteR TBox T , the query RewriteIQ(A, T) (resp. RewriteIQ(r, T)) is an
FO-rewriting of A(x) (resp. r(x, y)) w.r.t. T , Σ relative to consistent ABoxes.

Remark 10. We can sometimes use the ABox signature Σ to simplify rewritings.
Indeed, it is easy to see that the preceding theorem continues to hold if we remove
from RewriteIQ(A, T) and RewriteIQ(r, T) all disjuncts that contain a concept or
role name that does not belong to Σ.

We continue our previous example to illustrate the rewriting construction.

Example 12. Consider the IQ q2 = Dish(x) and the TBox T2 from Example 11.
We have seen that ComputeSubsumees(Dish, T2) contains the following concepts:

Dish, ItalianDish,VegDish,∃hasCourse−,∃hasMain−,∃hasDessert−

We will therefore obtain the following rewriting of q2 w.r.t. T2 relative to con-
sistent ABoxes:

RewriteIQ(Dish, T2) = Dish(x) ∨ ItalianDish(x) ∨ VegDish(x) ∨ ∃y.hasCourse(y, x)

∨ ∃y.hasMain(y, x) ∨ ∃y.hasDessert(y, x)

In fact, because T2 does not contain any inclusions expressing disjointness, we
know that every ABox is consistent with T2, and so the preceding rewriting will
give the correct result for all ABoxes. If we evaluate the query RewriteIQ(Dish, T2)
over the ABox consisting of the assertions

hasMain(m, d1) hasDessert(m, d2) VegDish(d3)

then we will obtain the following certain answers:

– d1, because of the disjunct ∃y.hasMain(y, x)
– d2, because of the disjunct ∃y.hasDessert(y, x)
– d3, because of the disjunct VegDish(x) N

For unsatisfiability, we proceed in two steps, first showing how to define an FO
query that detects violation of a single disjointness constraint, and then showing
how these rewritings can be combined to obtain a rewriting of unsatisfability.
For negative concept inclusion Av¬B, we can use the following Boolean query
that checks for the existence of an individual belonging to AuB by considering
all possible ways of choosing a subsumee of A and a subsumee of B:

RewriteDisjoint(A,B, T) =
∨

C∈ComputeSubsumees(A,T)
D∈ComputeSubsumees(B,T)

∃x.(ρx(C) ∧ ρx(D))

For a negative role inclusion Rv¬S, we can define in a similar fashion a Boolean
query that checks if there exists a pair of individuals that belongs to both of the
roles R and S:

RewriteDisjoint(R,S, T) =
∨

U∈ComputeSubroles(R,T)
V ∈ComputeSubroles(S,T)

∃x, y.(ρx,y(U) ∧ ρx,y(V))

To obtain a rewriting of unsatisfiability w.r.t. T , it then suffices to take the
disjunction of the FO queries associated with the negative inclusions in T :

RewriteUnsat(T) =
∨

Gv¬H∈T

RewriteDisjoint(G,H, T)

Indeed, it can be shown that a DL-LiteR KB (T ,A) is unsatisfiable if and only
if one of the negative inclusions in T is violated.

Theorem 4. For every finite signature Σ and DL-LiteR TBox T , the query
RewriteUnsat(T) is an FO-rewriting of unsatisfiability w.r.t. T , Σ.

The following example illustrates the construction of a rewriting of unsatis-
fiability and how such a rewriting can be combined with a rewriting of an IQ
relative to consistent ABoxes to obtain a rewriting that works for all ABoxes.

Example 13. We consider a variant T3 of the preceding TBox that contains two
disjointness constraints:

∃hasCourse− v Dish hasMainv hasCourse hasDessertv hasCourse

hasMainv ¬hasDessert Dishv ¬∃hasCourse

For the first negative inclusion hasMain v ¬hasDessert, we obtain the following
FO query:

RewriteDisjoint(hasMain, hasDessert, T3) = ∃x, yhasMain(x, y) ∧ hasDessert(x, y)

since hasMain and hasDessert do not have any subroles (aside from themselves).
For the second negative inclusion Dishv¬∃hasCourse, each of the concepts Dish
and ∃hasCourse has multiple subsumees:

ComputeSubsumees(Dish, T3) = {Dish,∃hasCourse−,∃hasMain−,∃hasDessert−}
ComputeSubsumees(∃hasCourse, T3) = {∃hasCourse,∃hasMain,∃hasDessert}

The FO query RewriteDisjoint(Dish,∃hasCourse, T3) expressing the violation of
Dish v ¬∃hasCourse will contain 12 disjuncts, corresponding to the 4 choices of
a subsumee of Dish and the 3 choices for ∃hasCourse:∨
r∈
{hasCourse,
hasMain,
hasDessert}

∃x.(Dish(x)∨∃y.r(x, y)) ∨
∨

r,s∈
{hasCourse,
hasMain,
hasDessert}

∃x.(∃y.r(y, x)∧∃y.s(x, y))

Combining the preceding FO queries yields the following rewriting of unsatisfi-
ability w.r.t. T3:

RewriteUnsat(T) = RewriteDisjoint(hasMain, hasDessert, T)

∨ RewriteDisjoint(Dish,∃hasCourse, T)

In order to construct an FO-rewriting of Dish(x) w.r.t. T3, we will need to com-
pute RewriteIQ(Dish, T3), which can be done as in Example 12. We will also need
to construct a query that returns all individuals that appear in some ABox as-
sertion. The definition of this query will depend on the ABox signature Σ. If we
take Σ = sig(T3), then we could use the following query:

qΣind(x) = Dish(x) ∨ ∃y.hasCourse(x, y) ∨ ∃y.hasMain(x, y) ∨ ∃y.hasDessert(x, y)

∨ ∃y.hasCourse(y, x) ∨ ∃y.hasMain(y, x) ∨ ∃y.hasDessert(y, x)

By combining these queries, we obtain a rewriting of q2 = Dish(x) w.r.t. T3, sig(T3):

RewriteIQ(Dish, T3) ∨ (RewriteUnsat(T3) ∧ qΣind)

Now let us consider what happens when we evaluate the preceding query over a
sig(T3)-ABox A. When (T3,A) is satisfiable, RewriteUnsat(T3) evaluates to false
over IA, and so we must satisfy the first disjunct RewriteIQ(Dish, T3). If (T3,A)
is unsatisfiable, then RewriteUnsat(T3) evaluates to true and qind will retrieve all
of the individuals that appear in A. N

We have shown that for every IQ q, DL-LiteR TBox T , and ABox signa-
ture Σ, it is possible to construct an FO rewriting of q w.r.t. T , Σ, and thus
we can reduce instance checking to FO query evaluation over databases. Im-
portantly, this reduction is independent of the ABox, which means that the
instance checking problem has the same low data complexity as the evaluation
of FO queries over databases.

Theorem 5 (follows from results in [52], see also [10]). In DL-LiteR,
satisfiability and instance checking are in AC0 for data complexity.

Regarding combined complexity, it is possible to obtain a P upper bound
by observing that the rewriting procedure runs in polynomial time in |T | and
produces an FO query that, because of its restricted syntax, can be answered
in polynomial time in |A| (recall that when we analyze the complexity of query
answering, we consider the decision problem of testing whether a given tuple
is a (certain) answer). This upper bound can be improved to NLogSpace by
employing a non-deterministic logarithmic space procedure that guesses a single
disjunct in the rewriting of the IQ and verifies that the input tuple satisfies this
disjunct. An alternative proof of NLogSpace membership proceeds by reducing
instance checking in DL-LiteR to the satisfiablity problem of first-order Krom
formulas, which is known to be complete for NLogSpace [10].

Theorem 6 ([10]). In DL-LiteR, satisfiability and instance checking are both
NLogSpace-complete for combined complexity.

We remark that the preceding complexity results hold not only for DL-LiteR
but also for several other DL-Lite dialects (like DL-LiteF and DL-LiteA) and
can be shown using similar techniques (see [52, 10] for more details).

4.2 Saturation-based Procedure for Instance Checking in EL

We will next consider the problem of instance checking in EL, which is the basic
member of the EL family of Horn DLs. Unlike DL-LiteR, the first-order query
rewriting approach cannot be used in general to handle EL KBs, since there exist
pairs of IQs and TBoxes for which no FO rewriting exists (a concrete example
was provided in Example 9). Instead, we will show how instance checking can
be performed using a simple saturation-based approach. As we shall in the next
subsection, this approach can be extended to handle more expressive Horn DLs.

To simplify the presentation of the saturation procedure, we will assume that
the considered EL KBs have been normalized, that is, they only contain TBox
inclusions of the following forms:

A1 u . . . uAn vB Av ∃r.B ∃r.AvB

where A(i), B ∈ NC ∪ {>}, r ∈ NR, and n ≥ 1. As mentioned in Section 2, this
assumption is without loss of generality since every EL KB K can be transformed
into a normalized KB K′ that has the same logical consequences as K over the
signature of K. This transformation can be performed in polynomial time and
will not impact the complexity results obtained in this subsection.

In Table 3, we present a set of five saturation (or inference) rules that can
be used to infer new inclusions and assertions from a given EL knowledge base.
These rules essentially correspond to a subset of the rules proposed in [19] for
reasoning in an extension of EL called EL++, but use a syntax that is closer
to that found in recent works on consequence-based reasoning in DLs. Each of
the rules in Table 3 acts as a template that can be instantiated using different
concept and role names to obtain a rule instantiation of the form

α1, . . . , αn
β

where α1, . . . , αn, β are TBox inclusions or ABox assertions. We call α1 . . . αn
the premises of the rule instantiation and β its conclusion. A rule instantiation
ρ is said to be applicable to a KB K if K contains all of the the premises of ρ but
does not contain ρ’s conclusion. If ρ is applicable to K, then applying it means
adding the conclusion of ρ to K.

Example 14. Consider the knowledge base K2 that comprises the inclusions:

PenneArrabiatav Dish PenneArrabiatav Spicy Spicy u Dishv SpicyDish

The following instantiation of rule T1 is applicable to K2:

PenneArrabiatav Spicy PenneArrabiatav Dish Spicy u Dishv SpicyDish

PenneArrabiatav SpicyDish

To apply this rule instantiation, we add PenneArrabiatav SpicyDish to K2. N

AvBi (1 ≤ i ≤ n) B1 u . . . uBn vD
AvD

T1
AvB B v ∃r.D

Av ∃r.D
T2

Av ∃r.B B vD ∃r.D v E
Av E

T3

A1 u . . . uAn vB Ai(a) (1 ≤ i ≤ n)

B(a)
A1

∃r.B vA r(a, b) B(b)

A(a)
A2

Table 3: Saturation rules for EL. Here r ∈ NR and A,B,D,E ∈ NC ∪ {>}.

Note that in what follows, we will slightly abuse terminology and speak simply
of rules and rule applications, rather than (applications of) rule instantiations.

By inspecting the rules in Table 3, we immediately observe that because
of the syntactic restrictions on the conclusions of the saturation rules, there are
only finitely many axioms and assertions that can be produced over a given finite
signature. It follows that an exhaustive application of the saturation rules to a
KB is guaranteed to terminate and produce a finite (saturated) KB. Moreover,
the result of the saturation process does not depend on the order in which the
rules are applied, so we make speak of the saturation of a KB.

The following example illustrates the computation of the saturation of a KB.

Example 15. Consider the EL KB K3 whose TBox contains the inclusions

PenneArrabiatav ∃hasIngredient.ArrabiataSauce (13)

PenneArrabiatav PastaDish (14)

PastaDishv Dish (15)

PastaDishv ∃hasIngredient.Pasta (16)

ArrabiataSaucev ∃hasIngredient.Peperoncino (17)

Peperoncinov Spicy (18)

∃hasIngredient.Spicy v Spicy (19)

Spicy u Dishv SpicyDish (20)

and whose ABox consists of the single assertion

PenneArrabiata(p). (21)

If we apply the saturation rules from Table 3, then we obtain the new axioms
and assertions listed below. Note that we indicate on the right the rule that was

applied, followed by the axioms and/or assertions used as premises.

ArrabiataSaucev Spicy T3 : (17), (18), (19) (22)

PenneArrabiatav Spicy T3 : (13), (22), (19) (23)

PenneArrabiatav Dish T1 : (14), (15) (24)

PenneArrabiatav ∃hasIngredient.Pasta T2 : (14), (16) (25)

PenneArrabiatav SpicyDish T1 : (23), (24), (20) (26)

Spicy(p) A1 : (23), (21) (27)

Dish(p) A1 : (24), (21) (28)

SpicyDish(p) A1 : (28), (27) (29)

It can be verified that nothing further can be inferred using the rules. N

In addition to ensuring finite termination, the saturation rules from Table 3
possess two other important properties. First, they are sound, that is, they only
allow us to derive axioms and assertions that are logical consequences. Secondly,
they are complete for instance checking, by which we mean that allow us to derive
all entailed ABox assertions. These properties can be established by adapting
proofs of similar results in [19].

Theorem 7. Let K be an EL knowledge base, and let K′ be obtained by ex-
haustively applying the rules in Table 3 to K ∪ {A v A,A v > | A ∈ NC ∩
sig(K)} ∪ {>v>}∪ {>(a) | a ∈ Ind(A)} up to saturation. Then for every ABox
assertion α, we have K |= α iff α ∈ K′.

Remark 11. To ensure completeness, before running the saturation rules, we first
add to the KB some trivially entailed inclusions (of the forms AvA,Av>) and
assertions11 (of the form>(a)). Alternatively, we could introduce saturation rules
with empty premises that generate these inclusions and assertions. In practice,
one could simply allow these inclusions and assertions to be used as premises
during the saturation process, without adding them.

Remark 12. The rules in Table 3 do not allow us to generate all entailed concept
inclusions, and indeed, this is a good thing since there can be infinitely many
(non-equivalent) concept inclusions that are entailed from a given KB. How-
ever, we can show that these rules are sufficient to obtain all entailed concept
inclusions between concept names (we say that the rule calculus is complete for
classification).

By Theorem 7, we can perform instance checking by exhaustively applying
the saturation rules to the KB, and then checking if the resulting saturated KB
contains the desired assertion.

11 In this section, it will prove convenient to allow ABox assertions using the atomic
concepts > and ⊥, in addition to concept names. Refer to Section 2 for discussion.

Example 16. Reconsider the KB K3 and its saturation from Example 15. The
individual p is a certain answer to the IQ SpicyDish(x) w.r.t. K3 since the asser-
tion SpicyDish(p) is present in the saturation of K3. However, p is not a certain
answer to Peperoncino(x) w.r.t. K3, since Peperoncino(p) was not derived. N

A closer inspection reveals that the saturation procedure runs in polynomial
time in |K|. Indeed, at each iteration, we must produce at least one new concept
inclusion or ABox assertion of one of the following forms:

AvB Av ∃r.B A(a) r(a, b)

which is built using only the individuals, concept names and role names from K,
and there are only polynomially many such axioms and assertions. We therefore
obtain a P upper bound on the combined complexity of instance checking in EL.
This result was first established in [19], and a matching P lower bound for data
complexity was provided in [59].

Theorem 8 ([19, 59]). Instance checking in EL is P-complete for both the data
and combined complexity measures.

4.3 Instance Checking in ELHI⊥

In this final subsection on instance checking, we move to a richer Horn DL,
ELHI⊥, which integrates constructors from DL-LiteR and EL. We will present
a saturation procedure for ELHI⊥ that is similar in spirit to our EL saturation
procedure but contains additional rules to handle the new constructors. This sat-
uration procedure will provide a method of performing satisfiability and instance
checking over ELHI⊥ KBs. Moreover, we shall see that inclusions obtained by
saturating the TBox can be used to built Datalog rewritings of satisfiability and
instance queries. The ELHI⊥ saturation rules will resurface again in Section 5,
where they will be used to construct universal models.

As in the preceding subsection, we will assume that the input ELHI⊥ KB
is in normal form, i.e., it contains only TBox inclusions of the forms

A1 u . . . uAn vD Av ∃R.B ∃R.AvB Rv S

where A(i), B ∈ NC ∪ {>}, D ∈ NC ∪ {>,⊥}, R,S ∈ N±R , and n ≥ 1.
The saturation rules for ELHI⊥ are displayed in Table 4. They have been

adapted from the saturation calculus Horn-SHIQ from [81] (itself adapted from
an earlier calculus from [117]). Rules T4 and rule T5 handle role inclusions and
the ⊥ concept respectively. Rules T7 is a more elaborate version of the EL rule
T3, adapted to handle the presence of role inclusions and inverse roles. Note
that due to the presence of inverse roles, it is necessary to allow conjunctions in
existential concepts. Rule T6 provides a means of introducing new concepts into
such conjunctions. To understand rule T8, it is helpful to recall that ∃inv(S).AvB
can be equivalently expressed as Av∀S.B. The rule adds A as a condition on the
right-hand side, which allows B to be added to the existential on the left-hand

{AvBi}ni=1 B1 u . . . uBn vD
AvD

T1
Rv S S v T

Rv T
T4

M v ∃R.(N u ⊥)

M v⊥
T5

M v ∃R.(N uN ′) N vA
M v ∃R.(N uN ′ uA)

T6
M v ∃R.(N uA) ∃S.AvB Rv S

M vB
T7

M v ∃R.N ∃inv(S).AvB Rv S
M uAv ∃R.(N uB)

T8

A1 u . . . uAn vB Ai(a) (1 ≤ i ≤ n)

B(a)
A1

∃r.B vA r(a, b) B(b)

A(a)
A2

∃r−.B vA r(b, a) B(b)

A(a)
A3

r v s r(a, b)

s(a, b)
A4

r v s− r(a, b)

s(b, a)
A5

Table 4: Saturation rules for ELHI⊥. Here r ∈ NR, R,S ∈ N±R , A,B ∈ NC ∪
{>,⊥}, and M and N (′) are conjunctions of concepts from NC ∪ {>,⊥}.

side of the inclusion. Finally, we introduce three additional ABox saturation
rules. Rule A3 is like A2 except that is concerns inverse roles, and rules A4-A5
are used to infer new role assertions using derived role inclusions.

The notions of rule instantiation, applicable rule, and rule application are
essentially the same as for EL. Note however that when working with axioms
containing conjunctions, we will treat conjunctions as sets. That is, we will as-
sume that there are no repeated conjuncts, and we will not pay attention to the
order of conjuncts. Thus, if a rule instantiation contains a premise Av∃R.(B u
CuD), and the KB contains the equivalent (but syntactically distinct) inclusion
Av∃R.(DuBuC), then we will consider that the premise is present in the KB
when deciding whether the rule instantiation is applicable. Likewise, if a rule
instantiation has Dv ∃R.(A uB) as a conclusion, and the KB already contains
D v ∃R.(B uA), then the rule instantiation will not be considered applicable.

We are now ready to describe the saturation procedure. Given an ELHI⊥
knowledge base K = (T ,A), we first enrich the KB with inclusions and assertions
that are trivially entailed:

T ′ = T ∪ {A v A,A v > | A ∈ (NC ∩ sig(K)) ∪ {>}}
∪ {inv(R)v inv(S) | S vR ∈ T }

A′ = A ∪ {>(a) | a ∈ Ind(A)}

We then exhaustively apply the rules in Table 4 to (T ′,A′) until nothing new can
be derived (finite termination is guaranteed due to the restricted syntax of the
inclusions in rule conclusions). We will denote the resulting KB by saturate(K).
If we instead apply the rules only to T ′, then we will use saturate(()T) to denote
the resulting TBox.

The next theorem resumes the key properties of saturate(K). It can be proven
by adapting the proofs of similar results for Horn-SHIQ [81].

Theorem 9. For every ELHI⊥ knowledge base K, we have:

1. K |= α for every α ∈ saturate(K).
2. If K is unsatisfiable, then ⊥(a) ∈ saturate(K) for some a ∈ Ind(K).
3. If K is satisfiable and K |= α with α an ABox assertion, then α ∈ saturate(K).

By the preceding theorem, to determine whether a given KB is satisfiable, it
suffices to compute saturate(K) and check whether it contains an assertion of the
form ⊥(a). Instance checking is also trivial once saturate(K) has been computed:
to test whether K |= α, with K a satisfiable KB and α an ABox assertion, we
merely need to check whether α appears in saturate(K).

Example 17. Let K4 be the ELHI⊥ KB consisting of the TBox T4:

∃contains−.VegFriendly v VegFriendly (30)

hasIngredientv contains (31)

Meat u VegFriendly v⊥ (32)

BologneseSaucev ∃hasIngredient.Meat (33)

and the ABox whose assertions are:

VegFriendly(d) (34)

hasIngredient(d, b) (35)

BologneseSauce(b) (36)

We observe thatK4 is unsatisfiable. Indeed, the inclusion ∃contains−.VegFriendlyv
VegFriendly and assertions VegFriendly(d) and hasIngredient(d, b) together imply
that b is VegFriendly. We also know that b has an ingredient of type Meat, due to
BologneseSauce(b) and BologneseSaucev∃hasIngredient.Meat. Since hasIngredient
is a subrole of contains, it follows that b contains this unnamed ingredient. We
can therefore use inclusion (30) to conclude that this ingredient is VegFriendly.
This contradicts the disjointness constraint MeatuVegFriendlyv⊥ which states
that it is not possible to belong to both Meat and VegFriendly.

