
Datalog Revisited for Reasoning in Linked Data

Marie-Christine Rousset1,2(B), Manuel Atencia1, Jerome David1,
Fabrice Jouanot1, Olivier Palombi3,4, and Federico Ulliana5

1 Université Grenoble Alpes, Grenoble INP, CNRS, Inria, LIG,
38000 Grenoble, France

Marie-Christine.Rousset@imag.fr
2 Institut universitaire de France, 75005 Paris, France

3 Université Grenoble Alpes, Grenoble INP, CNRS, Inria, LJK,
38000 Grenoble, France

4 Université Grenoble Alpes, LADAF, CHU Grenoble, 38000 Grenoble, France
5 Université de Montpellier, CNRS, Inria, LIRMM, 34000 Montpellier, France

Abstract. Linked Data provides access to huge, continuously growing
amounts of open data and ontologies in RDF format that describe enti-
ties, links and properties on those entities. Equipping Linked Data with
inference paves the way to make the Semantic Web a reality. In this sur-
vey, we describe a unifying framework for RDF ontologies and databases
that we call deductive RDF triplestores. It consists in equipping RDF
triplestores with Datalog inference rules. This rule language allows to
capture in a uniform manner OWL constraints that are useful in prac-
tice, such as property transitivity or symmetry, but also domain-specific
rules with practical relevance for users in many domains of interest. The
expressivity and the genericity of this framework is illustrated for model-
ing Linked Data applications and for developing inference algorithms. In
particular, we show how it allows to model the problem of data linkage
in Linked Data as a reasoning problem on possibly decentralized data.
We also explain how it makes possible to efficiently extract expressive
modules from Semantic Web ontologies and databases with formal guar-
antees, whilst effectively controlling their succinctness. Experiments con-
ducted on real-world datasets have demonstrated the feasibility of this
approach and its usefulness in practice for data integration and informa-
tion extraction.

1 Introduction

Thanks to the RDF data model, the Semantic Web has become a reality with
the rapid development of Linked Data. Linked Data provides access to huge,
continuously growing amounts of open data in RDF format that describe prop-
erties and links on entities referenced by so-called Uniform Resource Identifiers
(URIs).

This work has been partially supported by the ANR projects Pagoda (12-JS02-007-
01) and Qualinca (12-CORD-012), the joint NSFC-ANR Lindicle project (12-IS01-
0002), and LabEx PERSYVAL-Lab (11-LABX-0025-01).

c© Springer International Publishing AG 2017
G. Ianni et al. (Eds.): Reasoning Web 2017, LNCS 10370, pp. 121–166, 2017.
DOI: 10.1007/978-3-319-61033-7 5

122 M.-C. Rousset et al.

RDFS and OWL languages [5] allow to express a lot of useful logical con-
straints on top of RDF datasets, and existing Semantic Web tools implement
inference algorithms to exploit them. In particular, the Jena environment1

includes a rule-based reasoner that implements the RETE algorithm [21]. When
the inference mode is launched, the saturated dataset is computed, which is the
set of RDF facts that can be logically inferred from the input RDF dataset and
a given set of rules. The saturation process is guaranteed to terminate if the
rules are safe, i.e., if the variables appearing in the conclusion of each rule also
appear in its condition part.

Safe rules (also called Datalog rules) on top of RDF facts capture in a uniform
way most of the OWL constraints useful in practice, as well as mappings across
different datasets, and also domain knowledge provided by experts, while guaran-
teeing a polynomial data complexity of reasoning and query answering [2].

In the setting of a unifying framework that we have called deductive RDF
triplestores, we have followed a rule-based approach to address several problems
raised by exploiting semantic web knowledge bases. For this, we have extended
and adapted forward-chaining and backward-chaining algorithms initially devel-
oped for Datalog deductive databases.

This survey is structured as follows. In Sect. 2, we first recall the ingredients
of Linked Data and we define what we call a deductive RDF dataset to capture
several ontological constraints expressing data semantics. In Sect. 3, we survey
the rule-based data linkage approach that we have developed in the context of
Linked Data based on reasoning for inferring differentFrom and sameAs facts.
In Sect. 4, we summarize our approach for extracting bounded-level modules
from RDF knowledge bases. Finally, in Sect. 5, we illustrate our methodology
for rule-based integration of heterogeneous data and ontologies through several
applications related to Medicine. Finally, we conclude in Sect. 6.