We now show how the unsatisfiability of K4 can be discovered by means of
the saturation rules from Table 4. To begin, we use rule T8 and the inclusions
(33), (30), and (31) to derive

BologneseSauce u VegFriendly v ∃hasIngredient.(Meat u VegFriendly) (37)

Next, we can apply rule T6 to the preceding inclusion and (32) to infer

BologneseSauce u VegFriendly v ∃hasIngredient.(Meat u VegFriendly u ⊥) (38)

Then, using the preceding inclusion and rule T5, we obtain

BologneseSauce u VegFriendly v⊥ (39)

Finally, by applying the ABox saturation rules, we reach a contradiction:

contains(d, b) A4 : (31), (35) (40)

VegFriendly(b) A3 : (31), (40) (41)

⊥(b) A1 : (15), (39) (42)

Since ⊥(b) has been derived, we can conclude that K4 is unsatisfiable. N

A simple examination of the rules in Table 4 reveals that all derived axioms
and assertions take one of the following forms:

Rv S M vA M v ∃R.N A(a) r(a, b)

where r ∈ NR, R,S ∈ N±R , A ∈ NC ∪ {>,⊥}, M,N are conjunctions of concepts
from NC ∪ {>,⊥}, and all individual names, concept names, and role names
appear in K. As the number of distinct (non-equivalent) axioms and assertions
of these forms is at most single-exponential in the size of K, it follows that
saturate(K) can be computed in single-exponential time in |K|, which yields an
Exp upper bound for satisfiability and instance checking. This upper bound,
which can be derived from Exp upper bounds for non-Horn DLs (see e.g., [71]),
cannot be further improved. Indeed, matching Exp lower bounds follow from
the Exp-hardness of subsumption in ELI [20].

Theorem 10. In ELHI⊥, satisfiability and instance checking are Exp-complete
in combined complexity.

Observe that the TBox saturation rules do not depend on the ABox satura-
tion rules, so it is possible to first fully saturate the TBox, and then in a second
step, apply the ABox rules. We further remark that the ABox saturation rules
can be viewed as Datalog rules which use concept names, role names, and the
special concepts > and ⊥ as predicate symbols. Formally, we can associate with
each ELHI⊥ TBox T and ABox signature Σ the Datalog program Π(T , Σ)
defined as follows:

Π(T , Σ) ={B(x)← A1(x), . . . , An(x) | A1 u . . . uAn vB ∈ saturate(T)}∪
{B(x)← A(y), r(x, y) | ∃r.AvB ∈ T }∪
{B(y)← A(x), r(x, y) | ∃r−.AvB ∈ T }∪
{s(x, y)← r(x, y) | r v s ∈ saturate(T), s ∈ NR}∪
{s(y, x)← r(x, y) | r v s− ∈ saturate(T), s ∈ NR}∪
{>(x)← A(x) | A ∈ NC ∩Σ}∪
{>(x)← r(x, y) | r ∈ NR ∩Σ}∪
{>(x)← r(y, x) | r ∈ NR ∩Σ}

Note that first five sets of Datalog rules making up Π(T , Σ) are in one-to-one
correspondence with the five ABox saturation rules A1-A5, with rules in the i-th
line of the definition of Π(T , Σ) corresponding the ABox saturation rule Ai (for
1 ≤ i ≤ 5). The last three sets of Datalog rules merely serve to populate > with
all of the individuals in the ABox.

Example 18. Consider again the TBox T4 from Example 17, and let Σ = sig(T4).
The Datalog program Π(T , Σ) associated with T4 and Σ contains the rules:

⊥(x)← Meat(x),VegFriendly(x)

⊥(x)← BologneseSauce(x),VegFriendly(x)

VegFriendly(y)← VegFriendly(x), hasIngredient(x, y)

contains(x, y)← hasIngredient(x, y)

each corresponding to an inclusion from saturate(T4). The program additionally
contains rules for populating > (one rule for each concept name in T4, and two for
each role name) and rules corresponding to the translations of trivial inclusions
like MeatvMeat and Meatv> (these latter rules could simply be omitted). N

The following theorem, which is a consequence of Theorem 9, resumes the
important properties of the Datalog program Π(T , Σ).

Theorem 11. For every finite signature Σ and ELHI⊥ KB K = (T ,A) with
sig(A) ⊆ Σ:

1. K is unsatisfiable iff ans((Π(T , Σ),⊥), IA) 6= ∅;
2. If K is satisfiable, then for all A ∈ NC, r ∈ NR, and a, b ∈ Ind(A):

– K |= A(a) iff a ∈ ans((Π(T , Σ), A), IA);
– K |= r(a, b) iff (a, b) ∈ ans((Π(T , Σ), r), IA).

It follows from the first statement of the preceding theorem that the Datalog
query (Π(T , Σ) ∪ {Q⊥ ← ⊥(x)}, Q⊥) is a rewriting of unsatisfiability w.r.t.
T , Σ. The second statement asserts that (Π(T , Σ), A) (resp. (Π(T , Σ), r)) is a
Datalog rewriting of the IQ A(x) (resp. r(x, y)) w.r.t. T , Σ relative to consistent
ABoxes. As discussed in Section 3.5, these rewritings can be combined together
in order to obtain Datalog rewritings that hold for all ABoxes.

Since the construction of the Datalog program Π(T , Σ) is independent of the
ABox (and polynomial w.r.t. |Σ|), and Datalog query evaluation is P-complete
in data complexity, we obtain a P upper bound on the data complexity of in-
stance checking and satisfiability in ELHI⊥. This positive result, which was first
established in [111] for Horn-SHIQ, is the best that we could hope for given
that instance checking (resp. satisfiability) is already P-hard in the sublogic EL
(resp. EL⊥).

Theorem 12. [111] In ELHI⊥, satisfiability and instance checking are P-complete
in data complexity.

5 (Unions of) Conjunctive Queries

Instance queries are rather limited as a query language, as they do not allow
us to express the natural selections and joins over relations that are common in
standard database query languages. For this reason, the majority of works on

OMQA in the last decade have adopted conjunctive queries (CQs) as the basic
query language.

CQs are a special class of first-order queries which allow only for conjunctions
of positive atoms and existential quantification. CQs capture the plain select-
project-join fragment of relational algebra and SQL, as well as the basic graph
patterns that lie at the heart of SPARQL [106], which is the standard query
language for OWL and RDF. It has been documented that a large percentage of
queries posed to industrial databases systems fall into this fragment. By taking
disjunctions of such queries, sharing the same free variables, we obtain unions
of CQs, another prominent query language. CQs and UCQs play a central role
in traditional databases, and they are the query languages of choice in areas like
data integration and data exchange [142, 6].

Definition 7 ((Unions of) conjunctive queries). A conjunctive query (CQ)
is a first-order query q(x) of the form

∃y.P1(t1) ∧ · · · ∧ Pn(tn)

where every variable contained in some ti is contained in either x or y. Recall
that the free variables x are called the answer variables of q, and that the arity
of the query is the length of the tuple x.

A union of CQs (UCQ) is a first-order query q(x) of the form

q1(x) ∨ · · · ∨ qn(x)

where all the qi(x) are CQs with the same tuple x of answer variables.

Let q(x) = ∃y.ϕ(x,y) be a CQ. Recall that ans(q, I) = {e = (e1, . . . , en) ∈
(∆I)n | I |= ∃y.ϕ[x 7→ e]}. Since the variables in y are existentially quantified,
we have that I |= ∃y.ϕ[x 7→ e] just in the case that there exists a variable
assignment π that extends (x1, . . . , xn) 7→ (e1, . . . , en) by additionally mapping
the variables in y to objects in ∆I in such a way that I |= ϕ[π]. We call such a
mapping π a match for q in I.

Remark 13. A popular alternative syntax for CQs and UCQs is to write them
as Datalog rules. A CQ corresponds to a single Datalog rule

q(x) = ∃y.P1(t1) ∧ · · · ∧ Pn(tn) q(x)← P1(t1), . . . , Pn(tn)

while a UCQ is written as a set of rules with the same head predicate:

q(x) = ∃y1.P
1
1 (t11) ∧ · · · ∧ P 1

n1
(t1n1

) q(x)← P 1
1 (t11), . . . , P 1

n1
(t1n1

)

∨ ∃y2.P
2
1 (t21) ∧ · · · ∧ P 2

n2
(t2n2

) q(x)← P 2
1 (t21), . . . , P 2

n(t2n)

...
...

∨ ∃y`.P
`
1 (t`1) ∧ · · · ∧ P `n`

(t`n`
) q(x)← P `1 (t`1), . . . , P `n`

(t`n`
)

We now illustrate some queries that can be expressed as CQs or UCQs.

Example 19. Consider the following queries:

q3(y, x) = ∃z.serves(x, y) ∧ hasIngredient(y, z) ∧ Spicy(z)

q4(y, x) = q1(x, y) ∨
∃z, z′.serves(x, y) ∧ hasIngredient(y, z) ∧ hasIngredient(z, z′),Spicy(z′)

The first query is a CQ that retrieves dishes y that contain a spicy ingredient,
together with the establishment x where they are served. The query q4 is a UCQ
that finds pairs of y and x as in q3, but it also retrieves the pair y, x if y has an
ingredient that in turn contains a spicy ingredient. N

While some very restricted forms of (U)CQs can be expressed as instance
queries by defining the query as a concept in the TBox, the arbitrary use of
variables in CQs makes them a strict generalization of IQs.

We discuss in this section how to answer UCQs over ELHI⊥ knowledge
bases. We assume in what follows that we are always given a satisfiable K as an
input, since query answering over unsatisfiable knowledge bases is trivial, and we
can test for satisfiability in advance using the procedure discussed in Section 4.3
(which has no higher complexity than any of the procedures described below).

5.1 Canonical Model Construction

As a preliminary step, we will show how to define a universal model of a given
satisfiable ELHI⊥ KB using the saturated TBox obtained by applying the rules
in Section 4.3. This universal model will play a central role in the query answering
techniques developed in this and the following section.

Given a satisfiable ELHI⊥ KB K = (T ,A), we consider the interpretation
IT ,A (alternatively denoted IK) defined as follows. The domain ∆IT ,A consists
of sequences of the form aR1M1 . . . RnMn (n ≥ 0), where a ∈ Ind(A), and for
every i ≥ 1, Ri ∈ N±R and Mi is a conjunction of concepts from NC ∪ {>}. More
precisely, ∆IT ,A consists of all sequences aR1M1 . . . RnMn that satisfy:

– If n ≥ 1, then there exists B1 u . . . uBm v ∃R1.M1 ∈ saturate(T) such that
Bj(a) ∈ saturate(K) for every 1 ≤ j ≤ m.

– For every 1 ≤ i < n, Mi v ∃Ri+1.Mi+1 ∈ saturate(T).

To complete the definition of IT ,A, we must fix the interpretation of the indi-
vidual names, concept names, and role names from K. This is done as follows12:

aIT ,A = a

AIT ,A = {a ∈ Ind(A) | A(a) ∈ saturate(K)}∪
{e ∈ ∆IT ,A \ Ind(A) | e = e′RM and A ∈M}

rIT ,A = {(a, b) | r(a, b) ∈ saturate(K)}∪
{(e1, e2) | e2 = e1SM and S v r ∈ saturate(T)}∪
{(e2, e1) | e2 = e1SM and S v r− ∈ saturate(T)}

12 Recall that we treat conjunctions of concepts as sets. Abusing notation, we use
A ∈M to mean that A is a conjunct of M .

It is easy to show that IK is a model of K, and we will henceforth refer to it as
the canonical model of K.

Note that the domain of IK contains the individuals in A, and additional
objects whose existence if implied by the axioms in saturate(T) of the form
M v ∃R.N . The latter objects are called anonymous and defined in such a way
that if aR1M1 . . . RnMn is in ∆IK , then so is aR1M1 . . . Rn−1Mn−1. Hence these
objects naturally form tree-like structures rooted at the individuals. Moreover,
if we take the undirected graph that has the domain of IK as nodes and an
(undirected) edge between two objects e, e′ whenever (e, e) ∈ rIK for some r ∈
NR, then we obtain a structure that can be viewed as comprising different parts:

– the restriction to the individuals, which is an arbitrary graph sometimes
called the core of IK

– a set of potentially infinite trees of anonymous objects, each of which is
rooted at one of the individuals in the core, as we have discussed

For this reason, IK is often associated with a forest and it is given names such
as a (pseudo-) forest model, see e.g. [90, 89, 58, 57]. This forest-like structure is a
useful property that is exploited by many algorithms, and in particular by the
ones we discuss in this chapter.

We now illustrate the construction of canonical models on a simple example:

Example 20. Consider the KB K5 whose TBox T5 contains the following axioms:

PenneArrabiatav ∃hasIngredient.Penne

Pennev Pasta

PenneArrabiatav ∃hasIngredient.ArrabiataSauce

ArrabiataSaucev ∃hasIngredient.Peperoncino

Peperoncinov Spicy

PizzaCalabresev ∃hasIngredient.Nduja

Ndujav Spicy

and whose ABox is as follows:

serves(r, b) serves(r, p) PenneArrabiata(b) PizzaCalabrese(p)

Note that saturate(T5) contains, additionally to the axioms above, the following
axioms that result from applications of T6:

PenneArrabiatav ∃hasIngredient.(Penne u Pasta)

ArrabiataSaucev ∃hasIngredient.(Peperoncino u Spicy)

PizzaCalabresev ∃hasIngredient.(Nduja u Spicy)

The canonical model IK5 of this knowledge base is depicted in Figure 3. For
readability, we use the following abbreviations for the anonymous objects:

e1 = p hasIngredient (Nduja u Spicy)

rp
PizzaCalabrese

b
PenneArrabiata

e1
Nduja, Spicy

e2
Penne,Pasta

e3 ArrabiataSauce

e4
Peperoncino, Spicy

serves serves

hasIngredient hasIngredient hasIngredient

hasIngredient

Fig. 3: Canonical model IK5
of the knowledge base K5 in Example 20. We use

blue for ABox individuals and yellow for anonymous objects.

e2 = b hasIngredient (Penne u Pasta)

e3 = b hasIngredient ArrabiataSauce

e4 = b hasIngredient ArrabiataSauce hasIngredient (Peperoncino u Spicy) N

The crucial property of IK is that it is a universal model of K, that is, it
is ‘contained’ in every model of K. For each model I of K, we can define a
homomorphism from IK to I, which is a function h : ∆IK → ∆I such that

– h(aIK) = aI for each individual a in K,
– e ∈ AIK implies h(e) ∈ AI for every concept name A, and
– (e, e′) ∈ rIK implies (h(e), h(e′)) ∈ rI for every role name r.

It is not hard to see that matches of CQs are preserved under homomorphisms:

Fact 1 Let q be a CQ, and h a homomorphism from an interpretation I to an
interpretation J . If π is a match for q in I, then the mapping h ◦ π obtained by
composing π with h is a match for q in J .

The importance of this property lies in the fact that, for an arbitrary CQ or
UCQ q, every answer to q in IK is an answer to q in every model of K. Since
the converse also holds (an answer to q in every model is clearly also an answer
to q in the particular model IK), the certain answers to q over K coincide with
the answers to q over IK.

Theorem 13. Let K be a satisfiable ELHI⊥ knowledge base, let q(x) = q1(x)∨
. . .∨ qn(x) be a UCQ, and let a be a tuple of individuals of the same arity as x.
Then a ∈ cert(q,K) iff a ∈ ans(q, IK) iff a ∈ ans(qi, IK) for some 1 ≤ i ≤ n.

This result has been shown even for significantly more expressive query lan-
guages than UCQs (for example, positive first-order queries and Datalog queries),

and it allows us to focus on the simpler problem of evaluating a CQ over the
canonical model only, instead of considering the possibly infinitely many models
that a knowledge base may possess.

Example 21. Let K5 and T5 be the knowledge base and TBox from Example 20,
and recall the queries q3 and q4 from Example 19. The match with x 7→ r,
y 7→ p and z 7→ e1 shows that (p, r) ∈ ans(q3, IK5

), and there are no further
answers, hence ans(q1, IK5) = {(p, r)}. For q4, we also have (p, r) ∈ ans(q4, IK5),
but in this case, we additionally get (b, r) ∈ ans(q4, IK5), as witnessed by the
assignment x 7→ r, y 7→ b, z 7→ e3 and z′ 7→ e4, which is a match for the second
disjunct. Hence ans(q4, IK5

) = {(p, r), (b, r)}. We therefore obtain the following
certain answers over K5:

cert(q3,K5) = {(p, r)} cert(q4,K5) = {(p, r), (b, r)} N

5.2 Conjunctive Query Answering in ELHI⊥

By Theorem 13, to design a procedure for answering UCQs over ELHI⊥ KBs, it
is sufficient to focus on the problem of testing whether a ∈ ans(q, IK) for a given
tuple a, KB K and CQ q(x). By definition, a ∈ ans(q, IK) iff a is the image of x
under some match π. In relational databases, a standard way to determine the
existence of such a match is take an assignment that maps x to a, extend it non-
deterministically by assigning an individual in the database to each existentially
quantified variable, and finally to test whether the guessed assignment π is a
match, that is, whether A(π(x)) and R(π(x), π(y)) are present in the database
for every query atom A(x) or R(x, y).

In the presence of ontologies, the situation is more complicated. First, we
have seen that an assertion may hold because it is implied by K, without syn-
tactically occurring in the ABox A. Hence, in the simple algorithm outlined in
the preceding paragraph, we would need to replace the syntactic containment of
assertions in the database by an instance check K |= A(π(x)) or K |= A(π(x)),
which can be carried out using the procedure described in Section 4.3. However,
even with this adaptation, the resulting procedure would not be complete. A sec-
ond and more challenging problem is that when guessing a variable assignment,
it is not enough to map every existentially quantified variable to an individual,
as we may need to consider mappings to anonymous objects in ∆IK in order
to find the desired match. For instance, in the previous example, we saw that
we needed to map z 7→ e1 to obtain (p, r) ∈ ans(q3, IK5) and that we have to
map z 7→ e3 and z 7→ e4 to get (b, r) ∈ ans(q4, IK5). There can be infinitely
many anonymous objects in IK, and we do not know in advance which of them
may occur in the image of the match. Hence there are infinitely many different
matches that may need to be considered, and it is not apparent how to devise
an effective procedure over this infinite search space.

We tackle this problem next. One possible solution would be to characterize
a finite set O of anonymous objects from ∆IK and show that whenever there
exists a match for a CQ in IK, there exists a match that ranges over the named

individuals and O only. Some existing techniques implicitly rely on a charac-
terization of this set O, but only for specific combinations of a query q and a
TBox T , see e.g., [80, 164, 148].

Here we take a different approach and present an algorithm [81] that rewrites
the query in such a way that we do not need to consider mappings to the anony-
mous objects, but we can instead restrict our attention to matches to named
individuals. More specifically, given a CQ q(x), we construct a UCQ rewT (q)
(with the same answer variables x) with the property that a ∈ ans(q, IK) iff
there is a disjunct q′ in rewT (q) and a match π for q′ in IK such that π(x) = a
and the range of π contains only named individuals.

The intuition underlying the rewriting procedure is as follows. Suppose q has
an existential variable x, and there is a match π for q in IK such that π(x) is
an anonymous object in the tree part of IK, and it has no descendant in the
image of π. Then for all atoms R(y, x) or R(x, y) of q, the ‘neighbor’ variable y
must be mapped to the parent p of π(x) in IK. A rewriting step chooses such a
variable x, together with an existential axiom M v∃S.N from saturate(T) such
that all atoms of q involving x are satisfied provided the parent p is an instance
of M . Then the algorithm can ‘clip off’ x, eliminating all query atoms involving
it, and adding instead fresh atoms to ensure that the parent p satisfies M . The
resulting query q′ has a match π′ that is similar to π, but crucially, the length
of the longest path occurring in the image of π′ is strictly shorter than for π. By
repeating this procedure, we can clip off all variables matched in the tree part to
obtain shorter and shorter matches, until we end up with a set of queries such
that, if they have a match in IK, then they have a match whose range contains
only ABox individuals.

Definition 8. For a CQ q and a ELHI⊥ TBox T , we write q→T q′ if q′ can
be obtained from q by applying the following steps:

(S1) Select in q an arbitrary existentially quantified variable x such that there
are no atoms of the form R(x, x) in q.

(S2) Replace each role atom of the form R(x, y) in q, where y and R are arbi-
trary, by the atom inv(R)(y, x).

(S3) Let Vp = {y | R(y, x) ∈ q for some R}, and select some M v ∃S.N ∈
saturate(T) such that

(a) S vR ∈ saturate(T) for every R(y, x) ∈ q, and

(b) {A | A(x) ∈ q} ⊆ N .

(S4) Drop from q every atom that contains x.

(S5) Select a variable y ∈ Vp and replace every occurrence of y′ ∈ Vp in q by y.

(S6) Add the atoms {A(y) | A ∈M} to q.

We write q →∗T q′ if q= q0 and q′= qn for some finite rewrite sequence q0 →T
q1 · · · →T qn, n ≥ 0. Furthermore, we let rewT (q) = {q′ | q →∗T q′}.

In (S1) we guess an existentially quantified variable x (we exclude variables
appearing in self-loops as such variables cannot be mapped to anonymous ob-
jects). For convenience, in (S2), we invert all atoms of the form R(x, y), so that

x always appears in the second position of role atoms. In (S3), we let Vp be the
set of all ‘neighbor’ variables y of x for which there is an atom R(y, x) in q;
intuitively, every such variable y must be mapped to the parent p of π(x). We
also select a TBox inclusion that ensures the existence of a suitable child π(x),
under the assumption that the left-hand side of the inclusion is satisfied at p.
Then we can clip off x in (S4), merge all variables of Vp in (S5), and add to q
new atoms that enforce satisfaction of the concepts appearing on the left-hand
side of the selected axiom in (S6).

Example 22. Consider the second disjunct of q4, that is, the following CQ:

q5(y, x) = ∃z, z′.serves(x, y)∧ hasIngredient(y, z)∧ hasIngredient(z, z′)∧ Spicy(z′)

Recall that (b, r) ∈ ans(q5, IK), as witnessed by the match π(x) = r, π(y) =
b, π(z) = e3, and π(z′) = e4. In our running example, a possible rewriting
step for q5 could select in (S1) the variable z′ (which intuitively means that
we guess that π(z′) is a leaf in the image of q5 under some match, as is the
case for the match π). Then there is nothing to do in (S2), and in (S3) we see
that Vp = {z} is the only variable that has to be mapped to the parent of
π(z′). We need to select some axiom M v ∃S.N ∈ saturate(T5) that ensures the
satisfaction of all atoms involving z′, that is, of hasIngredient(z, z′) and Spicy(z′).
We see that ArrabiataSauce v ∃hasIngredient.Spicy is such an axiom, so in (S4)
and (S6), we drop the atoms hasIngredient(z, z′) and Spicy(z′) and replace them
by ArrabiataSauce(z) (we may skip (S5) since |Vp| = 1). Summing up, after one
rewriting step we get:

q′5(y, x) = ∃z.serves(x, y) ∧ hasIngredient(y, z) ∧ ArrabiataSauce(z)

Note that every match of q′5 can be extended to a match of q5, hence the rewriting
procedure does not introduce any incorrect answers. The motivation for intro-
ducing q′5 is that the image of a match of q′5 goes one step less deep into the
anonymous part of the canonical model than the corresponding match for q5. In a
second rewriting step, we again choose to eliminate z, and we get that Vp = {y}.
We select in (S3) the axiom PenneArrabiatav∃hasIngredient.ArrabiataSauce, since
mapping y to an instance of PenneArrabiata suffices to make the atoms that in-
volve z (namely, hasIngredient(y, z) and ArrabiataSauce(z)) true. We can then
replace these atoms by PenneArrabiata(y) to obtain

q′′5 (y, x) = serves(x, y) ∧ PenneArrabiata(y)

Now we have obtained a query q′′5 that has a match (π(x) = r, π(y) = b) where
all variables are mapped to individuals. Moreover, by virtue of the rewriting
process, we know that the match for q′′5 implies the existence of a corresponding
match for q5, and so we have (b, r) ∈ ans(q5, IK5

). N

The rewriting procedure that we have just presented is a slightly simplified
version of the one defined in [81] for Horn-SHIQ, and the results in that paper
imply the following theorem.

Theorem 14. Let K = (T ,A) be a satisfiable ELHI⊥ knowledge base, and
let q(x) be a CQ. Then a ∈ cert(q,K) iff there is some q′ ∈ rewT (q) and an
assignment π from the variables in q′ to Ind(A) such that π(x) = a and π is a
match for q in IK.

Importantly, since Ind(A) is bounded, for each q′ ∈ rewT (q), there are only
a bounded number of candidate assignments π (in fact, single-exponentially
many). We need to check whether one of these candidate matches π is indeed a
match, that is, all of its atoms are satisfied under π. We can test each candidate
assignment in turn, using the instance checking algorithms from Section 4.3 to
decide whether a given query atom is satisfied under a given assignment. By
Theorem 14, the approach we have just described yields a terminating, sound,
and complete decision procedure for CQ answering in ELHI⊥.

The procedure also has an optimal worst-case combined and data complexity.
For combined complexity, we know that computing saturate(T) is feasible in
single exponential time. The cardinality of the set of rewritten queries rewT (q)
is single exponential in |T | and |q|, since it only contains queries whose variables
are a subset of the variables in q, and concept and role names that appear
in T . Moreover, the set rewT (q) can be computed in single exponential time.
Once rewT (q) has been computed, we can consider the single-exponentially many
candidate assignments of the variables for each q′ ∈ rewT (q), and for each such
assignment, we need to do a number of instance checks that is linear in the size
of q′; by Theorem 12, instance checking can be performed in single exponential
time. Since already consistency and instance checking in ELI are hard for single
exponential time [19], the resulting Exp bound is optimal.

As for data complexity, we note that rewT (q) can be computed in constant
time for a fixed T and q, and the number of candidate assignments π is poly-
nomial in the size of the ABox. Since instance checking is in P regarding data
complexity, we obtain:

Theorem 15. CQ answering in ELHI⊥ and Horn-SHIQ is Exp-complete in
combined complexity and P-complete in data complexity.

We remark that the same bounds hold for Horn-SHIQ, which is in fact the
logic for which this rewriting procedure was developed.

With minor adaptations, we can use the same technique to obtain optimal
bounds for ELH and DL-LiteR. For combined complexity, we can devise an
algorithm that runs in non-deterministic polynomial time. First, we compute
saturate(T) in polynomial time. Then we can non-deterministically guess and
build the right q′ ∈ rewT (q), guess a candidate assignment π, and check in
polynomial time if it is a match. Indeed, to determine whether an assignment
is a match, we must perform a polynomial number of instance checks, and each
check can be done in polynomial time for ELH and DL-LiteR. This NP bound
is optimal, since CQ answering is already NP-hard over an ABox alone, seen
as a database, and with no TBox. For data complexity, instance checking in EL
is hard for P, and we can easily obtain a matching upper bound for ELH: the

set rewT (q) can be obtained in polynomial time, there are only polynomially
candidate assignments for the rewritten queries, and testing for a match only
needs a polynomial number of polynomial-time instance checks. In DL-LiteR,
we will see that our techniques can be used to obtain an FO rewriting, yielding
membership in AC0. These bounds are summarized in the next theorem.

Theorem 16. CQ answering in ELH and DL-LiteR is NP-complete in com-
bined complexity. For ELH the data complexity is P-complete, and for DL-LiteR
the data complexity is in AC0.

We note that the results in this theorem are anterior to [81]. The upper
bounds for DL-LiteR follow from the seminal papers on the DL-Lite family and
the original PerfectRef query rewriting algorithm [50, 52], and the upper bounds
for CQ answering in EL were first established in [186, 134, 133]. In Section 8, we
will give a brief overview of subsequent work aimed at developing, optimizing,
and implementing efficient CQ answering algorithms for these and related logics.

We close this subsection by considering different possible ways of translating
Theorem 14 into a concrete query answering algorithm.

A Datalog rewriting approach for CQs in ELHI⊥ A first option is to
define a Datalog rewriting. Indeed, since rewT (q) is a UCQ, it can be viewed as
a set Πrew of Datalog rules that all use the same head predicate Q. By Theorem
14, (Πrew, Q) will give the correct answer to q if evaluated over the enriched
ABox consisting of all assertions that are entailed from the KB. To obtain this
completed ABox, we may exploit the Datalog program Π(T , Σ) from Section 4.3,
which has the property that for every Σ-ABox A and every concept or role
assertion P (t), T ,A |= P (t) iff t ∈ ans(IA, (Π(T , Σ), P)). It follows that the
query (Π(T , Σ) ∪ Πrew, Q) is a Datalog rewriting of q w.r.t. T , Σ relative to
consistent ABoxes.

A combined approach for CQs in ELHI⊥ Another possibility is to use
Theorem 14 as the basis of a combined approach in the spirit of [152] that uses
both saturation and rewriting. As saturate(K) contains all the assertions entailed
by T and A, it suffices to pose the UCQ rewT (q) over (the interpretation cor-
responding to) the assertions in saturate(K) viewed as a database. Compared to
the pure Datalog rewriting approach, the combined approach has the advantage
that we can use standard relational database systems, which are more mature
than Datalog engines. Its main drawback is that the saturated version of the
ABox needs to be recomputed whenever the KB is modified (see Section 8 for
further discussion of combined approaches to OMQA).

An FO rewriting approach for CQs in DL-LiteR We can also use the
rewritten set of queries as the basis of an FO rewriting approach for DL-LiteR.
We know that to determine whether a ∈ cert(q,K), we only need to decide

whether there is some some q′ ∈ rewT (q) and an assignment π from the variables
in q′ to Ind(A) such that T ,A |= P (π(t)) for each atom P (t) in q. We can exploit
our rewriting algorithm for instance checking in DL-LiteR (Section 4.1), and
replace in the queries q′ ∈ rewT (q) each atom A(t) by RewriteIQ(A, T) and each
atom r(t, t′) by RewriteIQ(r, T). The result of this replacement is a (positive) FO
query13 qrew that is a rewriting of q w.r.t. T relative to consistent ABoxes. As
discussed in Sections 3 and 4, the latter rewriting can be combined with an FO
rewriting of unsatisfiability to obtain an FO rewriting of q w.r.t. T that works
for all ABoxes over the given signature. Since the data complexity of answering
FO queries over relational databases is in AC0, this yields the remaining upper
bound in Theorem 16.

5.3 Related results and discussion

We close this section with a short discussion of other results that are related to
answering CQs and other positive fragments of FO queries in the presence of
(both Horn and non-Horn) DL ontologies.

Other results on CQ answering in Horn DLs For members of the EL
family, including EL++ and some other fragments not contained in ELHI⊥,
the first complexity results for CQ answering were established in [186, 133, 134].
An important result common to the three works was that CQ answering is
undecidable for EL++. Both [186] and [134] present fragments that are NP-
complete for combined complexity, while [133] focused on data complexity. A
PSpace upper bound for a fragment of regular EL++ was obtained in [135].
More recently, a tight NP upper bound was shown for the fragment of regular
ELRO+ that restricts complex role assumptions to transitivity axioms [202],
and a tight PSpace upper bound was obtained for (full) regular ELRO+ that
corresponds to OWL 2 EL [203, 201].

For more expressive Horn DLs, like Horn-SHIQ, there are fewer results. The
query rewriting technique we have discussed in this section was proposed in [81]
for Horn-SHIQ, and it shares core ideas with previous algorithms for EL [186]
and DL-Lite [188]. The complexity bounds for Horn-SHIQ had been obtained
already in [78], but with a different algorithm less suited for implementation.
Recent work has considered the more expressive Horn logics Horn-SHOIQ and
Horn-SROIQ and generalizations of CQs with a limited form of recursion [166];
we will discuss this in Section 6.4.

Unions of Conjunctive Queries and Positive Existential Queries In this
section, we have mainly focused on CQs, but by Theorem 13, we know that the
obtained results extend to UCQs. In fact, the universal model property also
applies to positive existential queries (PEQs), a class of FO queries that general-
ize CQs by allowing arbitrary combinations of conjunctions and disjunctions of

13 If desired, we could use standard equivalence-preserving transformations to turn qrew
into an equivalent UCQ.

atoms. Since every positive FO formula can be put into disjunctive normal form
(i.e., rewritten as a disjunction of conjunctions), PEQs have the same expressive
power as UCQs, although they can be exponentially more succinct. The com-
plexity results for (U)CQ answering in Horn DLs can be easily transferred to
PEQs. The core idea is that to when checking whether a candidate assignment
is a match for the query, one also considers a choice of a subset of the query
atoms whose satisfaction leads to the PEQ being satisfied. If we consider data
complexity, enumerating all possible choices of subsets of query atoms requires
only constant time. If we consider combined complexity, then CQ answering
is already NP-hard, so an additional step that non-deterministically guesses a
suitable ‘good’ subset of query atoms causes no further increase in complexity.

Results for Non-Horn DLs Recall that for DLs that are capable of expressing
disjunction, a universal model does not exist in general, so to decide whether a
given tuple is an answer to a UCQ

∨
i qi, we need to verify that in every model I

of the KB K, we have a ∈ ans(qi, I) for some qi. The loss of a universal model has
a major impact on the complexity of query answering. Data complexity becomes
coNP-complete-hard [193, 164], and for combined complexity, query answering
typically becomes harder by one exponential. Over the last decade, 2Exp upper
bounds for answering CQs or extensions thereof have been obtained for many
expressive DLs for which satisfiability and entailment are Exp-complete, such
as SHIQ [89, 56], SHOQ [90], ZIQ, ZOQ, and ZOI [57]. These bounds apply
for PEQs as well, and they are tight for CQs in every DL that contains ALCI
[147] or SH [80]. For all DLs between ALC and ALCHQ, the succinctness gap
between PEQs and UCQs makes a difference: UCQs can be answered in single-
exponential time [167, 147], but PEQs need double-exponential time in the worst
case [169].

The results above have been obtained using a variety of techniques, such
as automata [58, 57], resolution [158, 176], or modified tableaux [144, 164]. In
most other cases, query answering algorithms can be viewed as comprising two
main steps. In the first step, partial assignments from the query variables to the
individuals occurring in the ABox are used to generate an exponential number
of new query answering problems that can be answered over restricted tree-like
interpretations. In a second stage, queries over tree-shaped interpretations are
answered using techniques like rolling-up [54, 110, 89] that encodes the queries
into concepts, or knot [82, 79] and domino [78] techniques that break all possible
interpretations into small structures.

The loss of the universal model property is particularly problematic for DLs
that simultaneously support inverse roles, nominals, and number restrictions, like
ALCOIQ and its extensions, since these logics also lack the forest-like models
that other logics enjoy. This makes the query answering problem so challenging
that it has still not been successfully solved. Answering CQs is known to be
hard for N2Exp for ALCOIQ (in fact, for the slightly weaker ALCOIF) [91],
and decidable for ALCHOIQ [191], but no elementary upper bounds on its
complexity have been established. For SHOIQ, decidability of CQs remains

open, although UCQs are known to be undecidable in the closely related logic
that extends ALCOIQ with a transitive closure operator on roles [165].

6 Navigational Queries

The last decade has seen a huge growth of applications that store and query
data that has a relatively simple structure, but that is highly connected and
does not comply to a fixed, rigid relational schema. This includes, for example,
applications in which the data stems from the so-called web of linked data,
or from social, biological, and chemical networks. While CQs and UCQs are the
predominant query languages for relational databases, they are widely considered
to be insufficient for this kind of applications, since they cannot express even
basic reachability queries or retrieve pairs of objects that are connected by a path
with certain features. Instead, for querying this kind of data, one is interested
in so-called ‘navigational’ query languages.

The most basic navigational query language is regular path queries (RPQs),
which allow one to find all pairs of objects that are connected by a chain of
roles (binary relations, in the database setting) that comply with a given regular
language. In two-way RPQs (2RPQs), the vocabulary of the regular language
comprises both roles and their inverses. We note that 2RPQs lie at the heart of
XPath [69], which is the standard query language for querying XML documents,
and are also present in SPARQL 1.1 [106], where they go by the name of property
paths. By combining (2)RPQs and CQs, we obtain conjunctive (2)RPQs, allowing
one to search for patterns that conjunctively combine regular paths.

Within the database community, there have been considerable research ef-
forts devoted to studying the properties of these navigational query languages,
developing query answering algorithms for them, and extending these languages
with yet more features to meet the needs of applications. In the past few years,
the DL research community has also begun to explore the use of navigational
query languages for OMQA. This chapter provides an overview of this recent
and ongoing line of research.

6.1 Regular path queries and their extensions

We start by formally defining the language of C2RPQs. They are syntactically
very similar to CQs, but the atoms of the form R(t, t′) are generalized to L(t, t′),
where L is a regular language over the alphabet of role names and their inverses.
Intuitively, a pair of objects satisfies such an atom if they are connected via
a chain of roles whose label belongs to L. The language L can be represented
either by regular expressions or non-deterministic finite state automata (NFAs);
the latter representation is known to be exponentially more succinct [77]. We
note that the complexity results we mention in this chapter were shown for
regular expressions in the case of lower bounds, and NFA for upper bounds,
hence they all hold independently of the representation.

Definition 9. Recall that N±R contains all role names and their inverses. A con-
junctive two-way regular path query (C2RPQ) has the form q(x) = ∃y.ϕ where
x and y are tuples of variables, and ϕ is a conjunction of atoms of the forms:

(i) A(t), where A ∈ NC and t ∈ NI ∪ x ∪ y, and

(ii) L(t, t′), where L is (an NFA or regular expression defining) a regular lan-
guage over N±R ∪ {A? | A ∈ NC}, and t, t′ ∈ NI ∪ x ∪ y.

Conjunctive (one-way) regular path queries (CRPQs) are obtained by disallow-
ing symbols from N±R \ NR in atoms of type (ii). Two-way regular path queries
(2RPQs) consist of a single atom of type (ii) such that t and t′ are both answer
variables. Regular path queries (RPQs) are 2RPQs that do not use any roles
from N±R \ NR.

To define the semantics of C2RPQs, we proceed as for CQs by defining a
notion of match. As a first step, we must specify how the atoms of the form
L(t, t′) should be interpreted.

A path from e0 to en in interpretation I is a sequence e0u1e1u2 . . . unen with
n ≥ 0 such that every ei is an element from ∆I , every ui is a symbol from
N±R ∪ {A? | A ∈ NC}, and for every 1 ≤ i ≤ n:

– If ui = A?, then ei−1 = ei ∈ AI ;

– If ui = R ∈ N±R , then (ei−1, ei) ∈ RI .

The label λ(p) of path p = e0u1e1u2 . . . unen is the word u1u2 . . . un. Note that
if p = e0, then we define λ(p) to be ε. For every language L over N±R ∪{A? | A ∈
NC}, the semantics of L w.r.t. interpretation I is defined as follows:

LI = {(e0, en) | there is some path p from e0 to en with λ(p) ∈ L}

A match for a C2RPQ q in an interpretation I is a mapping π from the terms
in q to elements in ∆I such that

– π(c) = cI for each c ∈ NI,

– π(t) ∈ AI for each atom A(t) in q, and

– (π(t), π(t′)) ∈ LI for each L(t, t′) in q.

Finally, using this notion of match, we can define what it means for a tuple to
be an answer to a C2RPQ q(x) in interpretation I:

ans(q, I) = {e | e = π(x) for some match π for q in I}

We will again be interested in the certain answers, that is, the tuples of individu-
als a for which aI ∈ ans(q, I) for every model I of the KB. Importantly, C2RPQs
share with CQs the property of being preserved under homomorphisms, the cer-
tain answers to a C2RPQ q over an ELHI⊥ KB K coincide with the answers to
q in the canonical model IK of K.

Example 23. The following CRPQ is similar to the CQ q3 and the UCQ q4 in
Example 19: it retrieves dishes y that contain a spicy ingredient, together with
the location x where they are served. However, unlike q3 and q4, this query can
find the spicy component no matter how many hasIngredient steps away it is.

q6(y, x) = ∃z.serves(x, y) ∧ hasIngredient∗Spicy?(y, z)

The following one-atom CRPQ can express the infinite FO query of Example 9:

q7(x) = ∃y.hasIngredient∗Spicy?(x, y)

In fact, it is also possible to compute the answers to this query using a (non-
conjunctive) 2RPQ. Since 2RPQs do not support existential variables, we cannot
use hasIngredient∗Spicy?(x, y) since it will only allow us to retrieve the values of
x whose spicy component y happens to be an ABox individual, which need not
be the case in general. To make sure that all x with an spicy component are
found, we can use the following slightly modified query q8:

q8(x, y) = hasIngredient∗Spicy?Σ∗(x, y)

where Σ = N±R ∩ sig(K). Observe that the language Σ∗ allows us to reach some
ABox individual starting from any element in IK. It follows that whenever there
is a match π for q7, possibly mapping y to an anonymous object, there will be a
match π′ for q8 such that π(x) = π′(x) and π′(x) ∈ Ind(A). Thus, the query q7
is equivalent to the projection of q8 onto its first component, or more formally,
cert(q7,K) = {a | (a, b) ∈ cert(q8,K) for some b}, for every knowledge base K. N

We note that C(2)RPQs are strictly more expressive than CQs. Indeed, every
CQ is is also a C2RPQ, but there exist RPQs (like Spicy∗(x, y)) that cannot
be expressed as a CQ (nor as an FO query). The language of Datalog queries
is in turn strictly more expressive than C2RPQs. It is not hard to show that
every C2RPQ can equivalently expressed as a Datalog query. In fact, C2RPQs
fall inside the linear fragment of Datalog that restricts the use of recursion by
allowing at most one recursive predicate in each rule body14.

C2RPQs are in general better behaved computationally than full Datalog.
Take for example the fundamental analysis task of query containment, which
consists in deciding whether the answer to one query is always contained in
the answer to another query over every possible database. Query containment
of Datalog queries is known to be undecidable [198], while this problem has
been shown decidable even for extensions of C2RPQs [55, 84, 180, 44] and in the
presence of constraints [99, 61]. Moreover, as we shall see in Section 7, Datalog
query answering over DL knowledge bases is undecidable even for very simple
DLs [144]. In contrast, C2RPQs are decidable even for very expressive DLs [57].

14 A predicate is called recursive if it occurs in a cycle in the dependency graph of
the Datalog program, whose nodes are the program’s predicates and which contains
an edge between two predicates whenever there is a rule that contains one of the
predicates in the body and the other in the head.

The increased expressiveness of C2RPQs, and in particular their ability to
express simple recursive queries like reachability, together with their good com-
putational properties, make them a very appealing query language for OMQA.
They are especially relevant when querying KBs formulated in lightweight DLs,
since the query language can compensate for limited expressivity of the DL (e.g.,
inability to propagate information over roles in DL-LiteR, lack of inverses in EL).