2 Datalog Rules on Top of RDF Datasets

We first recall the ingredients of Linked Data and then we define what we call
a deductive RDF dataset to capture several ontological constraints expressing
data semantics.

2.1 RDF Datasets in Linked Data

An RDF dataset in Linked Data is defined by a URL u and a set F of RDF facts
that are accessible as URL through a query endpoint. We will denote by ds(u)
the set F of RDF facts that can be queried at the URL u.

An RDF fact is a triple t = (s, p, o) where the subject s is either a URI or a
blank node, the predicate p is a URI, and the object o may be either a URI, a
blank node or a literal. We will denote the vocabulary used in ds(u) by voc(u),
i.e., the names of predicates used to declare triples in the dataset accessible at
the URL u.
1 https://jena.apache.org/documentation/inference/.

https://jena.apache.org/documentation/inference/

Datalog Revisited for Reasoning in Linked Data 123

2.2 Queries over RDF Datasets in Linked Data

Queries over Linked Data are SPARQL conjunctive queries entered through a
given query endpoint accessible at a given URL. In this paper, we use a simplified
notation for SPARQL queries, and, without loss of generality, we consider that
all variables are distinguished.

A query q(u) asked to an RDF dataset identified by (and accessible at) the
URL u is a conjunction of triple patterns denoted by TP1(v1), . . . , TPk(vk)
where each triple pattern TPi(vi) is a triple (sv, pv, ov) in which the subject
sv, the predicate pv, or the object ov can be variables: vi is the set of variables
appearing in the triple pattern. Variables are denoted by strings starting by ‘?’.
TPi(vi) is a ground triple pattern if its set of variables vi is empty (denoted by
TPi()). A ground triple pattern corresponds to a RDF fact. A boolean query
is a conjunction of ground triple patterns.

The evaluation of a query q(u) : TP1(v1), . . . , TPk(vk) over the dataset ds(u)
consists in finding substitutions θ assigning the variables in

⋃
i∈[1..k] vi to con-

stants (i.e., identifiers or literals) such that TP1(θ.v1), . . . , TPk(θ.vk) are RDF
facts in the dataset.

The corresponding answer is equally defined as the tuple of constants
assigned by θ to the variables or as the set of corresponding RDF facts
TP1(θ.v1), . . . , TPk(θ.vk) that will be denoted by θ.q(u). In the remainder of
the paper, we will adopt the latter definition. The answer set of the query q(u)
against the dataset ds(u) = F is thus defined as:

Answer(q(u), F) =
⋃

{θ|θ.q(u)⊆F}
{θ.q(u)}

For a boolean query q(u), either the answer set is not empty and we will
say that the query is evaluated to true, or it is empty and we will say that it
evaluated to false.

For a query q(u) to have a chance to get an answer when evaluated over the
dataset ds(u), it must be compatible with the vocabulary used in this dataset,
i.e., (a) the predicates appearing in the triple patterns of q(u) must belong to
the set voc(u) of predicates known to occur in ds(u), (b) the URIs appearing as
constants in the triple patterns of q(u) must have u as prefix.

In accordance with SPARQL queries allowing different FROM operators,
a conjunctive query can in fact specify several entry points u1, . . . , un of
datasets over which the query has to be evaluated. We will denote such a query
q(u1, . . . , un). The above definitions of answers and compatibility can be gener-
alized appropriately by replacing the dataset ds(u) by the union

⋃
i∈[1..n] ds(ui)

of the specified datasets.

2.3 Deductive RDF Datasets

In order to capture in a uniform way semantic constraints that can be declared on
top of a given RDF dataset, but also possibly mappings between local predicates

124 M.-C. Rousset et al.

and external predicates within the vocabulary of other datasets, and domain
knowledge provided by domain experts, we consider that RDF datasets can
be enriched with Datalog rules. The Datalog rules that we consider are of the
form: Condr → Concr, in which the condition Condr is a conjunction of triple
patterns (i.e., a conjunctive query) and the conclusion Concr is a triple pattern.
We consider safe rules, i.e., rules such that all the variables in the conclusion
are also in the condition. Datalog rules on top of RDFS facts capture most of
the OWL constraints used in practice, while guaranteeing a polynomial data
complexity for reasoning and query answering.