Example 24. The query q7 = ∃y.Spicy∗(x, y) can be seen as a C2RPQ rewriting
of the query Spicy(x) w.r.t. the TBox T = {∃hasIngredient.SpicyvSpicy}. There is
no DL-LiteR TBox equivalent to this TBox, and the desired meaning of Spicy(x)
is not captured by any FO query over DL-Lite. N

6.2 Answering 2RPQs

In this section, we present an algorithm for answering 2RPQs in ELHI⊥. In
2RPQs, there are no existentially qualified variables, hence it is enough to con-
sider matches to the named individuals. A straightforward algorithm for eval-
uating a 2RPQ L(x, y) would first guess a pair of individuals (a, b), and then
check whether there is a path between a and b whose label complies with L.
However, checking the existence of such a path is still challenging: although this
chain starts and ends in the ‘core’ of the canonical model, it need not be fully
contained in it. Indeed, a path between two individuals in IK may still need to
go (possibly quite deep) into the anonymous part and come back out in order
to satisfy the regular expressions in the query, as we illustrate next.

Example 25. Reconsider KB K5 from Example 20. The mapping π(x) = π(y) =
p is a match for q8, hence (p, p) ∈ ans(q8, IK5

). However, the fact that there is a
hasIngredient∗Spicy?Σ∗-labelled path from p to p is only witnessed by the path
of the form

p hasIngredient e1 Spicy? e1 hasIngredient− p

or by longer paths that have this one as a suffix. Similarly, all paths witnessing
that π(x) = π(y) = b is a match for q8 (and hence (b, b) ∈ ans(q8, IK5

)) need
to go two steps into the anonymous part and pass by e4. That is, we need to
navigate the path

p hasIngredient e3 hasIngredient e4 Spicy? e4 hasIngredient−e3 hasIngredient− p

in order to satisfy the regular expression. N

To describe how to address this problem, let us first suppose that the regular
language in the 2RPQ is given by an NFA α (as mentioned earlier, this is without
loss of generality, since regular expressions are easily translated into NFAs). Our
strategy for deciding the existence of a suitable path is to define a relation Loopα
that stores all possible ‘loops’ through the anonymous part of IK that can be
used to partially satisfy α. That is, we store every path that starts and ends at
a given individual a and takes the query automaton α from state s to state s′.

s0 sf

hasIngredient

Spicy?

Σ∗

Fig. 4: NFA α8 for the regular expression hasIngredient∗Spicy?Σ∗ from query q8.

Intuitively, if such a loop exists at the individual a, then we may ‘jump’ directly
from (a, s) to (a, s′) when looking for a path between two individuals, and in
this way we can avoid navigating the anonymous part in our algorithm.

An important observation that we can draw from the construction of the
canonical model is that the conjunction of concept names that an object satisfies
uniquely determines everything that occurs ‘below it’ in the anonymous part.
Hence, the relevant loops from a state s to a state s′ can be characterized in terms
of the conjunctions of concepts that enforce them. We thus define Loopα as a
relation that associates with each pair of states s, s′ from α a set of conjunctions
M of concept names, in such a way that the following holds:

(†) M ∈ Loopα[s, s′] iff for every individual a, we have that a ∈ MIK implies
that there exists a path p = e0u1e1u2 . . . unen in IK such that e0 = en = a,
ei is of the form a ·w for 0 < i < n, and λ(p) ∈ L(αs,s′), where αs,s′ obtained
from α by making s the starting state and s′ the unique final state.

Example 26. In Figure 4, we display an NFA α8 representing the (regular lan-
guage corresponding to the) regular expression hasIngredient∗Spicy?Σ∗ from the
query q8. Apart from the trivial loops (that is, paths of length 0 from an indi-
vidual and state to itself), we have that:

– PizzaCalabrese ∈ Loopα8
(s0, sf), since from any object e that belongs to

PizzaCalabrese we can walk one hasIngredient step to an instance e′ of Nduja,
which is also Spicy (such an object e′ exists in the canonical model due
to inclusion PizzaCalabresev ∃hasIngredient.(Nduja u Spicy) in saturate(T5)).
Since the object e′ satisfies Spicy, we can move to sf while staying at e′, and
then we can take a hasIngredient− step back to the original e, while staying
in the final state sf .

– PenneArrabiata ∈ Loopα8
(s0, sf), since from any object e that is of type

PenneArrabiata, we can walk one hasIngredient step to an instance e′ of
ArrabiataSauce, and then take a second hasIngredient step to an instance
e′′ of Peperoncino, which is also Spicy (again, the existence of e′ and e′′ is
ensured by corresponding axioms in saturate(T5)). Since e′′ satisfies Spicy,
we can move to sf while staying at e′, and then we can take a hasIngredient−

step back to e′, and another one to e, while remaining in final state sf . N

A possible way to test whether M ∈ Loopα[s, s′] is to explicitly compute
the full table Loopα. This can be done inductively using the following rules15,
obtained by adapting existing constructions16 for ELH and DL-LiteR to ELHI⊥.

(L1) For every s ∈ S: Loopα[s, s] = NC.

(L2) IfM1 ∈ Loopα[s1, s2] andM2 ∈ Loopα[s2, s3], thenM1uM2 ∈ Loopα[s1, s3].

(L3) If {C1, . . . , Cn} ⊆ NC, T |= C1 u · · · u Cn v A, and (s1, A?, s2) ∈ δ, then
C1 u · · · u Cn ∈ Loopα[s1, s2].

(L4) If {C1, . . . , Cn} ⊆ NC, T |= C1 u · · · u Cn v ∃R.D, T |= R v R′, T |=
R v R′′, (s1, R

′, s2) ∈ δ, D ∈ Loopα[s2, s3], and (s3, R
′′−, s4) ∈ δ, then

C1 u · · · u Cn ∈ Loopα[s1, s4].

The resulting table is exactly the desired relation described by (†), see [32] for a
formal proof of the analogous results for ELH and DL-LiteR. Instead of building
the full table, another possibility is to add a set of axioms that reduce testing
M ∈ Loopα[s, s′] to an entailment test in ELHI⊥. The latter alternative has
been used for ELHI⊥ [27], but for a more involved notion of loop designed for
an extension of C2RPQs.

Now that we have a means of determining which loops through the anony-
mous part are available from a given ABox individual, we are ready to present
the evaluation algorithm EvalAtom in Figure 5. It takes as input an NFA α =
(S,Σ, δ, s0, F), an ELHI⊥ KB K = (T ,A), and a pair of individuals (a, b)
from A, and it decides whether (a, b) ∈ cert(α(x, y),K). First, there is an initial
consistency check in Step 1 to determine whether the input KB is satisfiable
(this step can be skipped for ELHI KBs, which are always satisfiable). If the
KB is shown to be unsatisfiable, then the query trivially holds, so the algorithm
outputs yes. Otherwise, we initialize current with the pair (a, s0) and count to 0.
We also compute the maximum value max of the counter, which corresponds to
the longest length of path that needs to be considered. At every iteration of the
while loop (Step 3), we start with a single pair (c, s) stored in current and then
proceed to guess a new pair (d, s′) together with either a transition of the form
(s, σ, s′), or a conjunction of concept names M ∈ Loopα[s, s′]. The first option
corresponds to taking a step in the ABox, whereas the second corresponds to
a shortcut through the anonymous part. In the first case, the idea is that we
would like to append σd to the path guessed so far, but to do so, we must ensure
that the conditions of paths are satisfied. This is the purpose of the entailment
checks in Step 2(c). If we choose the second option, then we must check that
the concept names in the selected conjunction M are entailed at the current
individual. In both cases, if the applicable check succeeds, then we place (d, s′)
in current and increment count. We exit the while loop once we have reached
the maximum counter value or the pair in count takes the form (b, sf) with sf a
final state. In the latter case, we have managed to guess a path with the required
properties, and so the algorithm returns yes.

15 As earlier, we treat conjunctions of concepts as sets, ignoring order and repetitions.
16 We note that for ELH and DL-LiteR, the construction is simpler as we only need to

store concept names, rather than conjunctions of concept names.

Algorithm EvalAtom
Input: NFA α = (S,Σ, δ, s0, F) with Σ ⊆ N±R ∪ {A? | A ∈ NC}, ELHI⊥ KB (T , A),

(a, b) ∈ Ind(A)× Ind(A)

1. Test whether (T , A) is satisfiable, output yes if not.
2. Initialize current = (a, s0) and count = 0. Set max = |A| · |S|+ 1.
3. While count < max and current 6∈ {(b, sf) | sf ∈ F}

(a) Let current = (c, s).
(b) Guess a pair (d, s′) ∈ Ind(A)×S and either (s, σ, s′) ∈ δ or M ∈ Loopα[s, s′].
(c) If (s, σ, s′) was guessed

– If σ ∈ N±R , then verify that T ,A |= σ(c, d), and return no if not.
– If σ = A?, then verify that c = d and T ,A |= A(c), and return no if not.

(d) If M was guessed, then verify that c = d and that T ,A |= B(c) for every
concept name B ∈M , and return no if not.

(e) Set current = (d, s′) and increment count.
4. If current = (b, sf) for some sf ∈ F , return yes. Else return no.

Fig. 5: Non-deterministic algorithm for 2RPQ answering in ELHI⊥.

Example 27. We describe a successful run of the algorithm EvalAtom on input α8

from q8, the KB K5 from Example 20, and the pair (p, p). We start with current =
(p, s0). In the first iteration, in Step 3(b) we guess (p, sf) and PizzaCalabrese ∈
Loopα[s0, sf]. Then in Step 3(d) we verify that p = p andK5 |= PizzaCalabrese(p).
Since we now have a pair (p, sf) and sf is a final state of α8, we exit the while
loop and in Step 4, we return yes. This is correct, since (p, p) ∈ cert(q8,K5). N

The correctness of this algorithm was proved for DL-LiteR and ELH in [32],
and the result can also be extended to ELHI⊥:

Proposition 1. For every 2RPQ q = α(x, y), ELHI⊥ KB K = (T ,A), and
pair of individuals (a, b) from Ind(A): (a, b) ∈ cert(q,K) if and only if there is
some execution of EvalAtom(α,K, (a, b)) that returns yes.

The algorithm EvalAtom needs to make calls to procedures that decide satisfi-
ability, instance checking, and membership of a conjunction of concept names in
the Loopα table. We have discussed that for ELHI⊥, satisfiability and instance
checking are feasible in Exp in combined complexity. Computing the Loopα ta-
ble takes polynomially many iterations in the size of α and T , and each iteration
may need to do some subsumption tests (for (L3) and (L4)), which require at
most single exponential time. Hence, testing for loops can also be achieved us-
ing no more than single exponential time. Thus, we can view EvalAtom as a
non-deterministic polynomial-time procedure that makes external calls to Exp
procedures. Since NPExp = Exp, we obtain an Exp upper bound for 2RPQ
answering in ELHI⊥. To obtain a matching hardness result, we recall that in-
stance checking is Exp-hard for ELHI⊥, and observe that instance checking
can be reduced to answering a simple 2RPQ given by a regular expression of
the form R or A?. Thus, 2RPQ answering is Exp-complete in combined com-
plexity. For data complexity, we observe that computing the Loopα table can be

done independently of the ABox A, hence it takes only constant time in |A| to
test whether B ∈ Loopα[s, s′]. Since in data complexity, satisfiability and entail-
ment in ELHI⊥ are P-complete, we obtain a tight P upper bound for answering
2RPQs.

Since the complexity of EvalAtom is dominated by the complexity of entail-
ment and instance checking, we can obtain better upper bounds for 2RPQ an-
swering in sublogics of ELHI⊥ that are not hard for Exp. Indeed, both combined
and data complexity drop to P-complete for ELH [19], and thus 2RPQ answer-
ing has the same complexity as subsumption and instance checking in ELH. For
DL-LiteR, satisfiability, subsumption and instance checking are known to feasi-
ble in NLogSpace in combined complexity and in AC0 (LogSpace in data
complexity [52]. We do not obtain the same upper bounds for 2RPQ answering,
but we can use these facts to argue that EvalAtom gives us P and NLogSpace
upper bounds in combined in data complexity, respectively; both bounds are
known to be tight [32].

Theorem 17 ([32]). For ELHI⊥, 2RPQ answering is Exp-complete in com-
bined complexity and P-complete in data complexity. For DL-LiteR and ELH,
the combined complexity drops to P-complete. In data complexity, the problem
is NLogSpace-complete for DL-LiteR, and P complete for ELH.

6.3 Extending the Approach to C2RPQs

Recall that 2RPQs are single-atom queries that do not contain quantified vari-
ables. The latter restriction turns out to be inessential, as the complexity results
for 2RPQs hold also for single-atom queries with quantified variables. This can
be easily shown for queries of the form ∃x. α(x, t) (with t a term), ∃x. α(t, x)
(with t a term), and ∃x, y. α(x, y) (with x 6= y). Indeed, q(x) = ∃y.α(t, y) can
be replaced by the 2RPQ q′(t, y) = α′(t, y), where L(α′) = L(α) · Γ ∗, where
Γ = N±R ∩ sig(K), and then the answers to q are obtained by projecting the an-
swers of q′ to the first position. Likewise, ∃x.α(x, t) can be answered by taking a
2RPQ with regular language Γ ∗ ·L(α) and ∃x, y.α(x, y) by using Γ ∗ ·L(α) ·Γ ∗.
Single-atom queries of the form ∃x.α(x, x) also have the same complexity, but
showing this requires a more intricate proof [32].

Using a similar approach, one can show that the upper bounds in Theorem 17
hold even for the more general class of C2RPQs where every existentially quanti-
fied variable occurs in at most one role atom, that is, C2RPQs with no existential
join variables, since they can be answered by combining the answers to a linear
number of one-atom C2RPQs.

For arbitrary C2RPQs, which may have existential join variables, we require
a more complex algorithm that combines the ideas discussed in Section 5.2 with
the loop computation from the present section. Such an algorithm has been
proposed in [32] for DL-LiteR and ELH, and in [27] for handling an extension of
C2RPQs over ELHI⊥ KBs. The basic idea is to rewrite the input C2RPQ into a
set of C2RPQs for which we only need to consider matches that map all variables
to ABox individuals. This may be accomplished using rewriting procedure that

is quite similar in spirit to the one we described for CQs, but considerably more
involved since we need to take into account possible ‘loops’ that go deeper into
the anonymous part than the image of the query variables. By combining this
extended rewriting procedure with the 2RPQ answering algorithm described in
this section, the following complexity results can be shown:

Theorem 18 ([27, 32]). C2RPQ answering is

1. NLogSpace-complete in data complexity for DL-LiteR,
2. P-complete in data complexity for ELH and ELHI⊥,
3. PSpace-complete in combined complexity for DL-LiteR and ELH, and
4. Exp-complete in combined complexity for ELHI⊥.

6.4 Results for Other DLs

The Exp upper bound in combined complexity for C2RPQs has been shown
even for the significantly more expressive Horn-SHOIQ [166], which is in close
correspondence with the Horn fragment of the expressive profiles of OWL. How-
ever, the technique employed there is quite different. In a nutshell, it considers
all the (exponentially many) different ways of breaking the query into parts that
are matched at the core, and parts that are matched in the trees. Answering the
latter reduces to C2RPQ answering in the simpler Horn-SHIQ. The authors use
automata on infinite trees for this purpose, but the technique we have described
could also be used: although presented for lightweight DLs [32], it is based on
the earlier algorithm for Horn-SHIQ and extends easily to the latter. For the
parts that are matched at the core, the authors use an explicit, step-by-step
computation of all the possible relevant paths between ABox individuals, possi-
bly passing by the anonymous part. This is somehow similar in spirit to the loop
computation we have discussed, but necessarily more involved, since the rele-
vant paths in Horn-SHOIQ are significantly more complex than simple loops
(mainly due to the almost complete loss of the forest-like structure of the canon-
ical models) and uses a Horn-SHIQ C2RPQ answering algorithm as an oracle.
The results of [166] can be lifted to P2RPQs (defined analogously to PEQs) and
cover also Horn-SROIQ, which is even more expressive than Horn-SHOIQ and
underlies OWL 2, the newest version of OWL [170]. However, for the latter DL,
C2RPQ and P2RPQ answering are 2Exp-complete in combined complexity. If
we consider data complexity, P2RPQ answering in all Horn logics between EL
and Horn-SROIQ is complete for P, and all the algorithms we have mentioned
run in polynomial time in the size of the ABox.

In non-Horn DLs, the complexity picture is very similar to CQs: the lack
of universal models raises the data complexity to coNP-hard [193], and the
combined complexity to 2Exp-complete, for every DL between ALC and the
highly expressive ZIQ, ZOQ and ZOI [58, 57]. The main difference with the
(U)CQ setting is that even restricted classes of C2RPQs are 2Exp-hard for ALC
[169] (by contrast, CQ answering in ALCHQ is in Exp), and that C2RPQs are
undecidable already for ALCOIF .

6.5 Navigational Queries Beyond (C)(2)RPQs

There has been considerable interest in recent years in extending (C)(2)RPQs
with additional features that are considered important for applications. In par-
ticular, a useful XPath construct that is missing in C2RPQs is the possibility of
using test operators, also known as nesting, to express sophisticated conditions
along navigation paths. One simple way to introduce nesting into (C)(2)RPQs is
to replace regular expression by so-called nested regular expressions (NREs), in
which one can use 〈ρ〉 to enforce the existence of an outgoing path that satisfies ρ,
where ρmay itself be an NRE. For example, one could use 〈awarded MichelinStar?〉
to test whether a restaurant has been awarded a Michelin star and the NRE
(hasWorkedAt Restaurant? 〈awarded MichelinStar?〉 hasWorkedAt−)∗ to find chefs
that are connected via a sequence of chefs such that every pair of adjacent
chefs has worked at the same Michelin-starred restaurant. NREs were initially
introduced for the purpose of defining nSPARQL, a navigational extension of
SPARQL [174]. Subsequent investigations into the use of NREs for querying
graph databases revealed them to have desirable computational properties [22,
23].

The query answering problem for (C)N2RPQs (defined using NREs) in the
presence of DL ontologies was recently investigated in [27]. In that work, the
authors show that, for a wide range of DLs, adding nesting to (C)2RPQs does
not increase the worst-case data complexity of query answering. For expressive
DLs, this can be shown by reducing CN2RPQs to plain C2RPQs, by introducing
new concepts in the TBox that capture the nested expressions. For ELHI⊥ and
its sublogics, one can use a more sophisticated version of the rewriting and loop
procedures mentioned in Section 6.3. However, the news is not all positive as
it was further shown that adding nesting leads to Exp-hardness in combined
complexity, even for (non-conjunctive) 2NRPQs and the lightweight DLs DL-
Lite and EL. This negative result contrasts sharply with the tractable data
complexity for the same setting but without nesting (cf. Theorem 17).

The preceding results have been complemented by three other recent works
[203, 132, 43]. In [203], the authors consider the problem of answering (a slight
extension17 of) CNRPQs over OWL 2 EL knowledge bases. With regards to
combined complexity, they establish a PSpace upper bound for CNRPQs and
a P upper bound for NRPQs, thereby demonstrating that it is the combina-
tion of of nesting and inverses that leads to Exp-hardness. In [132], the authors
investigate a variety of different XPath-inspired query languages, whose most
expressive member essentially corresponds to N2RPQs extended with negation
over unary and binary expressions. It is shown that negation over binary expres-
sions immediately leads to undecidability, and the query answering problem for
the path-positive fragment (allowing only unary negation) is coNP-complete in
data complexity and Exp-complete in combined complexity for both DL-LiteR
and EL (the Exp upper bound is shown for ELHI⊥). Finally, in [43], the au-
thors compare three different approaches to extending C2RPQs with nesting,

17 The query languages considered in [203, 132] also allow unary tests to be combined
using conjunctive and disjunction. A similar construct was considered in [31].

with PFO+TC1 (positive FO queries with transitive closure on binary predi-
cates) being the most expressive language. They establish a general decidability
result for PFO+TC1 queries that holds for all DLs satisfying a quasi-forest model
property, and for the DL S, they show (k + 2)-EXPTIME-hardness for queries
with k levels of nesting of the transitive closure operator.

The issue of defining interesting path query languages that support nesting
remains an active area of research in the database community, and there have
been several recent proposals, including: regular queries [180], guarded regular
queries [33], nested monadically defined queries [192], and the more general fam-
ily of nested flag-and-check queries [44]. Beyond nesting and negation, (C)2RPQs
have also been extended with path variables and regular relations [21].

7 Undecidability of Answering FO and Datalog Queries

We have seen in the preceding sections how various restricted forms of first-order
and Datalog queries can be answered over Horn DL knowledge bases. Moreover,
the procedures that we have devised run in polynomial time in the size of the
ABox, making them suitable for applications involving large amounts of data.
It is natural to wonder whether these nice computational properties extend to
more expressive query languages, and in particular, to the classes of (full) first-
order and Datalog queries defined in Section 3.2. Unfortunately, we will shall see
that the answer is negative: not only do we lose tractability, but we even lose
decidability. It is for this reason that full first-order and Datalog queries are not
considered suitable query languages for OMQA.

7.1 First-order Queries

Because of the open-world semantics of DL knowledge bases, it is possible to
reduce the validity problem for first-order sentences to the problem of answer-
ing Boolean FO queries over empty DL KBs. As the FO validity problem is
undecidable, we obtain the following result.

Theorem 19. First-order query answering is undecidable in every DL.

The preceding theorem is quite discouraging, but it still leaves open the pos-
sibility that there may exist other natural classes of FO queries that are more
expressive than (U)CQs, yet remain decidable in the presence of DL ontologies.
Of particular interest are the extensions of (U)CQs with negation or inequali-
ties, which have been extensively studied in the database setting. These query
languages are formally defined as follows.

Definition 10 (Conjunctive Queries with Safe Negation). A conjunctive
query with safe negation (CQ¬s) is an FO query of the form q(x) = ∃y ϕ where
ϕ is a conjunction of (positive) atoms and negated atoms using variables in x∪y
and such that every variable occurs in at least one positive atom.

Remark 14. The requirement that every variable occurs in some positive atom
is made to ensure domain independence. Dropping this condition would mean
allowing queries like ¬Spicy(x) that are not domain independent.

Example 28. The following CQ¬s finds menus whose main course is not spicy.

∃yMenu(x) ∧ hasMain(x, y) ∧ ¬Spicy(y)

This query will return all individuals m such that in every model of the KB, m
belongs to Menu and has an hasMain-successor that does not belong to Spicy. N

Definition 11 (Conjunctive Queries with Inequalities). A conjunctive
query with inequalities (CQ6=) is an FO query q(x) = ∃y ϕ where ϕ is a con-
junction of atoms and inequalities t1 6= t2 whose variables are contained in x∪y.

Example 29. The following CQ 6= could be used to to find menus that contain at
least three courses:

∃y1y2y3 Menu(x) ∧ hasCourse(x, y1) ∧ hasCourse(x, y2) ∧ hasCourse(x, y3)

∧ y1 6= y2 ∧ y1 6= y3 ∧ y2 6= y3

Observe that this query could be captured using the concept Menuu ≥ 3hasCourse
in DLs that allow for conjunction and unqualified number restrictions. In effect,
by allowing inequalities in the language, we are able to express some limited
form of number restrictions.

We could also use inequalities to find two menus offered by the same estab-
lishment that contain different dessert courses:

∃y1y2z1z2 offers(x, y1) ∧Menu(y1) ∧ hasDessert(y1, z1)∧
offers(x, y2) ∧Menu(y2) ∧ hasDessert(y2, z2) ∧ z1 6= z2

This query is not expressible as a DL concept. N

Analogously to how we defined UCQs, we can define UCQ¬ss (resp. UCQ6=s)
as disjunctions of CQ¬ss (resp. CQ6=s) that have the same answer variables.

The complexity and decidability of (unions of) CQ¬s and CQ 6= was first
investigated in [185], but it is only more recently that some key questions, such as
the decidability of answering CQ¬ss and CQ 6=s in DL-LiteR, have been resolved
[101]. While some open questions remain, the results obtained so far paint a
decidedly negative picture:

Theorem 20. The following problems are undecidable:

– CQ¬s answering in DL-LiteR[101]
– UCQ6= answering in EL⊥ [185]
– CQ6= answering in DL-LiteR[101]
– CQ6= answering in EL⊥ [122]

We will not explain how the preceding decidability resuls are obtained, but
merely note that in contrast to the query languages from the preceding sections,
the answers to CQ6=s and CQ¬ss are not preserved under homomorphisms, and
thus we are not able to use the universal model for query answering.

One solution that has been proposed in response to the undecidability of FO
query answering is to adopt an alternative epistemic semantics [51]. The idea is
to start with a standard DL query language Q (like IQs or CQs) and to introduce
epistemic atoms of the form Kq (q ∈ Q), which are interpreted as the certain
answers to q. These epistemic atoms can then be combined using the Boolean
connectives and first-order logic quantifiers. To answer such a query, one may
proceed by first computing the certain answers to the queries appearing in the
epistemic atoms, storing the results in a database, and then evaluating a first-
order query over this database. It follows that the query answering problem for
the epistemic query language with embedded Q-queries is decidable (resp. P in
data complexity) in a DL L whenever Q answering in L is decidable (resp. P in
data complexity).

Example 30. The epistemic query ∃yKMenu(x)∧KhasMain(x, y)∧¬KSpicy(y)
returns all menus m that have a main dish d that is not known to be spicy,
or more formally, d is not a certain answer to Spicy(x). Note that this is quite
different from knowing that the main dish d is not spicy (and such a distinction
may be relevant when choosing a menu!).

7.2 Datalog Queries

From the early days of description logic research, there has been significant
interest in combining DLs with Datalog rules. Unfortunately, the combination
of DLs and rules often leads to undecidability:

Theorem 21 ([144]). Datalog query answering is undecidable in every DL that
can express (directly or indirectly) an inclusion of the form Av ∃r.A.

Since Av ∃r.A is directly expressible in EL and can be simulated using the
pair of DL-Lite inclusions Av ∃r, ∃r− vA, we have the following:

Corollary 1. Datalog query answering is undecidable in DL-Lite and EL.

It is worth noting that Datalog queries are preserved under homomorphisms,
and thus, one can in principle evaluate a Datalog query over the (potentially infi-
nite) universal model of a Horn DL knowledge base. However, running a Datalog
program over the universal model leads to a new interpretation in which the do-
main elements may be arbitrarily connected, thus lacking the forest structure
upon which many query answering techniques rely. For some restricted forms of
Datalog queries, like the navigational queries from Section 6, it is still possible to
develop techniques that exploit the forest structure of the universal model, but
for general Datalog queries, the ability to arbitrarily connect unnamed objects
leads to undecidability.

One simple way of regaining decidability is to enforce that Datalog rules be
only applied to ABox individuals, rather than unnamed objects. This can be
formalized using the notion of (weak) DL-safety [160, 184], which requires that
every variable in a rule (head) occurs in a body atom whose relation does not
appear in the TBox. DL-safe and weak DL-safe Datalog are considerably less
expressive as query languages over DL KBs than unrestricted Datalog, but can
nevertheless express some queries that are not captured by other decidable query
languages we have considered. Using similar techniques to those presented in
Section 5 for CQ answering in ELHI⊥, it was shown in [81] that the complexity of
answering weak DL-safe Datalog queries over Horn-SHIQ KBs is Exp-complete
in combined complexity and P-complete in data complexity.

8 Recent and Ongoing Research in OMQA

In this section, we provide an overview of recent work on OMQA and areas of
ongoing research. Although we try to include many directions in which there are
interesting developments, it is not a complete survey, and the discussion should
not be considered exhaustive.

8.1 OMQA in DL-Lite

In the mid-2000’s, Calvanese et al. [50, 52] introduced PerfectRef (for ‘perfect
reformulation’), the first query rewriting algorithm for DL-Lite, which was im-
plemented in the Quonto system [2]. The PerfectRef algorithm produces a UCQ-
rewriting of the input CQ and TBox by interleaving rewriting steps, in which a
query atom is rewritten by ‘applying’ a TBox inclusion in the backwards direc-
tion (e.g., rewriting Menu(x) into ∃y.hasCourse(x, y) using ∃hasCoursevMenu),
and reduction steps, in which unifiable atoms are merged (such unifications are
essential to the completeness of the rewriting mechanism). The PerfectRef al-
gorithm paved the way by showing how OMQA could be reduced to database
query evaluation, but experiments showed that the UCQ-rewritings generated by
PerfectRef were often extremely large (containing on the order of tens of thou-
sands of CQs), making it very costly, and sometimes impossible, to compute
and evaluate them. This spurred a whole line of research devoted to the design,
implementation, and optimization of query rewriting algorithms. The RQR al-
gorithm, proposed by Perez-Urbina, Motik and Horrocks and implemented in
the Requiem system [175], achieved significantly better performance by trans-
forming the input DL-LiteR TBox and query into a set of first-order clauses
and then applying a resolution procedure to compute a rewriting. The use of
function symbols to handle existential axioms and the native support for axioms
of the form Av∃R.B (instead of having to simulate them via role inclusions, cf.
Example 2) makes RQR more goal-oriented and allows it to avoid some unnec-
essary or redundant intermediate results. Further improvements were obtained
by the Rapid system of Chortaras, Trivela and Stamou [67] which by virtue of

its more sophisticated resolution strategy and additional optimizations is able
to substantially reduce the number of ‘useless’ inferences.

It should be noted that both Requiem and (the initial version of) Rapid
generate UCQ-rewritings and thus are limited by the potentially huge size of
the minimal UCQ-rewriting (the same holds for other UCQ-based rewriting ap-
proaches [95, 124, 211]). Indeed, it is not hard to see that the smallest UCQ-
rewriting of a query may be exponentially large: take for instance the CQ
A1(x) ∧ A2(x) ∧ . . . ∧ An(x) and the TBox {Bji v Ai | 1 ≤ i ≤ n, 1 ≤ i ≤ m},
whose minimal UCQ-rewriting is a disjunction of (m + 1)n CQs, correspond-
ing to the (m + 1)n different ways of choosing, for each 1 ≤ i ≤ n, one of
the concepts Ai, B

1
i , . . . , B

m
i . This exponential blowup is commonly observed in

practice due to the fact that real-world ontologies typically contain complex hi-
erarchies of concepts, and thus there are often several choices of how to rewrite
a given atom. Observe however that such choices can be compactly representing
by adopting an alternative representation, e.g., the preceding CQ admits a short
rewriting as a positive existential query (

∨n
i=1(Ai(x)∨B1

i (x)∨ . . .∨Bmi (x))) or a
non-recursive Datalog (NDL) program ({Q(x)← Q1(x), . . . , Qn(x)}∪{Qi(x)←
Ai(x), Qi(x) ← Bji (x) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}). This suggests that much more
substantial gains in performance can be obtained by dropping the UCQ repre-
sentation of rewritings in favour of more succinct query languages. This idea
was first explored by Rosati and Almatelli whose Presto system [188] produces
NDL-rewritings. An experimental evaluation showed it to significantly outper-
form the UCQ-based rewriting approaches; similar performances were obtained
by Rapidd, a variant of Rapid that outputs NDL-rewritings [68]. The tree wit-
ness rewriting of Kikot, Kontchakov, and Zacharyschev [119], which is utilized
by the Ontop system [181], provides another example of an NDL-rewriting ap-
proach. An experimental comparison showed it to be the most efficient among
the considered NDL approaches and also confirmed the superiority of NDL-based
rewriting algorithms over UCQ-based ones. We note in passing that in addition
to NDL-rewritings, there have been some recent works producing different types
of PE-rewritings, such as semi-conjunctive queries (SCQs) [206] and joins of
unions of conjunctive queries (JUCQs) [46, 45]. In the latter work, different de-
compositions of the original query into subqueries give rise to a space of different
JUCQ-rewritings, and a cost function is used to estimate the cost of executing
a particular rewriting and to select the most efficient one.

Some further optimizations have been developed that are not applicable in
every setting, but can lead to dramatic improvements in performance when they
can be used. First, if one has control over the way that data is stored, then
one may store concepts as integer values and assign these values in such a way
that identifying the set of individuals satisfying a given concept can be achieved
by posing simple range queries over the database. This technique, known as
semantic indexing, has been shown to be very effective, and it is exploited by
the UCQ-based Quest rewriting engine of Rodriguez-Muro and Calvanese [182]
and has been more recently used in combination with the aforementioned tree
witness rewriting within the Ontop system [181]. Another important type of

optimization involves the use of so-called ABox dependencies (also known as
extensional constraints), which are TBox inclusions that hold in the interpreta-
tion (database) associated with the ABox. Intuitively, if we know that the ABox
satisfies the TBox inclusion A v B, then it is useless to rewrite the atom B(x)
into A(x), since whenever the ABox contains A(a), it must also contain B(a). In
the Quest system, the TBox is simplified by removing inclusions that are made
redundant by the constraints, and this simplified TBox is used during query
rewriting. Further optimizations based upon exploiting extensional constraints,
as well as disjointness and functionality axioms, were developed by Rosati and
implemented in the Prexto system [183]. We should mention that both Quest
and Prexto produce UCQs, but the rewritings they generate can be signifi-
cantly smaller than those of other UCQ-based systems, since they only need to
work for ABoxes satisfying the constraints, rather than for arbitrary ABoxes.

The combined approach of Kontchakov et al. [126] represents an entirely dif-
ferent approach to achieving efficient answering in DL-Lite. The basic idea is
to saturate the ABox using the TBox axioms, and then to evaluate the query
over the saturated ABox. More precisely, one computes, in an offline phase, a
finite first-order interpretation (i.e., a relational database) that corresponds to a
compact representation of the canonical model of the KB (recall that we cannot
in general compute the full canonical model, as it may be infinite). During the
construction of this interpretation, new ABox individuals are introduced to serve
as witnesses for the existential restrictions in the TBox axioms. However, to en-
sure finiteness, instead of generating several (possibly infinitely many) witnesses
for the same inclusion (as in the canonical model construction), we will ‘reuse’
the same witnessing individual. If we now evaluate the input CQ over this new
saturated interpretation, then we will be sure to obtain all of the certain an-
swers, but we may also obtain some false answers due to the reuse of witnesses.
There are two ways of addressing this issue. The first possibility (adopted in
[126]) is to rewrite the CQ in order to block spurious answers and to evaluate
the rewritten query over the saturated interpretation. If the TBox is formulated
in the basic dialect DL-Litecore , then the rewriting step results in a polynomial-
size FO-query. However, for DL-LiteR, the rewritten query may be exponentially
large. Thus, an alternative approach, proposed in a subsequent work [149] and
implemented in the Combo system, consists in evaluating the original query
over the saturated interpretation to get a superset of the certain answers, and
then applying an external polynomial-time filtering procedure to weed out the
spurious answers. An experimental evaluation comparing Combo with Rapid
and Presto showed it to be comparable to these systems in simpler settings,
but much more robust to increases in the size of the data or the complexity of
the concept hierarchy induced by the TBox.

We note that none of the preceding rewriting algorithms for DL-LiteR is
guaranteed to terminate in polynomial time. While UCQ-based rewritings are
necessarily exponential in the worst case, it is natural to wonder whether polyno-
mial rewritings can be achieved by adopting the more succinct PE, NDL, and FO
representations. A first negative result was obtained by Kikot, Kontchakov, and

Zacharyschev [118] who proved the impossibility of generating an FO-rewriting
in polynomial time (unless P = NP) but left open the existence of polysize
rewritings. In a series of subsequent works [120, 121, 29], the preceding authors,
joined by Bienvenu and Podolskii, established tight connections between the size
of rewritings of CQs w.r.t. DL-LiteR TBoxes and the circuit complexity of cer-
tain Boolean functions, which allowed them to pinpoint the worst-case size of
PE-, NDL-, and FO-rewritings under various restrictions on the TBox and the
input query. In general, the news is bad: even if we assume that the ABox has
been saturated (i.e., we perform query answering over the core of the canonical
model), PE- and NDL-rewritings can be exponentially large, and a superpoly-
nomial lower bound on the size of FO-rewritings holds under the widely-held
complexity-theoretic assumption that NP 6⊆ P/poly [120]. For PE-rewritings,
this negative result cannot be easily escaped: the exponential lower bound ap-
plies even if the query is tree-shaped [120] or if the TBox has depth 2 (i.e., it
can only produce canonical models whose elements are at most two ‘steps’ away
from the ABox) [121], and a superpolynomial lower bound has recently been
shown for the very restricted setting in which the input query is a linear CQ
and the TBox has depth 2 [29]. In the case of NDL-rewritings, the picture is
brighter: polysize NDL-rewritings always exist for tree-shaped queries with a
bounded number of leaves (and arbitrary DL-LiteR TBoxes), and for bounded
treewidth queries paired with bounded depth ontologies [29]. Moreover, an anal-
ysis of the combined complexity shows that CQ answering is tractable for these
classes of queries and TBoxes, suggesting that it may be possible to define NDL-
rewritings that can be both generated and evaluated in polynomial time (as
was done in [34] for tree-shaped CQs in DL-Litecore). We should point out that
the aforementioned negative results on the size of rewritings concern so-called
pure rewritings, which do not use any constants other than those given in the
query. Indeed, Gottlob and Schwentick [98] showed that if one admits existen-
tial quantification over two special constants (assumed to be present in every
ABox), then polynomial-size NDL-rewritings exist for all CQs and DL-LiteR
TBoxes, although it is unclear whether the obtained rewritings (which encode
non-deterministic guesses using the special constants) can be successfully used
in practice (see [93] for further discussion).

8.2 OMQA beyond DL-Lite

We next review the OMQA algorithms and systems that have been proposed for
EL and its Horn extensions. A Datalog rewriting for ELH was defined by Rosati
[186] and used to establish P data complexity of CQ answering in that logic.
Pérez-Urbina, Motik and Horrocks [176] subsequently proposed a resolution-
based Datalog rewriting algorithm for the much more expressive ELHIO⊥. The
algorithm has been implemented in the previously mentioned Requiem system;
it returns a UCQ-rewriting when the input ontology is in DL-LiteR and otherwise
outputs a Datalog rewriting. The kyrie system [156] of Mora and Corcho is
based upon the same resolution procedure as Requiem, but it includes several
additional optimizations that significantly improve the running time. A new

version, kyrie2, integrates optimizations based upon extensional constraints
from the Prexto system (see earlier). The first practical algorithm for CQ
answering in Horn-SHIQ, based upon Datalog rewriting, was proposed by Eiter
et al. [81] and implemented in the Clipper system. We presented the main ideas
underlying this algorithm in Section 5. The resolution-based Rapid system, first
developed for DL-LiteR, has been extended first to ELHI [207], and very recently
to Horn-SHIQ [208]. It is highly optimized and outperforms Clipper, making
it currently the most efficient approach available to handle all of Horn-SHIQ.
As noted in Section 5, CQ answering algorithms have been proposed for the
even more expressive Horn-SHOIQ and Horn-SROIQ [166], but at the time
of writing, there are no implemented systems targeting these DLs.

A highly influential line of work was initiated by Lutz, Toman, and Wolter
[146] who introduced the combined approach, which we have already discussed for
DL-Lite but was in fact first developed to handle EL and its extensions. In that
work, they introduce the notion of combined FO-rewritability, which generalizes
FO-rewritability by allowing a query-independent polynomial-time preprocessing
step in which one builds an FO-interpretation from the ABox and TBox, followed
by an ABox-independent query rewriting step that generates an FO-query whose
evaluation of the interpretation yields the certain answers. As we have seen,
the first step corresponds to compiling the TBox into the ABox and yields a
finite representation of the canonical model, whereas the second step serves to
block unsound answers that can result from approximating the possibly infinite
canonical model with a finite interpretation (alternatively, one may replace the
query rewriting step by a filtering step that identifies and discards the spurious
answers). The interest of the combined approach is that it provides a means of
exploiting relational database technology, while being applicable to a much wider
range of DLs than (plain) FO-rewritability. In particular, the original paper by
Lutz et al. showed that the approach could be applied to ELHdr⊥ (which extends
ELH⊥ with domain and range restrictions), for which CQ answering is P-hard
in data complexity, thus preventing the use of plain FO-rewriting. For this logic,
the query rewriting step involves only very simple modifications of the query and
is guaranteed to terminate in polynomial time. Stefanoni, Motik, and Horrocks
[202, 201] subsequently showed how the technique could be adapted to handle
first nominals, then transitive roles. In both works, the saturation step is handled
by means of a Datalog program, and following [149], filtering is used in place
of rewriting to eliminate unsound answers. Very recently, Feier et al. [83] have
further extended the combined approach to RSA, which is a fragment of Horn-
SHOIQ that was introduced in [64] as a way of capturing the three OWL 2
profiles while retaining PTIME combined complexity for basic reasoning tasks
(satisfiability and instance checking). Both the saturation and filtering steps
are specified declaratively by means of a logic program with function symbols
and stratified negation, and the answers are obtained by computing the minimal
model of this program using a logic programming system (note however that one
could equally well store the saturated interpretation as a database and leverage
relational technology to perform the querying phase). Experiments conducted

on prototype implementations of the preceding algorithms show the combined
approach to be highly effective. The principal drawback is that the saturated
interpretation can be costly to compute, and it needs to be kept up to date,
which may be problematic in applications in which the data changes frequently.

Another approach to using relational database systems to support OMQA
with non-FO-rewritable ontology languages relies upon the observation is that
while FO-rewritings need not exist for all CQs and all Horn DL ontologies, it is
still possible that for particular query-ontology pairs, an FO-rewriting does exist
(and hence relational technology can be used to answer such queries). Thus, an
interesting and potentially quite useful research direction is to develop methods
for identifying the cases where FO-rewriting is possible and to produce such
rewritings when they exist. A first step in this direction was made by Bien-
venu, Lutz, and Wolter [30], who established decidability and complexity results
for FO-rewritability of IQs in Horn DLs, showing the problem to be PSpace-
complete for EL TBoxes and the full ABox signature and Exp-complete for
ELHI and for EL if one may restrict the ABox signature (note that even if
FO-rewritings do not exist for arbitrary ABoxes, they might exist for ABoxes
formulated in a restricted signature). While these results were quite positive
(similar problems in databases are known to be undecidable), the automata-
based decision procedures used to show the upper bounds were ill-suited for
implementation. Combining these theoretical results with an existing backward-
chaining rewriting procedure [124], Hansen, Lutz, Seylan, and Wolter recently
proposed a practical algorithm for testing FO-rewritability of IQs w.r.t. ontolo-
gies formulated in ELHdr. The algorithm has been implemented in the Grind
system, and experimental results on real-world ontologies are very encouraging:
the vast majority of IQs do possess FO-rewritings, and the computed rewritings
(represented as NDL programs) are typically quite small. The challenge in fu-
ture work will be to see whether it is possible to extend this approach to more
expressive Horn DLs and more expressive queries (in particular, CQs).

8.3 Querying Existing Relational Data Using Mappings

Throughout this chapter, we have assumed that the data is given as a set of
ABox assertions, which may be stored as relational tables, Datalog facts, or
RDF triples, but which only involve unary and binary relations (concepts and
roles). However, in many applications, one is interested in using ontologies to
query existing relational data, which typically involves relations of arity greater
than two. In order to be able to apply the preceding techniques to arbitrary
relational databases, it is necessary to provide a mapping that specifies the se-
mantic relationship between the database relations and the concepts and roles
in the considered DL vocabulary. Formally, a mapping is a finite set of mapping
assertions, each taking the form ϕ → ψ where ϕ is an query formulated using
the database relations and ψ is a query in the DL vocabulary. Global-as-view
(GLAV) mappings, in which ϕ is a CQ and ψ is a single atom (without quan-
tifiers), are the most commonly considered. Given a relational database and a
GLAV mapping, we obtain the corresponding ABox by applying the mapping

assertions (viewed as rules) to the database, and the objective is to compute the
certain answers over the KB consisting of this ABox and the TBox. The term
ontology-based data access (OBDA for short) was originally coined to refer to this
problem, but in recent years the term has taken on a more general meaning and
is often used when speaking of the simpler OMQA setting without mappings.