A deductive RDF dataset dds(u) accessible at the URL u is thus a local
knowledge base (F,R) made of a set of RDF facts F and a set R of rules. The
application of rules allows to infer new facts that are logically entailed from
F ∪ R. A rule r can be applied to F if there exists a substitution θ such that
θ.Condr ⊆ F and the result of the rule application is F ∪{θ.Concr}. These new
facts can in turn trigger rules and infer additional facts. This is formalized in
the following definition of the standard semantics of a knowledge base F ∪ R
composed of a finite set of facts F and a finite set of rules R, based on the least
fixed point of immediate consequence operator TR.

Definition 1 (Datalog semantics)

– (F,R) �1 f iff there exists a rule TP1(v1)∧. . .∧TPk(vk) → TP (v) is in R and
there exists a mapping θ from its variables to constants such that f = θ.TP (v)
and θ.TPi(vi) ∈ F for every i ∈ [1..k].

– (F,R) � f iff there exists i such that f ∈ TR(Fi) where F0 = F , and for every
i ≥ 0, Fi+1 = TR(Fi) = Fi ∪ {f |Fi, R �1 f}.

For a finite set of facts F and a finite set of safe rules R, there exists a
unique least fixed point Fn (denoted by SAT (F,R)) such that for every k ≥ n
Fk = TR(Fn), i.e., there exists a step in the iterative application of the immediate
consequence operator for which no new fact is inferred. Several forward-chaining
algorithms exist to compute SAT (F,R), in particular the semi-naive bottom-up
evaluation in Datalog [2], and the RETE algorithm [21] that is implemented in
many rule-based reasoners, including in Semantic Web tools such as Jena (see
Footnote 1).

Query Evaluation over a Deductive Dataset

The evaluation of a query q(u) : TP1(v1), . . . , TPk(vk) over a deduc-
tive dataset dds(u) consists in finding substitutions θ such that the facts
TP1(θ.v1), . . . , TPk(θ.vk) can be inferred from the deductive dataset, or equiv-
alently belong to the result SAT (F,R) of the facts that can be inferred from F
and R:

Answer(q(u), (F,R)) = Answer(q(u), SAT (F,R))

Thus, a boolean query q(u) is evaluated to true if and only if q(u) ∈ SAT (F,R),
i.e., if and only if (F,R) � q(u), where � is the standard notation for logical
inference.

Datalog Revisited for Reasoning in Linked Data 125

Within the vocabulary of a deductive dataset, we distinguish the extensional
predicates (EDB predicates for short) that appear in the triplets of the dataset
F , from the intentional predicates (IDB predicates) that appear in conclusion of
some rules in R. Like in deductive databases, and without loss of generality (i.e.,
by possibly renaming predicates and adding rules), we suppose that these two
sets are disjoint. We will denote ODB predicates the external predicates (i.e.,
defined in a different namespace than the considered deductive dataset) that
possibly appear in the dataset or in the rules. These predicates are the core of
Linked Data in which a good practice is to re-use existing reference vocabularies.
We suppose (again, without loss of generality) that the set of ODB predicates is
disjoint from the set of IDB predicates (but not necessarily from the set of EDB
predicates).

3 Rule-Based Data Linkage

Data linkage consists in deciding whether two URIs refer to the same real-world
entity. This is a crucial task in Linked Data. In particular, it is very impor-
tant to correctly decide whether two URIs refer to the same real-world entity
for developing innovative applications on top of Linked Data, that exploit the
cross-referencing of data [20,26]. This task is often referred to as data interlink-
ing, and is also known as record linkage and entity resolution, and it has been
widely studied for the case of relational data [16]. As regards to Linked Data,
data linkage is especially challenging since (1) tools need to scale well with large
amounts of data, (2) data is frequently described using heterogeneous vocab-
ularies (ontologies), and (3) tools need to deal with data which is inherently
incomplete, and very often noisy.

In the context of Linked Data and RDF data, different approaches to data
linkage have been proposed. Most of them are based on numerical methods
that use linkage rules to compare property values of resources, using similarity
measures to handle noisy data. They conclude weighted sameAs links, from
which the links with higher weights are expected (but never guaranteed) to be
correct [34,48]. These approaches suffer from two weaknesses. First, rules cannot
be chained, as they are thought to be applied only once; and second, weights
are combined in a non-formal manner, since there is no formal semantics that
captures the combination of weights.

In contrast, like a few other works [31,40], we promote a rule-based approach
equipped with full reasoning.

First, we have investigated a logical approach that exploits uniqueness con-
straints (such as inverse functional properties and keys) and other schema con-
straints, domain knowledge and alignments between different vocabularies which
can be modelled as logical rules. This enables to infer all certain sameAs and
differentFrom facts that are logically entailed from a given set of domain con-
straints and input facts. Our main contribution is a novel algorithm, called
Import-by-Query, that enables the scalable deployment of such an approach in
the decentralized setting of Linked Data. The main challenge is to identify the

126 M.-C. Rousset et al.

data, possibly distributed over several datasets, useful for inferring owl:sameAs
and owl:differentFrom facts of interest. Compared to the approach reported in
[31], relying on a global import obtained by a breadth-first crawl of the Linked
Data cloud, we perform a selective import while guaranteeing completeness for
the inference of the targeted owl:sameAs and owl:differentFrom facts. For doing
so, the Import-by-Query algorithm that we have designed alternates steps of
sub-query rewriting and of tailored querying of the Linked Data cloud to import
data as specific as possible to infer owl:sameAs and owl:differentFrom facts. It
is an extension of the well-known query-subquery algorithm for answering Dat-
alog queries over deductive databases. Experiments conducted on a real-world
dataset have demonstrated the feasibility of this approach and its usefulness in
practice for data linkage and disambiguation.

We summarize this logical approach in Sect. 3.1.
Logical approaches applying only certain rules over clean and complete data

guarantee to provide sound results, i.e., a 100% precision. However, the recall
may be low because in Linked Data, data is inherently incomplete and possibly
noisy. Input facts may be missing to trigger rules, either because some values
for properties involved in rules conditions are absent for some URIs, or because
some of these values are noisy with some misspelling that prevents some con-
ditions to be satisfied. In addition, rules may be missing to infer sameAs facts
with certainty, although some strong evidence could be obtained from the com-
bination of soft constraints. In order to handle this, we have modeled the general
data linkage problem as a reasoning problem with uncertainty. We have intro-
duced a probabilistic framework for modelling and reasoning over uncertain RDF
facts and rules that is based on the semantics of probabilistic Datalog, and we
have designed an algorithm, ProbFR, based on this framework. This approach
is summarized in Sect. 3.2

3.1 Logical Approach for Data Linkage [4]

Illustrative Scenario

We describe here a simplified scenario inspired by the task of disambiguation
of named entities in a large real-world RDF documentary catalog produced by
the French National Audiovisual Institute (INA), and that we have used in our
experiments.

Figure 1 shows an extract of the INA vocabulary and a sample of RDF
triples from the INA dataset.2 Any person entity is an instance of the class
ina:PhysicalPerson, which has two subclasses: ina:Person and ina:VideoPerson.
The class ina:Person is used for representing French personalities while
ina:VideoPerson is used for identifying person entities that play a role in a video.
INA experts want to disambiguate individuals within ina:Person, and link these
individuals to the ones of ina:VideoPerson.

2 We have slightly modified the INA vocabulary (e.g. translating French terms into
English terms) for the sake of readability.

Datalog Revisited for Reasoning in Linked Data 127

Three homonymous persons are described in Fig. 1, all named “Jacques
Martin”: ina:per1, ina:per2 and ina:per3. It is unknown if these entities rep-
resent the same or different persons, but some additional information is given:
ina:per1 is known to be the presenter of a program recorded in the video ina:vid1
whose title is “Le Petit Rapporteur”, whereas ina:per2 and ina:per3 have dates
of birth “1933-06-22” and “1921-09-25”, respectively.

Fig. 1. An extract of INA vocabulary and RDF facts.