Observe that by computing the ABox induced by the database and mappings,
we end up with an OMQA problem, to which we can apply all of the techniques
discussed in this chapter. However, it is often preferable to work with so-called
virtual ABoxes, meaning that we use the mappings to define the ABox, but do
not actually produce it. Indeed, if we work with DL-Lite ontologies and utilize
an FO-rewriting approach, then we can proceed in three steps: (i) perform query
rewriting as usual to obtain an FO-query that is guaranteed to give the right an-
swers if it were evaluated over the (virtual) ABox, (ii) unfold the rewriting using
the mapping assertions to obtain an FO-query over the database signature, and
(iii) evaluate the resulting FO-query over the original relational database. This
approach was first elaborated by Poggi et al. and implemented in the Mastro
system [178]. Experience using this system in a real-world application with the
Italian Ministry of Economy and Finance showed that the mapping unfolding
phase yielded extremely large queries, which in many cases could not be handled
by the database system. An analysis of the obtained queries revealed that they
contained a lot of redundancies and could be significantly simplified by exploit-
ing the containment relationships between the database queries appearing in the
mapping assertions. This idea has been formalized in the PerfectMap algorithm
[177], which has been incorporated into the Mastro system and experimen-
tally validated on the aforementioned application. Mappings are also supported
by the Ontop system [181]. In this approach, the TBox is integrated into the
mapping in such a way that applying the mapping assertions directly generates
all inferable assertions (i.e., the new mapping produces the core of the canon-
ical model), and the tree witness rewriting is used to handle query matches
that involve anonymous individuals. The FO-query obtained by unfolding the
rewritten query using the modified mapping is simplified using semantic query
optimization, which exploits the integrity constraints satisfied by the underly-
ing database. Experiments with Ontop have shown that the resulting queries
are typically of reasonable size and can be efficiently evaluated by relational
database systems.

8.4 Inconsistency-tolerant Query Answering

While it may be reasonable to assume that the TBox has been properly de-
bugged, the ABox is typically much larger and subject to more frequent mod-
ifications, making errors in the data almost inevitable. Such errors may render
the KB inconsistent, making standard query algorithms next to useless (since
when the KB is inconsistent, every tuple is trivially returned as an answer).
Appropriate mechanisms for dealing with inconsistent data are thus crucial to
the successful use of OMQA in practice. Ideally, one would restore consistency
by identifying and correcting the errors, but when this is not possible, a sensible

strategy is to adopt an inconsistency-tolerant semantics which allows reasonable
answers to be obtained despite the inconsistencies. The most well-known, and
arguably the most natural, such semantics is the AR semantics [138], which was
inspired by earlier work on consistent query answering in relational databases
(see [24] for a survey). The semantics is based upon the notion of a repair, defined
as an inclusion-maximal subset of the data that is consistent with the ontology.
Repairs correspond to the different ways of achieving consistency while retaining
as much of the original data as possible. Query answering under AR semantics
amounts to computing those answers that hold in every repair. Two other natu-
ral repair-based semantics are the brave semantics [35], which only requires that
an answer holds in some repair, and the more cautious IAR semantics [138],
which corresponds to evaluating the query over the intersection of the repairs.

The complexity of answering queries under the AR semantics has been thor-
oughly investigated for a range of DLs [138, 187, 25, 35]. The results are rather
discouraging: the problem is coNP-hard in data complexity already for instance
queries in DL-Lite [138] and for conjunctive queries in any DL that can express
disjointness of atomic concepts [25]. The IAR and brave semantics, which can
be seen respectively as providing under- and over-approximations of the set of
answers w.r.t. AR semantics, are more computationally well-behaved: for DL-
LiteR, both semantics can be computed using first-order query rewriting [139,
35], and thus has the same low complexity as CQ answering under classical se-
mantics. Generalizing the IAR and brave semantics, Bienvenu and Rosati [35]
introduced two parameterized families of inconsistency-tolerant semantics, called
k-defeater and k-support semantics, that approximate the AR semantics from
above and from below, respectively, and converge to the AR semantics in the
limit. They established a general tractability result that applies to all known
first-order rewritable languages, in particular many dialects of DL-Lite.

When information on the reliability of different facts is available, it is natural
to use this information to identify preferred repairs, and to use the latter as the
basis of inconsistency-tolerant query answering. A weight-based version of the
AR semantics was first considered in the work of Du, Qi, and Shen [73]. More
recently, Bienvenu, Bourgaux, and Goasdoué [26] studied the complexity of CQ
answering in DL-LiteR under variants of the AR and IAR semantics based upon
several different notions of preferred repairs, in which preferences are captured
by cardinality, weights, or priority levels.

In terms of implementations, there are currently two systems for CQ an-
swering over inconsistent DL-Lite KBs: the Quid system [189] implements the
IAR semantics, using either query rewriting or ABox cleaning, and the CQAPri
system [26] implements the AR, IAR and brave semantics, using tractable meth-
ods to obtain the answers under IAR and brave semantics and calls to a SAT
solver to identify the answers holding under AR semantics (the system can also
exploit preferences in the form of priority levels). For expressive DLs, Du et al.
[73] have implemented a SAT-based algorithm for answering ground CQs (i.e.,
conjunctions of IQs) in SHIQ under weight-based AR semantics.

8.5 Temporal Query Answering

Time plays a central role in many application domains, and data is usually
time-dependent: new contracts are signed, projects conclude, students gradu-
ate, menus change, etc. It is thus not surprising that the study of extensions
of classical DLs that can model and reason about time is almost as old as DLs
themselves, dating back to the early 1990s [194]. There are many different ap-
proaches to incorporating time into DLs, allowing for different design choices,
which lead to a variety of temporal DLs with different computational proper-
ties. A prominent approach to construct temporal DLs is to combine DLs with
dynamic formalisms, such as classical temporal logics like LTL and CTL, logics
of time intervals [105], or action logics [11], and provide a two-dimensional se-
mantics. For each such combination, there are other design choices to be made,
like deciding to which components of the DL syntax (concepts, roles, ABoxes)
temporal operators can be applied. There is a vast literature on temporal DLs;
we refer to [13, 154, 12, 87] for surveys. Most work so far, however, focuses on
so-called ‘standard’ reasoning tasks, like satisfiability testing and concept sub-
sumption. Following in the steps of the research on classical DLs, the study of
temporal DLs based on the lightweight DLs of the EL and DL-Lite families has
become a very active area of research and with much progress in the last few
years [16, 15, 102, 103].

Recently, the study of temporal OMQA is also receiving interest. A general
framework for answering temporal queries over temporal data in the presence
of classical ontologies was proposed in [104], considering queries with temporal
operators over time-stamped databases, but with a global TBox (axioms hold
at all moments of time) formulated in classical (non-temporal) DLs. For varia-
tions of this basic setting, decidability and tight complexity bounds for query
answering have been obtained for expressive DLs between ALC and SHQ [18],
and most recently for the EL family [40]. Borgwardt et al. have shown that in
this setting query rewritability is preserved: the rewritability of the underlying
(non-temporal) query language can be lifted to the temporal one [39], implying
positive decidability results for OMQA in some Horn DLs.

A major limitation of these approaches is that they only consider global,
atemporal TBoxes, and hence they do not allow for the highly desirable con-
ceptual modeling of temporal properties needed, e.g., in applications related to
data streams from sensor networks [14]. This can be supported by allowing for
temporal operators to be used as regular concept constructors, which may also
appear in TBoxes. Unfortunately, this extension makes query answering harder;
in particular, the unrestricted use of temporal operators results in the loss of
FO-rewritability for CQs over the DL-Lite family [16]. Positive results for FO-
rewritability were obtained in [16] by restricting the set of available temporal
operators and the occurrences of temporal concepts in the ontologies. Under
these restrictions, rewriting into two-sorted FO with an order relation is indeed
possible. The most recent work of these authors [14] carries out a detailed in-
vestigation of the limits of rewritability in the presence of more general forms
of temporal TBoxes (e.g., more temporal operators are allowed) using as target

rewriting languages two-sorted FO with an order relation and addition, as well
as monadic second order logic with an order relation.

8.6 Reasoning Support for Building and Maintaining OMQA
systems

In order to use OMQA in a given application, one first requires an ontology
that defines the terminology and the semantic relationships between the terms.
As developing an ontology is difficult and time-consuming, it is important to
provide tools to aid ontology engineers in this task. For ontology debugging, the
key reasoning service is axiom pinpointing [195, 114], in which the problem is to
generate minimal subsets of the KB that explain a given (surprising or undesir-
able) consequence; such subsets are often called justifications. For ELH TBoxes,
justifications correspond to minimal models of propositional Horn formulas and
can computed using SAT solvers [196]. In DL-Lite, the problem is simpler: all
justifications of a TBox axiom can be enumerated in polynomial delay [173].

If suitable reference ontologies are available for the application area, then
rather than starting from scratch, one may begin by extracting the relevant
portions of existing ontologies. This is known as module extraction and has been
the subject of a number of works in recent years, see e.g. [100, 204, 127, 129]. In
the OMQA setting, one is typically interesting in modules that preserve answers
to CQs. This can be formalized using the notion of query inseparability [123], in
which two TBoxes T1, T2 are said to be Σ-query inseparable just in the case that
they return the same answers to all queries formulated in the signature Σ for all
Σ-ABoxes (a notion of query inseparability for KBs can be defined similarly [41]).
Deciding query inseparability is a difficult task: the problem is Exp-complete
for both EL [153] and DL-LiteR TBoxes [41]. Despite these discouraging results,
Konev et al. [123] have shown that, by employing polynomial-time incomplete
algorithms, it is possible to use query inseparability as the basis for practical
module extraction in DL-LiteR. Beyond module extraction, query inseparability
can be used to analyze the effects of importing an ontology into another or of
refining an ontology by adding additional axioms [153].

Another relevant reasoning service is emptiness testing [17], which comes in
two flavours: query emptiness and predicate emptiness. The former is relevant
when developing OMQA systems that propose a fixed set of predefined queries,
as it allows one to detect whether a given query provides an empty answer over
all ABoxes formulated in a given vocabulary, a serious modeling error. Predicate
emptiness tests whether every query using a given predicate (concept or role)
returns an empty answer (again for ABoxes over the specified signature). It can
be used to identify the set of concept and role names that can be meaningfully
used in queries (and thus should be included in the query formulation interface),
and it can also serve as the basis for module extraction. The complexity of
emptiness testing has been investigated for a range of DLs. In EL, both forms
of emptiness testing are tractable and amenable to efficient implementation.

If we are building a full-fledged OBDA system with mappings to link the
ontology to a relational database (see Section 8.3), then it is also important to

provide support for constructing, debugging, and maintaining mappings. The
problem of mapping debugging was first investigated by Lembo et al. [140, 141]
who provided algorithms and complexity results for detecting inconsistencies
and redundancies in mapping assertions. More recently, Bienvenu and Rosati
[36] have initiated an investigation into query-based comparison of OBDA spec-
ifications (i.e., mapping-TBox pairs), in which two specifications are deemed
equivalent if they give the same answers to the considered query or class of
queries for all possible data sources. Such comparisons could be used, e.g., to
simplify the specification or to determine whether changes to the ontology and/or
mappings may impact query results.

8.7 Improving the Usability of OMQA Systems

In order for OMQA to be widely adopted in practice, it is essential that OMQA
systems be easily usable by end users. In particular, it should be possible for
users without any prior experience with ontologies to formulate queries that
capture their information needs. This has motivated research into user-friendly
interfaces that aid users in formulating their queries.

A pioneering project in this direction is Quelo [85], which provides a con-
trolled natural language interface for users to interactively construct a query,
starting from a very simple query (which is simply phrased as ‘I am looking for
something’), and adding additional constraints or modifying previously added
ones. To support the edits of the user, the interface uses reasoning to retrieve,
for example, which are the relevant constraints (concept and role names) that
can be added or removed from the query at a given stage. The resulting query
corresponds to a tree-shaped CQ, which can be written as a complex DL concept
and answered using existing reasoning engines.

Later projects providing similar functionalities are the Faceted Search in-
terface of Arenas et al. [8], and the Optique virtual query formulation system
(VQS) [200]. Unlike Quelo, they do not aim at supporting natural language
query formulation. Instead, the former provides faceted search facilities in which
the user can interactively click and unclick several options to retrieve the desired
information. Optique VQS is being developed within the Optique project18, and
it aims at providing an easy-to-use graphical interface that allows end users to
easily build complex queries.

In addition to aiding users in formulating their queries, it is also important
to help them understand the query results. As mentioned earlier, the problem
of explanation has already been extensively studied in the DL community for
the purposes of ontology debugging [155, 38, 195, 114, 196, 173, 107, 108]. These
works have focused on explaining entailed TBox axioms (or possibly ABox as-
sertions), but not answers to conjunctive queries. To the best of our knowledge,
the first work to explicitly consider explanation in the OMQA setting was that
of Borgida et al. [37], who proposed a proof-theoretic approach to explaining
positive answers to CQs over DL-LiteA KBs. The approach outputs a single

18 http://optique-project.eu/

proof, involving both TBox axioms and ABox assertions, generated by ‘tracing
back’ the relevant part of the rewritten query, with minimality criteria being
used to select a ‘simplest’ proof. The problem of explaining negative query an-
swers over DL-LiteA KBs (that is, why is a given tuple not a certain answer?)
has been investigated by Calvanese et al. ([62]). Formally, the explanations for
ans 6∈ cert(q, (T ,A)) correspond to (minimal) sets A′ of ABox assertions such
that ans ∈ cert(q, (T ,A ∪ A′)). Practical algorithms for computing such expla-
nations were proposed by Du, Wang, and Shen, first for consistent KBs [74] and
then for inconsistent KBs [75]. Explanations of positive and negative query an-
swers under the brave, AR, and IAR semantics (discussed in Section 8.4) have
been explored by Bienvenu, Bourgaux, and Goasdoué [42].

8.8 OMQA with Closed Predicates

As discussed in Section 6, ABoxes are interpreted under the open world seman-
tics, while databases are given a closed world semantics. However, there are
many applications where the open world semantics of DLs is too weak and it
does not allow us to obtain all the desired inferences. For example, suppose the
data to be queried contains the students enrolled in a specific course, which are
extracted from a database that is known to be complete. Then this information
should be considered complete (even if other parts of the data are not), and
query answering algorithms should exploit this to exclude irrelevant models and
infer more query answers.

Combining open and closed world reasoning in DLs is not a new topic [47], but
it has received renewed attention in recent years [150, 86, 197]. A way of achieving
partial closed world reasoning is to consider DBoxes [197], which syntactically
look just like ABox, but semantically, they are interpreted like a database: the
instances of the concepts and roles in a DBox are given exactly by the assertions
it contains, and the unique name assumption is made for the active domain of
the individuals occurring in it. More recent approaches enrich the knowledge
base by specifying a set of concepts and roles that are to be interpreted as closed
predicates [150]. In this way, some ABox assertions are interpreted under closed
semantics, as in DBoxes, while others are considered open, as in ABoxes.

Most works on reasoning with closed predicates focus on studying the data
complexity of query answering. Unfortunately, the problem is NP-hard even for
the core fragments of DL-Lite [86]. The authors of that work established a match-
ing upper bound for DL-Lite with functionality (the interaction of the latter with
the closed predicates and inverse roles makes the problem particularly challeng-
ing). An in-depth analysis of the reasons for NP-hardness, as well as criteria for
showing tractability for specific TBoxes, is provided by Lutz et al. [150]). In more
recent work [151], the same authors explore the problem of classifying specific
TBox-query pairs according to their data complexity and, among other contribu-
tions, identify some FO-rewritable cases. The combined complexity of querying
with closed predicates had not been studied until very recently [162], but it has
now been shown that query answering is at least coNExp hard for any exten-
sion of EL, and in most cases 2Exp complete. Some of these complexity bounds

are not hard to infer from the standard open world setting, using ideas that
had already been exploited by Franconi et al. [86] to show that query answering
in ALCIF with closed predicates is equivalent to standard query answering in
ALCOIF , whose complexity is a longstanding open problem.

8.9 Aggregates

Aggregate functions like max, min, count, sum and avgr are among the most
frequently used features of popular query languages, including SQL. In the con-
text of OMQA, they have received surprisingly little attention. This is mostly
due to the fact that the certain answer semantics is not very suitable for aggre-
gates, and it is not always clear what their expected meaning should be under
the open-world semantics. For example, if a knowledge base only states that
Mary teaches a course, then we can build models where she teaches n courses
for every n, and there are no certain answers to the query ‘How many courses
does Mary teach?’. This is in fact the semantics given to these kind of queries
in the first work on OMQA with aggregates [60], where the authors adopt an
epistemic semantics where aggregation is only done over the data that coincides
in all models. A more recent work revisiting this topic gives a stronger semantics
for count and count distinct that in the example above would allow us to infer a
lower bound of one course as an answer [131]. That work does not consider other
aggregate functions. Moreover, the proposed semantics is rather costly: already
for DL-Lite, deciding if a number is in the answer is hard for coNP in data
complexity and for the second level of the polynomial hierarchy in combined
complexity. In DL-LiteR, the combined complexity is even coNExp-hard.

8.10 Bridging the Gap with SPARQL

SPARQL is the standard language for querying RDF datasets [179]. The core
of the SPARQL language are so-called basic graph patterns (BGPs), which es-
sentially correspond to CQs. SPARQL also provides additional constructs to
build complex queries from BGPs. Some of these constructors, like union, have
a natural counterpart in FO queries and the languages we have discussed in
this chapter. Others do not directly correspond to FO connectives but are still
expressible in FO. In fact, it has been shown that SPARQL, as a query lan-
guage, is equivalent to relational algebra, and hence to domain-independent FO
queries [4]. This implies, unfortunately, that full SPARQL is undecidable if we
use it as query language in our OMQA setting. In practice, SPARQL is often
used as a query language for query answering in the presence of ontologies, but
with a somewhat different semantics defined in the so-called entailment regimes,
see [88] and its references. We note that SPARQL supports aggregate functions in
queries, which we have discussed above. There is a newer version of the SPARQL
standard, SPARQL 1.1, [106], and one of its core features is to add the co-called
property paths, that basically correspond to regular expressions as in C2RPQs.

Optional operator. A useful feature of SPARQL is the OPTIONAL operator. In
the query languages we have discussed, query answers always take the form of a
relation (that is, a set of tuples of individuals) of a fixed arity. Using OPTIONAL,
one can define queries where binding some of the variables is optional and thereby
obtain as answers tuples of different arities, where the optional variables are
matched if possible, but left unassigned otherwise. For example, we can retrieve
pairs of dishes and restaurants where they are served, and optionally retrieve also
their price if it is available. This can be very useful in the presence of incomplete
information, hence it would be a good feature to add to CQs, C2RPQs, or the
other query languages for OMQA that we have discussed. Unfortunately, the
presence of OPTIONAL makes queries non-monotonic. This means that, unlike
CQs and other positive fragments of FO queries, they are not preserved under
homomorphisms. Hence there is no analogous to Theorem 13, and we cannot
rely on the existence of a universal model for answering these queries. The query
answering algorithm that we discussed in Section 5 has been extended to a family
of well-behaved CQs with OPTIONAL [3]. Other recent works also aim at giving
a suitable semantics to fragments of SPARQL in the presence of ontologies, and
devising query answering algorithms [7, 130].

Meta-modeling and meta-querying. Standard DLs and the query languages usu-
ally employed for OMQA do not have meta-modeling and meta-querying func-
tionalities. Intuitively, in meta-querying, queries can ask for properties of con-
cepts and roles using variables that are bound to such objects (instead of binding
variables to individuals only). Meta-modeling can be seen as a generalization of
this, where one can use concept and roles as predicate arguments already in the
knowledge base. This allows one to assert properties of concept and roles and
to ask for such properties in queries. Meta-modeling was considered in the early
days of DLs, but nowadays it is not supported in standard DLs. Meta-modeling
and meta-querying are both popular in the semantic web, and they are supported
by RDF and SPARQL.

There have been a few extensions of DLs with meta-modeling functionalities
[92, 171, 157, 72, 70], which are obtained by introducing features from higher-
order logics. It has been shown that, under certain conditions, these higher-
order extensions of DLs do not increase the worst-case complexity of reasoning
[72]. However, it has also been observed that even when the straightforward
adaptation of reasoning algorithms to the setting of higher-order DLs does not
increase their worst-case complexity, it can make them less practicable, and
improved algorithms for CQ answering in the higher-order version of DL-LiteR
have been proposed [143].

8.11 Extending the Applicability of Horn DL Techniques

As we have discussed, non-Horn DLs require significantly more involved query
answering algorithms that the ones presented in this chapter, and they usually
have a higher computational complexity. Even for traditional reasoning tasks
that have the same worst case complexity in the Horn and the non-Horn case

(e.g., satisfiability in SHIQ vs. Horn-SHIQ, which are both Exp-complete),
the techniques for Horn logics are in general more amenable to implementation
and more efficient in practice. For this reason, some researchers have recently
aimed at understanding when reasoning in a non-Horn DL can be efficiently
reduced to reasoning in a Horn one [65, 63]. In [116, 115], the authors follow a
similar idea, but instead of rewriting into a Horn ontology, they rewrite into
Datalog, for which efficient off-the-shelf reasoners are available. Unfortunately,
most of these results apply only to satisfiability and instance queries, and only
[116] presents some results for CQs.