Our approach to disambiguating the person entities ina:per1, ina:per2 and
ina:per3 consists in exploiting domain knowledge and constraints, as well as
general properties of owl:sameAs and owl:different From, all this knowledge being
expressed in a uniform way by rules. Table 1 shows rules which, for the purpose of
this simplified scenario, we can assume they have been validated by INA experts.
R1-R3 are domain-specific rules. R1 expresses that ina:birthdate is functional.
This rule can be used to infer that ina:per2 and ina:per3 are different because
they have different dates of birth. R2 expresses that ina:name and ina:birthdate
form a key (within the INA dataset), and R3 the fact that two persons who
have the same name and presented programs recorded in videos with the same
title must be the same. R2 and R3 indeed could be useful for deciding if ina:per1
refers to the same person as ina:per2 or ina:per3, but some information is missing:
the date of birth of ina:per1 is not known, or whether ina:per2 or ina:per3 are
presenters and of which programs.

The above missing information can be completed thanks to external data
coming from DBpedia. In Fig. 2, we show DBpedia facts describing the DBpe-
dia person entity db:per1, and an extract of the DBpedia vocabulary. Rules R4

128 M.-C. Rousset et al.

Table 1. Rules in the INA illustrative scenario.

R1 : (?x1, ina:birthdate, ?b1), (?x2, ina:birthdate, ?b2), (?b1, notEqualTo, ?b2) → (?x1, owl:differentFrom, ?x2)
R2 : (?x1, ina:name, ?n), (?x2, ina:name, ?n), (?x2, ina:birthdate, ?b), (?x1, ina:birthdate, ?b)

→ (?x1, owl:sameAs, ?x2)
R3 : (?x1, ina:name, ?n), (?x2, ina:name, ?n), (?x1, ina:presenter, ?v1), (?x2, ina:presenter, ?v2), (?v1, ina:title, ?t),

(?v2, ina:title, ?t) → (?x1, owl:sameAs, ?x2)
R4 : (?x1, ina:name, ?n), (?x2, foaf:name, ?n), (?x1, ina:presenter, ?v), (?v, ina:title, ?t), (?x2, db:presenter, ?t)

→ (?x1, owl:sameAs, ?x2)
R5 : (?x1, ina:name, ?n), (?x2, foaf:name, ?n), (?x1, ina:birthdate, ?b), (?x2, foaf:birthdate, ?b)

→ (?x1, owl:sameAs, ?x2)
R6 : (?x1, owl:sameAs, ?x2), (?x2, owl:sameAs, ?x3) → (?x1, owl:sameAs, ?x3)
R7 : (?x1, owl:sameAs, ?x2), (?x2, owl:differentFrom, ?x3) → (?x1, owl:differentFrom, ?x3)
R8 : (?x1, ina:name, ?n1), (?x2, foaf:name, ?n2), (?n1, built-in:name-similar, ?n2), (?x1, ina:birthdate, ?b),

(?x2, foaf:birthdate, ?b) → (?x1, owl:sameAs, ?x2)

Fig. 2. An extract of DBpedia vocabulary and RDF facts.

and R5 in Table 1 translate mappings from the INA and DBpedia vocabularies.
Specifically, these mappings state that ina:name and ina:birthdate are equiva-
lent to foaf:name and foaf:birthdate, respectively, and that the composition of
ina:presenter and ina:title is equivalent to db:presenter. Let us assume that rules
R4 and R5 have been validated by INA experts too. With these rules it can be
inferred that db:per1 is the same as ina:per1 because they have the same name
and they have presented a program with the same title; and that db:per1 is the
same as ina:per2 since they have the same name and birthdate. Therefore, by
transitivity of same-as (rule R6 in Table 1), it can be inferred that ina:per1 is
the same as ina:per2, and, since ina:per2 is different from ina:per3 then (due to
R7) ina:per1 is different from ina:per3 too.

To avoid downloading the complete DBpedia, and, more generally, the
whole Linked Open Data (something that is not practical), our import-by-
query approach generates, for each targeted owl:sameAs fact, a sequence of
external sub-queries as specific as possible to obtain just the missing facts.
The external sub-queries generated by our algorithm for the particular query
(ina:per1, owl:sameAs, ina:per2) in our example are shown in Fig. 3.