Datalog has also been exploited to achieve scalable query answering in non-
Horn logics. For example, the authors of [212] first use a Datalog reasoner to
approximate the answers both from below and from above. That is, they ob-
tain a sound, possibly incomplete set of answers (lower bound), and a complete,
possible unsound set of answers (upper bound). Both computations can be done
efficiently by reducing them to the evaluation of suitable Datalog programs. If
the upper and lower bounds coincide, then running an expensive exact algorithm
becomes unnecessary. If they are different, then the difference gives the set of po-
tential answers for which an exact algorithm is necessary. Moreover, even where
expensive exact algorithms are needed, it is possible to exploit the candidate
answers to optimize the algorithm and reduce the search space.

We also note that there have been a few works aiming at applying FO- and
Datalog-rewriting to non-Horn DLs. The problem of deciding existence of an FO-
or Datalog-rewriting of IQs for DLs between ALC and SHI was shown in [28]
to be NExptime-complete by establishing a tight connection between OMQA
with expressive DLs and non-uniform constraint satisfaction problems.

8.12 Rule-based Ontology Languages

In this chapter, we have only discussed ontologies expressed in DLs. Another
important and closely related alternative is to express domain knowledge us-
ing rules. Indeed, in the absence of existential quantification, most of the Horn
DLs we have discussed could be expressed as Datalog rules. Expressive rule lan-
guages that extend Datalog with existentially quantified variables in rule heads
have been devised with the explicit purpose of expressing DLs, and ontological
knowledge in general. Since Datalog with existential quantification is well known
to be undecidable, these extensions must be done in a cautious and controlled
way, and restrictions must be imposed, such as certain acyclicity conditions or
allowing only guarded quantification. The resulting families of languages are
known under the names of existential rules or Datalog±, and they can be seen
as generalizations of DLs to predicates of arbitrary arity, rather than only unary
and binary. For an overview of the area and its main results, we refer the reader
to recent tutorials in the Reasoning Web series of summer schools [161, 96] and
to the Datalog± tutorial in this volume. Here we only point out that there is
a large and very active research community studying the OMQA problem in
the presence of existential rules and Datalog± and that they share much of the
same research agenda as for OMQA with DLs. In fact, several of the results

and techniques we have discussed in this chapter have been extended to rule-
based ontologies, including a significant amount of work on query rewriting, see
e.g.,[95, 124, 206, 125] and references therein. The combined approach has also
been extended to existential rules [94], and the saturation approach discussed in
Section 4 has been adapted, and combined with a technique similar in spirit to
the rewriting in Section 5, to reduce the OMQA problem for existential rules to
plain Datalog reasoning [97].

9 Concluding Remarks

In this chapter, we have given an introduction to the OMQA problem, an active
area of ongoing research. By allowing semantic knowledge to be exploited when
querying data, OMQA opens many new perspectives for modern information
systems. However, taking into account this additional knowledge raises signifi-
cant computational challenges. We have discussed some algorithmic techniques,
based on the key ideas of query rewriting and saturation, which allow us to
overcome these challenges and effectively answer different kinds of queries. We
have focused on so-called Horn DLs for which conjunctive query answering can
be performed in polynomial time in the size of the data, and we have briefly
discussed what happens if we adopt more expressive DLs. Table 5 summarizes
some of the main complexity results for the OMQA problem, for a range of DLs
and query languages.

We have also surveyed many recent results and current research directions.
The current OMQA/OBDA technologies are mature enough to be deployed in
all kinds of application areas. They have been successfully applied in many chal-
lenging real life applications, including investment risk analysis, configuration
and data management management of mobile telecommunication data [49], and
management of public debt data [5]. The large ongoing project Optique is ap-
plying these technologies in the energy sector, supporting diagnosis engineers at
power plants service centres and experts in oil exploration. Another large ongo-
ing project called EPNet19 uses OBDA to help access and manage data about
food transportation in the Roman empire. These projects witness the versatility
and potential of exploiting ontological knowledge when querying data.

While there has been much progress over the past few years, many open
questions remain, and there are many more challenges to be overcome. Readers
interested in keeping up with the latest results and research trends in OMQA can
refer to the Informal Proceedings of the International Workshop on Description
Logics, the annual gathering of the DL research community. The proceedings are
published in the free, open-access CEUR Workshop Proceedings series (http:
//ceur-ws.org/), and a historic archive of the workshop editions with links to
the proceedings can be found on the Description Logics website (http://dl.
kr.org/workshops/).

19 http://www.roman-ep.net

IQs CQs 2RPQs C2RPQs

data
complexity

combined
complexity

data
complexity

combined
complexity

data
complexity

combined
complexity

data
complexity

combined
complexity

DL-Lite
DL-LiteR

in AC0 NLogSpace in AC0 NP NLogSpace P NLogSpace PSpace

EL, ELH P P P NP P P P PSpace

ELI, ELHI⊥,
Horn-SHOIQ P Exp P Exp P Exp P Exp

ALC,
ALCHQ coNP Exp coNP Exp coNP Exp coNP-hard 2Exp

ALCI, SH,
SHIQ coNP Exp coNP 2Exp coNP Exp coNP-hard 2Exp

SHOIQ coNP-hard coNExp coNP-hard1 coN2Exp-hard1 coNP-hard coNExp coNP-hard2 coN2Exp-hard2

Table 5: The complexity of OMQA. All results are completeness results, unless stated otherwise. For references, please refer
to the sections on the corresponding query languages.
1 Decidability if only simple roles occur in the query follows from [191], but no complexity upper bounds are known.
2 Decidability remains open.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
Publ. Co. (1995)

2. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: QuOnto: Querying ontologies. In: Proc. of the 20th Nat. Conf.
on Artificial Intelligence (AAAI 2005). pp. 1670–1671 (2005)

3. Ahmetaj, S., Fischl, W., Pichler, R., Šimkus, M., Skritek, S.: Towards reconciling
SPARQL and certain answers. In: Proc. of the 24th Int. Conf. on World Wide
Web, WWW 2015, Florence, Italy, May 18-22, 2015. pp. 23–33 (2015)

4. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: The Semantic
Web - ISWC 2008, Lecture Notes in Computer Science, vol. 5318, pp. 114–129.
Springer Berlin Heidelberg (2008)

5. Antonioli, N., Castanò, F., Coletta, S., Grossi, S., Lembo, D., Lenzerini, M., Poggi,
A., Virardi, E., Castracane, P.: Ontology-based data management for the italian
public debt. In: Proc. 8th Int. Conf. Formal Ontology in Information Systems
(FOIS 2014). Frontiers in Artificial Intelligence and Applications, vol. 267, pp.
372–385. IOS Press (2014)

6. Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange.
Cambridge University Press (2014)

7. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the se-
mantic web. In: Proc. of the 33rd ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS 2014). pp. 14–26. ACM, New York, NY,
USA (2014)

8. Arenas, M., Grau, B.C., Kharlamov, E., Marciuška, S., Zheleznyakov, D.: Faceted
search over ontology-enhanced RDF data. In: Proc. of the 23rd ACM Int. Conf.
on Conference on Information and Knowledge Management (CIKM). pp. 939–948
(2014)

9. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cam-
bridge University Press (2009)

10. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite fam-
ily and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

11. Artale, A., Franconi, E.: A temporal description logic for reasoning about actions
and plans. J. of Artificial Intelligence Research 9, 463–506 (1998)

12. Artale, A., Franconi, E.: Temporal description logics. In: Handbook of Time and
Temporal Reasoning in Artificial Intelligence. The MIT Press (2001)

13. Artale, A., Franconi, E.: Temporal description logics. In: Handbook of Temporal
Reasoning in Artificial Intelligence, pp. 375–388. Foundations of Artificial Intel-
ligence, Elsevier (2005)

14. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Za-
kharyaschev, M.: First-order rewritability of ontology-mediated temporal queries.
In: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence (IJCAI 2015) (2015)

15. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for
temporal conceptual data modelling with description logics. ACM Trans. Comput.
Logic 15(3), 25:1–25:50 (Jul 2014)

16. Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description
logic for ontology-based data access. In: Proc. of the 23rd Int. Joint Conf. on
Artificial Intelligence (IJCAI 2013) (2013)

17. Baader, F., Bienvenu, M., Lutz, C., Wolter, F.: Query and predicate emptiness in
description logics. In: Proc. of the 12th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2010) (2010)

18. Baader, F., Borgwardt, S., Lippmann, M.: Temporal query entailment in the
description logic SHQ. Web Semantics: Science, Services and Agents on the World
Wide Web. In press, doi:10.1016/j.websem.2014.11.008 (2014)

19. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2005) (2005)

20. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Proc. of the
5th Int. Workshop on OWL: Experiences and Directions (OWLED 2008) (2008)

21. Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path
queries over graph-structured data. ACM Trans. on Database Systems 37(4), 31
(2012)

22. Barceló, P., Pérez, J., Reutter, J.L.: Relative expressiveness of nested regular
expressions. In: Proc. of AMW’12. pp. 180–195. CEUR Workshop Proc. 866 (2012)

23. Barceló Baeza, P.: Querying graph databases. In: Proc. of the 32nd ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2013). pp.
175–188 (2013)

24. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management, Morgan & Claypool Publishers (2011)

25. Bienvenu, M.: On the complexity of consistent query answering in the presence of
simple ontologies. In: Proc. of the 26th AAAI Conference on Artificial Intelligence
(AAAI 2012) (2012)

26. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description
logic knowledge bases under preferred repair semantics. In: Proc. of the 28th
AAAI Conference on Artificial Intelligence (AAAI 2014) (2014)

27. Bienvenu, M., Calvanese, D., Ortiz, M., Šimkus, M.: Nested regular path queries in
description logics. In: Proc. of the 14th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2014) (2014)

28. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access:
A study through disjunctive datalog, csp, and MMSNP. ACM Trans. Database
Syst. 39(4), 33:1–33:44 (2014)

29. Bienvenu, M., Kikot, S., Podolskii, V.V.: Tree-like queries in OWL 2 QL: Succinct-
ness and complexity results. In: Proc. of the 30th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2015). IEEE (2015)

30. Bienvenu, M., Lutz, C., Wolter, F.: First-order rewritability of atomic queries
in horn description logics. In: Proc. of the 23rd Int. Joint Conf. on Artificial
Intelligence (IJCAI 2013). IJCAI/AAAI (2013)

31. Bienvenu, M., Ortiz, M., Šimkus, M.: Answering expressive path queries over
lightweight DL knowledge bases. In: Proc. of the 25th Int. Workshop on Descrip-
tion Logic (DL 2012) (2012)

32. Bienvenu, M., Ortiz, M., Šimkus, M.: Conjunctive regular path queries in
lightweight description logics. In: Proc. of the 23rd Int. Joint Conf. on Artifi-
cial Intelligence (IJCAI 2013) (2013)

33. Bienvenu, M., Ortiz, M., Šimkus, M.: Navigational queries based on frontier-
guarded datalog: Preliminary results. In: Proc. of the Ninth Alberto Mendelzon In-
ternational Workshop on Foundations of Data Management (AMW 2015) (2015)

34. Bienvenu, M., Ortiz, M., Šimkus, M., Xiao, G.: Tractable queries for lightweight
description logics. In: Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence
(IJCAI 2013). AAAI Press (2013)

35. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: Proc. of the 23rd Int. Joint Conf. on
Artificial Intelligence (IJCAI 2013) (2013)

36. Bienvenu, M., Rosati, R.: Query-based comparison of OBDA specifications. In:
Proc. of the 29th Int. Workshop on Description Logic (DL 2015) (2015)

37. Borgida, A., Calvanese, D., Rodriguez-Muro, M.: Explanation in the DL-Lite
family of description logics. In: Proc. of OTM (2008)

38. Borgida, A., Franconi, E., Horrocks, I.: Explaining ALC subsumption. In: Proc.
of ECAI (2000)

39. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query lan-
guages over knowledge bases. Web Semantics: Science, Services and Agents on
the World Wide Web. In press, doi:10.1016/j.websem.2014.11.007 (2014)

40. Borgwardt, S., Thost, V.: Temporal query answering in the description logic EL.
In: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence (IJCAI 2015) (2015)

41. Botoeva, E., Kontchakov, R., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Query
inseparability for description logic knowledge bases. In: Proc. of the 14th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2014) (2014)

42. Bourgaux, C., Bienvenu, M., Goasdoué, F.: Explaining query answers under
inconsistency-tolerant semantics over description logic knowledge bases (extended
abstract). In: Proc. of the 29th Int. Workshop on Description Logic (DL 2015)
(2015)

43. Bourhis, P., Krötzsch, M., Rudolph, S.: How to best nest regular path queries.
In: Proc. of the 27th Int. Workshop on Description Logic (DL 2014). vol. 1193,
pp. 404–415. CEUR-WS.org (2014)

44. Bourhis, P., Krötzsch, M., Rudolph, S.: Query containment for highly expressive
datalog fragments. CoRR abs/1406.7801 (2014), http://arxiv.org/abs/1406.

7801

45. Bursztyn, D., Goasdoué, F., Manolescu, I.: Efficient query answering in DL-Lite
through FOL reformulation. In: Proc. of the 29th Int. Workshop on Description
Logic (DL 2015) (2015)

46. Bursztyn, D., Goasdoué, F., Manolescu, I.: Optimizing reformulation-based query
answering in RDF. In: Proc. of the 18th Int. Conf. on Extending Database Tech-
nology (EDBT). pp. 265–276 (2015)

47. Cadoli, M., Donini, F.M., Schaerf, M.: Closed world reasoning in hybrid sys-
tems. In: Proc. of the 5th Int. Symp. on Methodologies for Intelligent Systems
(ISMIS’90). pp. 474–481. North-Holland Publ. Co. (1990)

48. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Rea-
soning Web. Semantic Technologies for Information Systems, 5th International
Summer School 2009. Lecture Notes in Computer Science, vol. 5689, pp. 255–
356. Springer (2009)

49. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-
based data access. Semantic Web 2(1), 43–53 (2011)

50. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005). pp. 602–607 (2005)

51. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite:
Effective first-order query processing in description logics. In: Proc. of the 20th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2007). pp. 274–279 (2007)

52. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

53. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query
containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98). pp. 149–158
(1998)

54. Calvanese, D., De Giacomo, G., Lenzerini, M.: Conjunctive query containment
and answering under description logics constraints. ACM Trans. on Computa-
tional Logic 9(3), 22.1–22.31 (2008)

55. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of con-
junctive regular path queries with inverse. In: Proc. of the 7th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR 2000). pp. 176–185
(2000)

56. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics: An automata-theoretic approach. In: Proc. of the 22nd AAAI
Conf. on Artificial Intelligence (AAAI 2007). pp. 391–396 (2007)

57. Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in expressive description
logics with nominals. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence
(IJCAI 2009). pp. 714–720 (2009)

58. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics via alternating tree-automata. Inf. Comput. 237, 12–55 (2014)

59. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of the 10th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2006). pp.
260–270. AAAI Press (2006)

60. Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate queries over on-
tologies. In: Proc. of the 2nd International Workshop on Ontologies and Informa-
tion Systems for the Semantic Web, ONISW 2008, Napa Valley, California, USA,
October 30, 2008. pp. 97–104 (2008)

61. Calvanese, D., Ortiz, M., Šimkus, M.: Containment of regular path queries under
description logic constraints. In: Proc. of the 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI 2011) (2011)

62. Calvanese, D., Ortiz, M., Šimkus, M., Stefanoni, G.: Reasoning about explana-
tions for negative query answers in DL-Lite. J. Artif. Intell. Res. (JAIR) 48,
635–669 (2013)

63. Carral, D., Feier, C., Grau, B.C., Hitzler, P., Horrocks, I.: EL-ifying ontologies.
In: Automated Reasoning - 7th International Joint Conference, IJCAR 2014, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8562, pp. 464–479.
Springer (2014)

64. Carral, D., Feier, C., Grau, B.C., Hitzler, P., Horrocks, I.: Pushing the boundaries
of tractable ontology reasoning. In: The Semantic Web - ISWC 2014 - 13th Inter-
national Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014.
Proceedings, Part II. pp. 148–163 (2014)

65. Carral, D., Feier, C., Romero, A.A., Grau, B.C., Hitzler, P., Horrocks, I.: Is your
ontology as hard as you think? Rewriting ontologies into simpler dls. In: Informal
Proc. of the 27th International Workshop on Description Logics, Vienna, Austria,
July 17-20, 2014. CEUR Workshop Proceedings, vol. 1193, pp. 128–140. CEUR-
WS.org (2014)

66. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Berlin (Germany) (1990)

67. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL.
In: Proc. of the 23rd Int. Conf. On Automated Deduction. pp. 192–206. CADE’11,
Springer, Berlin, Heidelberg (2011)

68. Chortaras, A., Trivela, D., Stamou, G.B.: Goal-oriented query rewriting for OWL
2 QL. In: Proc. of the 24th International Workshop on Description Logics (DL)
(2011)

69. Clark, J., DeRose, S.: XML path language (XPath) version 1.0. W3C Recommen-
dation, World Wide Web Consortium (1999)

70. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Ragone, A.: Second-order
description logics: Semantics, motivation, and a calculus. In: Proc. of the 23rd
Int. Workshop on Description Logic (DL 2010). CEUR Workshop Proceedings,
vol. 573. CEUR-WS.org (2010)

71. De Giacomo, G., Lenzerini, M.: Boosting the correspondence between descrip-
tion logics and propositional dynamic logics. In: Proc. of the 12th Nat. Conf. on
Artificial Intelligence (AAAI’94). pp. 205–212 (1994)

72. De Giacomo, G., Lenzerini, M., Rosati, R.: Higher-order description logics for
domain metamodeling. In: Proc. of the 25th AAAI Conference on Artificial Intel-
ligence (AAAI 2011) (2011)

73. Du, J., Qi, G., Shen, Y.D.: Weight-based consistent query answering over in-
consistent SHIQ knowledge bases. Knowledge and Information Systems 34(2),
335–371 (2013)

74. Du, J., Wang, K., Shen, Y.: A tractable approach to abox abduction over de-
scription logic ontologies. In: Proc. of the 28th AAAI Conference on Artificial
Intelligence (AAAI 2014) (2014)

75. Du, J., Wang, K., Shen, Y.: Towards tractable and practical ABox abduction over
inconsistent description logic ontologies. In: Proc. of the 29th AAAI Conference
on Artificial Intelligence (AAAI 2015) (2015)

76. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, second edition edn.
(1999)

77. Ehrenfeucht, A., Zeiger, P.: Complexity measures for regular expressions. In:
Proc. of the Sixth Annual ACM Symposium on Theory of Computing (STOC
1974) (1974)

78. Eiter, T., Gottlob, G., Ortiz, M., Šimkus, M.: Query answering in the description
logic Horn-SHIQ. In: Proc. of the 11th Eur. Conference on Logics in Artificial
Intelligence (JELIA 2008). pp. 166–179. Springer, Berlin, Heidelberg (2008)

79. Eiter, T., Lutz, C., Ortiz, M., Šimkus, M.: Query answering in description logics:
The knots approach. In: Logic, Language, Information and Computation, 16th
International Workshop, WoLLIC 2009. Lecture Notes in Computer Science, vol.
5514, pp. 26–36. Springer (2009)

80. Eiter, T., Lutz, C., Ortiz, M., Šimkus, M.: Query answering in description logics
with transitive roles. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence
(IJCAI 2009). pp. 759–764 (2009)

81. Eiter, T., Ortiz, M., Simkus, M., Tran, T., Xiao, G.: Query rewriting for Horn-
SHIQ plus rules. In: Proc. of the 26th AAAI Conference on Artificial Intelligence
(AAAI 2012). AAAI Press (2012)

82. Eiter, T., Ortiz, M., Šimkus, M.: Conjunctive query answering in the description
logic SH using knots. J. Comput. Syst. Sci. 78(1), 47–85 (2012)

83. Feier, C., Carral, D., Stefanoni, G., Grau, B.C., Horrocks, I.: The combined ap-
proach to query answering beyond the OWL 2 profiles. In: Proc. of the 24th Int.
Joint Conf. on Artificial Intelligence (IJCAI 2015) (2015)

84. Florescu, D., Levy, A., Suciu, D.: Query containment for conjunctive queries
with regular expressions. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’98). pp. 139–148 (1998)

85. Franconi, E., Guagliardo, P., Trevisan, M., Tessaris, S.: Quelo: an ontology-driven
query interface. In: Proc. of the 24th International Workshop on Description Log-
ics (DL) (2011)

86. Franconi, E., Ibáñez-Garćıa, Y.A., Seylan, I.: Query answering with DBoxes is
hard. Electr. Notes Theor. Comput. Sci. 278, 71–84 (2011)

87. Gabbay, D., Kurusz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional Modal
Logics: Theory and Applications. Elsevier Science Publishers (2003)

88. Glimm, B.: Using SPARQL with RDFS and OWL entailment. In: Reasoning Web.
Semantic Technologies for the Web of Data, Lecture Notes in Computer Science,
vol. 6848, pp. 137–201. Springer Berlin Heidelberg (2011)

89. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for
the description logic SHIQ. J. of Artificial Intelligence Research 31, 151–198
(2008)

90. Glimm, B., Horrocks, I., Sattler, U.: Unions of conjunctive queries in SHOQ. In:
Proc. of the 11th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2008). pp. 252–262. AAAI Press/The MIT Press (2008)

91. Glimm, B., Kazakov, Y., Lutz, C.: Status QIO: An update. In: Proc. of the 22nd
Int. Workshop on Description Logic (DL 2009). CEUR Workshop Proceedings,
vol. 745 (2011)

92. Glimm, B., Rudolph, S., Völker, J.: Integrated metamodeling and diagnosis in
OWL 2. In: Proc. of the 9th International Semantic Web Conference on The Se-
mantic Web - Volume Part I. pp. 257–272. ISWC’10, Springer, Berlin, Heidelberg
(2010)

93. Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V., Schwentick, T., Za-
kharyaschev, M.: The price of query rewriting in ontology-based data access.
Artificial Intelligence 213, 42–59 (2014)

94. Gottlob, G., Manna, M., Pieris, A.: Polynomial combined rewritings for exis-
tential rules. In: Proc. of the 14th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2014) (2014)

95. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization.
In: (ICDE), IEEE 27th Int. Conf. on Data Engineering 2011. pp. 2 –13 (april 2011)

96. Gottlob, G., Orsi, G., Pieris, A., Šimkus, M.: Datalog and its extensions for the se-
mantic web. In: Reasoning Web, 8th International Summer School 2012. Springer
(2012)

97. Gottlob, G., Rudolph, S., Šimkus, M.: Expressiveness of guarded existential rule
languages. In: Proc. of the 33rd ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS 2014). pp. 27–38. ACM, New York, NY,
USA (2014)

98. Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive
datalog programs. In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Descrip-
tion Logics. CEUR Workshop Proceedings, vol. 745. CEUR-WS.org (2011)

99. Grahne, G., Thomo, A.: Query containment and rewriting using views for regular
path queries under constraints. In: Proc. of the 22nd ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS 2003). pp. 111–122
(2003)

100. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
Theory and practice. Journal of Artificial Intelligence Research (JAIR) 31, 273–
318 (2008)

101. Gutiérrez-Basulto, V., Ibáñez-Garćıa, Y.A., Kontchakov, R., Kostylev, E.V.: Con-
junctive queries with negation over DL-Lite: A closer look. In: Proc. of RR 2013.
pp. 109–122 (2013)

102. Gutiérrez-Basulto, V., Jung, J.C., Schneider, T.: Lightweight description logics
and branching time: A troublesome marriage. In: Proc. of the 14th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR 2014) (2014)

103. Gutierrez-Basulto, V., Jung, J.C., Schneider, T.: Lightweight temporal description
logics with rigid roles and restricted tboxes. In: Proc. of the 24th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2015) (2015)

104. Gutiérrez-Basulto, V., Klarman, S.: Towards a unifying approach to representing
and querying temporal data in description logics. In: Proc. of RR 2012. pp. 90–105
(2012)

105. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. of
the ACM 38, 935–962 (1991)

106. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation
(2013), available at http://www.w3.org/TR/sparql11-query/

107. Horridge, M., Bail, S., Parsia, B., Sattler, U.: The cognitive complexity of OWL
justifications. In: Proc. of ISWC (2011)

108. Horridge, M., Parsia, B., Sattler, U.: Extracting justifications from bioportal on-
tologies. In: Proc. of ISWC (2012)

109. Horrocks, I., Kutz, O., Sattler, U.: The irresistible SRIQ. In: Proc. of the 1st
Int. Workshop on OWL: Experiences and Directions (OWLED 2005) (2005)

110. Horrocks, I., Tessaris, S.: A conjunctive query language for description logic
ABoxes. In: Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000).
pp. 399–404 (2000)

111. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very ex-
pressive description logics. In: Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2005). pp. 466–471 (2005)

112. Imielinski, T., Jr., W.L.: Incomplete information in relational databases. J. of the
ACM 31(4), 761–791 (1984)

113. Immerman, N.: Relational queries computable in polynomial time. Information
and Control 68, 86–104 (1986)

114. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes
in OWL ontologies. J. Web Sem. 3(4), 268–293 (2005)

115. Kaminski, M., Grau, B.C.: Computing Horn rewritings of description logics on-
tologies. In: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2015) (2015), http://arxiv.org/abs/1504.05150

116. Kaminski, M., Nenov, Y., Grau, B.C.: Computing datalog rewritings for dis-
junctive datalog programs and description logic ontologies. In: Proc. of the 8th
Int. Conf. on Web Reasoning and Rule Systems (RR). pp. 76–91 (2014)

117. Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: Proc.
of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009). pp. 2040–2045
(2009)

118. Kikot, S., Kontchakov, R., Zakharyaschev, M.: On (In)Tractability of OBDA with
OWL 2 QL. In: Proc. of the 24th Int. Workshop on Description Logic (DL 2011).
CEUR Workshop Proceedings, vol. 745. CEUR-WS.org (2011)

119. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2012). pp. 275–285. AAAI Press (2012)

120. Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: Exponential lower
bounds and separation for query rewriting. In: Proc. of the 39th Int. Colloquium
on Automata, Languages, and Programming (ICALP 2012), Part II. Lecture
Notes in Computer Science, vol. 7392, pp. 263–274. Springer (2012)

121. Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: On the succinct-
ness of query rewriting over OWL 2 QL ontologies with shallow chases. In:
Proc. of the 29th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS 2014). ACM Press (2014)

122. Klenke, T.: Über die Entscheidbarkeit von Konjunktiv Anfragen mit Ungleichheit
in der Beschreibungslogik EL. Master’s thesis, Universität Bremen (2010)

123. Konev, B., Kontchakov, R., Ludwig, M., Schneider, T., Wolter, F., Zakharyaschev,
M.: Conjunctive query inseparability of OWL 2 QL TBoxes. In: Proc. of the 29th
AAAI Conference on Artificial Intelligence (AAAI 2015) (2011)

124. König, M., Leclère, M., Mugnier, M.L., Thomazo, M.: A sound and complete
backward chaining algorithm for existential rules. In: Proc. of the 6th Int. Conf.
on Web Reasoning and Rule Systems (RR 2012). Lecture Notes in Computer
Science, vol. 7497, pp. 122–138. Springer (2012)

125. König, M., Leclère, M., Mugnier, M.L.: Query rewriting for existential rules with
compiled preorder. In: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2015) (2015)

126. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: Proc. of the 22nd Int. Joint
Conf. on Artificial Intelligence (IJCAI 2011). pp. 2656–2661. IJCAI/AAAI (2011)

127. Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F.,
Zakharyaschev, M.: Minimal module extraction from DL-Lite ontologies using
QBF solvers. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2009). pp. 836–841 (2009)

128. Kontchakov, R., Rodriguez-Muro, M., Zakharyaschev, M.: Ontology-based data
access with databases: A short course. In: Reasoning Web. Semantic Technologies
for Intelligent Data Access - 9th International Summer School 2013, Mannheim,
Germany, July 30 - August 2, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 8067, pp. 194–229. Springer (2013)

129. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artificial Intelligence
174(15), 1093–1141 (2010)

130. Kostylev, E.V., Grau, B.C.: On the semantics of SPARQL queries with optional
matching under entailment regimes. In: The Semantic Web - ISWC 2014 - 13th
International Semantic Web Conference, Riva del Garda, Italy, October 19-23,
2014. Proceedings, Part II. Lecture Notes in Computer Science, vol. 8797, pp.
374–389. Springer (2014)

131. Kostylev, E.V., Reutter, J.L.: Answering counting aggregate queries over ontolo-
gies of the DL-Lite family. In: Proc. of the 27th AAAI Conference on Artificial
Intelligence (AAAI 2013) (2013)

132. Kostylev, E.V., Reutter, J.L., Vrgoc, D.: XPath for DL ontologies. In: Proc. of
the 29th AAAI Conference on Artificial Intelligence (AAAI 2015) (2015)

133. Krisnadhi, A., Lutz, C.: Data complexity in the EL family of description logics.
In: Logic for Programming, Artificial Intelligence, and Reasoning, 14th Int. Conf. ,
LPAR 2007, Proceedings. Lecture Notes in Computer Science, vol. 4790, pp. 333–
347. Springer (2007)

134. Krötzsch, M., Rudolph, S.: Conjunctive queries for EL with composition of roles.
In: Proc. of the 20th Int. Workshop on Description Logic (DL 2007) (2007)

135. Krötzsch, M., Rudolph, S., Hitzler, P.: Conjunctive queries for a tractable frag-
ment of OWL 1.1. In: The Semantic Web, 6th Int. Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 + ASWC 2007. Lecture Notes in
Computer Science, vol. 4825, pp. 310–323. Springer (2007)

136. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of Horn description logics.
ACM Trans. Comp. Log. 14(1), 2:1–2:36 (2013)

137. Krotzsch, M., Simancik, F., Horrocks, I.: Description logics. IEEE Intelligent Sys-
tems 29(1), 12–19 (2014)

138. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-
tolerant semantics for description logics. In: Proc. of RR 2010 (2010)

139. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query rewriting for
inconsistent DL-Lite ontologies. In: Rudolph, S., Gutierrez, C. (eds.) Proc. of RR.
Lecture Notes in Computer Science, vol. 6902. Springer (2011)

140. Lembo, D., Mora, J., Rosati, R., Savo, D.F., Thorstensen, E.: Towards mapping
analysis in ontology-based data access. In: Proc. of the 8th Int. Conf. on Web
Reasoning and Rule Systems (RR). pp. 108–123 (2014)

141. Lembo, D., Mora, J., Rosati, R., Savo, D.F., Thorstensen, E.: Mapping analysis
in ontology-based data access: Algorithms and complexity. In: Proc. of the 29th
Int. Workshop on Description Logic (DL 2015) (2015)

142. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002). pp. 233–246 (2002)

143. Lenzerini, M., Lepore, L., Poggi, A.: Making metaquerying practical for Hi(DL-
LiteR) Knowledge Bases. In: Proc. of OTM 2014. pp. 580–596 (2014)

144. Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in
CARIN. Artificial Intelligence 104(1–2), 165–209 (1998)

145. Libkin, L.: Elements of Finite Model Theory. Springer (2004)
146. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description

logic EL using a relational database system. In: Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence (IJCAI 2009). pp. 2070–2075. AAAI Press (2009)

147. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reason-
ing, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August
12-15, 2008, Proceedings. Lecture Notes in Computer Science, vol. 5195, pp. 179–
193. Springer (2008)

148. Lutz, C.: Two upper bounds for conjunctive query answering in SHIQ. In: Proc.
of the 22st Int. Workshop on Description Logic (DL 2008). CEUR Workshop
Proceedings, vol. 353. CEUR-WS.org (2008)

149. Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to OBDA:
taming role hierarchies using filters. In: The Semantic Web - ISWC 2013 - 12th
International Semantic Web Conference, Sydney, NSW, Australia, October 21-
25, 2013, Proceedings, Part I. Lecture Notes in Computer Science, vol. 8218, pp.
314–330. Springer (2013)

150. Lutz, C., Seylan, I., Wolter, F.: Ontology-based data access with closed predicates
is inherently intractable(sometimes). In: Proc. of the 23rd Int. Joint Conf. on
Artificial Intelligence (IJCAI 2013). IJCAI/AAAI (2013)

151. Lutz, C., Seylan, I., Wolter, F.: Ontology-mediated queries with closed predicates.
In: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence (IJCAI 2015) (2015)

152. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence (IJCAI 2009). pp. 2070–2075 (2009)

153. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic EL. Journal of Symbolic Computation 45(2), 194–228 (2010)

154. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey. In:
Proc. 15th International Symposium on Temporal Representation and Reasoning
(TIME 2008). pp. 3–14. IEEE Computer Society (2008)

155. McGuinness, D.L., Borgida, A.: Explaining subsumption in description logics. In:
Proc. of the 14th Int. Joint Conf. on Artificial Intelligence (IJCAI 1995) (1995)

156. Mora, J., Corcho, Ó.: Engineering optimisations in query rewriting for OBDA.
In: Proc. of the 9th Int. Conf. on Semantic Systems (I-SEMANTICS). pp. 41–48
(2013)

157. Motik, B.: On the properties of metamodeling in OWL. In: In 4th Int. Semantic
Web Conf. (ISWC 2005). pp. 548–562 (2005)

158. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany (Jan-
uary 2006)

159. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL
2 Web Ontology Language Profiles. W3C Recommendation (2012), available at
http://www.w3.org/TR/owl2-profiles/

160. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In:
McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) Proc. of the Third Inter-
national Semantic Web Conference (ISWC). Lecture Notes in Computer Science,
vol. 3298, pp. 549–563. Springer (2004)

161. Mugnier, M., Thomazo, M.: An introduction to ontology-based query answering
with existential rules. In: Reasoning Web. Reasoning on the Web in the Big Data
Era - 10th International Summer School 2014, Athens, Greece, September 8-13,
2014. Proceedings. pp. 245–278 (2014)

162. Ngo, N., Ortiz, M., Šimkus, M.: The combined complexity of reasoning with closed
predicates in description logics. In: Proc. of the 29th Int. Workshop on Description
Logic (DL 2015) (2015)

163. Ortiz, M.: Ontology based query answering: The story so far. In: Proc. of the Sev-
enth Alberto Mendelzon International Workshop on Foundations of Data Man-
agement (AMW 2013) (2013)

164. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in ex-
pressive description logics via tableaux. J. of Automated Reasoning 41(1), 61–98
(2008)

165. Ortiz, M., Rudolph, S., Šimkus, M.: Query answering is undecidable in DLs with
regular expressions, inverses, nominals, and counting. Tech. Rep. INFSYS RR-
1843-10-03, Institut für Informationssysteme, Technische Universität Wien, A-
1040 Vienna, Austria (Apr 2010)

166. Ortiz, M., Rudolph, S., Šimkus, M.: Query answering in the Horn fragments of
the description logics SHOIQ and SROIQ. In: Proc. of the 22nd Int. Joint Conf.
on Artificial Intelligence (IJCAI 2011). pp. 1039–1044. IJCAI/AAAI (2011)

167. Ortiz, M., Šimkus, M., Eiter, T.: Worst-case optimal conjunctive query answering
for an expressive description logic without inverses. In: Proc. of the 23rd AAAI
Conf. on Artificial Intelligence (AAAI 2008). pp. 504–510. AAAI Press (2008)

168. Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In:
Proc. of the Eighth Reasoning Web Summer School (RW 2012) (2012)

169. Ortiz, M., Šimkus, M.: Revisiting the hardness of query answering in expressive
description logics. In: Proc. of the Eighth Int. Conf. on Web Reasoning and Rule
Systems (RR 2014) (2014)

170. OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation (27 October 2009), available at http://www.w3.org/TR/

owl2-overview/

171. Pan, J.Z., Horrocks, I.: OWL FA: A metamodeling extension of OWL DL. In:
Proc. of the 15th Int. Conf. on World Wide Web. pp. 1065–1066. WWW ’06,
ACM, New York, NY, USA (2006)

172. Papadimitriou, C.H.: Computational Complexity. Addison Wesley Publ. Co.
(1994)

173. Peñaloza, R., Sertkaya, B.: Complexity of axiom pinpointing in the DL-Lite family
of description logics. In: Proc. of ECAI (2010)

174. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for RDF.
J. of Web Semantics 8(4), 255–270 (2010)

175. Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient query answering for OWL 2.
In: Proc. of ISWC (2009)

176. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewrit-
ing under description logic constraints. J. Applied Logic 8(2), 186–209 (2010)

177. Pinto, F.D., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi,
M., Savo, D.F.: Optimizing query rewriting in ontology-based data access. In:
Proc. of the 16th Int. Conf. on Extending Database Technology (EDBT). pp. 561–
572 (2013)

178. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. on Data Semantics 10, 133–173 (2008)

179. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C
Recommendation (2008), http://www.w3.org/TR/rdf-sparql-query/

180. Reutter, J., Romero, M., Vardi, M.Y.: Regular queries on graph databases. In:
Proc. of ICDT’15 (2015)

181. Rodŕıguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data
access: Ontop of databases. In: Proc. of the 12th Int. Semantic Web Conf.
(ISWC 2013). Lecture Notes in Computer Science, vol. 8218, pp. 558–573.
Springer (2013)

182. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Proc. of the
13th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR 2012). AAAI Press (2012)

183. Rosati, R.: Prexto: Query rewriting under extensional constraints in DL-Lite. In:
Proc. of the 9th Extended Semantic Web Conf. (EWSC 2012). Lecture Notes in
Computer Science, vol. 7295, pp. 360–374. Springer (2012)

184. Rosati, R.: DL+log: Tight integration of description logics and disjunctive data-
log. In: Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006). pp. 68–98 (2006)

185. Rosati, R.: The limits of querying ontologies. In: Proc. of the 11th Int. Conf.
Database Theory (ICDT). pp. 164–178 (2007)

186. Rosati, R.: On conjunctive query answering in EL. In: Proc. of the 20th Int.
Workshop on Description Logic (DL 2007) (2007)

187. Rosati, R.: On the complexity of dealing with inconsistency in description logic
ontologies. In: Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2011) (2011)

188. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
Proc. of the 12th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2010) (2010)

189. Rosati, R., Ruzzi, M., Graziosi, M., Masotti, G.: Evaluation of techniques for
inconsistency handling in OWL 2 QL ontologies. In: Proc. of ISWC (2012)

190. Rudolph, S.: Foundations of description logics. In: Proc. of the Seventh Interna-
tional Reasoning Web Summer School (RW 2011). pp. 76–136 (2011)

191. Rudolph, S., Glimm, B.: Nominals, inverses, counting, and conjunctive queries
or: Why infinity is your friend! J. of Artificial Intelligence Research 39, 429–481
(2010)

192. Rudolph, S., Krötzsch, M.: Flag & check: Data access with monadically defined
queries. In: Proc. of the 32nd ACM SIGACT SIGMOD SIGART Symp. on Prin-
ciples of Database Systems (PODS 2013). pp. 151–162. ACM (2013)

193. Schaerf, A.: Reasoning with individuals in concept languages. In: Proc. of the 3rd
Conf. of the Italian Assoc. for Artificial Intelligence (AI*IA’93). Lecture Notes in
Artificial Intelligence, Springer (1993)

194. Schild, K.: Combining terminological logics with tense logic. In: Proc. of the 6th
Portuguese Conf. on Artificial Intelligence (EPIA’93). Lecture Notes in Computer
Science, vol. 727, pp. 105–120. Springer (1993)

195. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2003) (2003)

196. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics
via horn-sat encoding and conflict analysis. In: Proc. of CADE (2009)

197. Seylan, I., Franconi, E., de Bruijn, J.: Effective query rewriting with ontologies
over DBoxes. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2009). pp. 923–925 (2009)

198. Shmueli, O.: Decidability and expressiveness aspects of logic queries. In: Proc.
of the 6th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems (PODS’87). pp. 237–249 (1987)

199. Sioutos, N., de Coronado, S., Haber, M., Hartel, F., Shaiu, W., Wright, L.: NCI
thesaurus: a semantic model integrating cancer-related clinical and molecular in-
formation. Journal of Biomedical Informatics 40(1), 30–43 (2006)

200. Soylu, A., Kharlamov, E., Zheleznyakov, D., Jiménez-Ruiz, E., Giese, M., Hor-
rocks, I.: OptiqueVQS: Visual query formulation for OBDA. In: Informal Proc. of
the 27th International Workshop on Description Logics (DL). pp. 725–728 (2014)

201. Stefanoni, G., Motik, B.: Answering conjunctive queries over EL knowledge bases
with transitive and reflexive roles. In: Proc. of the 29th AAAI Conference on
Artificial Intelligence (AAAI 2015). pp. 1611–1617. AAAI Press (2015)

202. Stefanoni, G., Motik, B., Horrocks, I.: Introducing nominals to the combined
query answering approaches for EL. In: Proc. of the 22nd AAAI Conf. on Artificial
Intelligence (AAAI 2007). AAAI Press (2013)

203. Stefanoni, G., Motik, B., Krötzsch, M., Rudolph, S.: The complexity of answering
conjunctive and navigational queries over OWL 2 EL knowledge bases. J. Artif.
Intell. Res. (JAIR) 51, 645–705 (2014)

204. Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies: Con-
cepts, Theories and Techniques for Knowledge Modularization, Lecture Notes in
Computer Science, vol. 5445. Springer (2009)

205. The Gene Ontology Consortium: Gene ontology: Tool for the unification of biol-
ogy. Nature Genetics 25, 25–29 (2000)

206. Thomazo, M.: Compact rewritings for existential rules. In: Proc. of the 23rd Int.
Joint Conf. on Artificial Intelligence (IJCAI 2013) (2013)

207. Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.: Optimising resolution-based
rewriting algorithms for owl ontologies. J. of Web Semantics (2015), to appear

208. Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.: Query rewriting in Horn-
SHIQ (extended abstract). In: Proc. of the 29th Int. Workshop on Description
Logic (DL 2015) (2015)

209. Vardi, M.Y.: The complexity of relational query languages. In: Proc. of the 14th
ACM SIGACT Symp. on Theory of Computing (STOC’82). pp. 137–146 (1982)

210. Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proc. of the
14th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS’95). pp. 266–276 (1995)

211. Venetis, T., Stoilos, G., Stamou, G.B.: Query extensions and incremental query
rewriting for OWL 2 QL ontologies. J. Data Semantics 3(1), 1–23 (2014)

212. Zhou, Y., Nenov, Y., Cuenca Grau, B., Horrocks, I.: Pay-as-you-go owl query
answering using a triple store. Proceedings of the 28th Conference on Artificial
Intelligence (AAAI14) pp. 1142–1148 (2014)