Problem Statement

Given a deductive dataset dds(u) = (F,R), and a boolean query q(u) the
local evaluation of which gives an empty answer set (i.e., (F,R) 	� q(u)), we

Datalog Revisited for Reasoning in Linked Data 129

Fig. 3. The resultant external sub-queries submitted to DBpedia and their returned
answers.

aim to construct a set of external queries q1(u1), . . . , qk(uk) for which we can
guarantee that the subsets of external facts resulting from their evaluation over
the (possibly huge) external datasets are sufficient to answer the initial query.
More formally:

(F ∪
⋃

i∈[1..k]

Answer(qi(ui), ds(ui)), R) � q(u)

iff (F ∪
⋃

i∈[1..k]

ds(ui), R) � q(u)

The more specific the external queries are, the less external facts have to
be added and stored to the local dataset and therefore the more interesting a
proposed approach is to solve this problem.

The Iterative Import-by-Query Algorithm

We now describe the algorithm that we have designed and implemented for
solving the problem stated above.

Given an input boolean same-as query q, a deductive dataset (F,R), and a set
ū of query entry points to external datasets, Import-by-Query iteratively alter-
nates steps of sub-query rewriting based on backward chaining and of external
query evaluation.

Each sub-query rewriting step is realized by an adaptation of the Query-
Subquery algorithm [2,47] that is a set-oriented memoing backward chaining
method [29] used in deductive databases for evaluating Datalog programs. This
results in the Query-External-Subquery (QESQ for short) algorithm. For space
limitation, here we just explain its main principles, compared to Query-Subquery,
when applied to a list SG of subgoals. QESQ handles the subgoals built on EDB
or IDB predicates exactly like Query-Subquery, i.e., iteratively removes subgoals
built on EDB predicates if they can be matched with local facts, propagates
the corresponding substitutions to the remaining subgoals, replaces a subgoal
g built on an IDB predicate by the list of partially instantiated conditions of
a rule whose conclusion can be matched to g. As for the subgoals on ODB

130 M.-C. Rousset et al.

predicates, they are handled by QESQ before the subgoals on IDB predicates,
and once all the subgoals built on EDB predicates have been removed, and after
the corresponding substitutions are applied to the remaining subgoals in the
list. These ODB subgoals are conjuncted to obtain an external query qext, the
compatibility of which must be checked w.r.t. ū to be considered further. QESQ
then treats the remaining list SGidb of subgoals on IDB predicates just as Query-
External-Subquery, i.e., triggers the recursive call QESQ(SGidb). It will return
as output either true or false (if it has enough local information to infer a result
to the input boolean query), or a set of external queries that, if compatible with
the vocabulary of the given external datasets, are then conjuncted with qext to
constitute the output returned by QESQ(SG). As a result QESQ ({q}) succeeds
in handling locally the goal q using F and R just like Query-Subquery and then
the process is stopped and the result returned by Import-by-Query is true or
false accordingly, or it produces a set {q1(ū1), . . . , qk(ūk)} of external queries
the evaluation of which is likely to bring missing facts to F for proving the goal
q using R. If this set is empty, the process is stopped and the result returned by
Import-by-Query is false.

Each evaluation step simply consists in choosing one of the external query
qi(ūi) produced by the sub-query rewriting step and to submit it to Linked
Data through the specified query entry points. The result is either an empty set
(negative result) or a set of external facts (positive result) that can be added to
the current local dataset. In both cases, the result is memorized in an associated
answer table for the sub-query qi(ūi) that will be thus marked as an already
processed subgoal for which the (positive or negative) result is known and can
be directly exploited later on. If the result is positive, a new iteration of Import-
by-Query is started on the same input except for the set of facts F that is
enriched with the facts obtained as the result of the evaluation of the external
query qi(ūi). If the result is negative, another external query qj(ūj) in the set
produced by the current call to QESQ is evaluated. If the evaluation of all the
external queries in the set returns ‘false’, then the process is stopped and the
result returned by Import-by-Query on q is false.

The termination of the Import-by-Query algorithm relies on the termina-
tion of QESQ, which is guaranteed by the same memoing technique as Query-
Subquery (i.e., by handling goal and answer tables for each ODB and IDB predi-
cate). The soundness and completeness of the Import-by-Query algorithm results
from the soundness and completeness of Query-Subquery [47] and from the obser-
vation that the result produced by Query-Subquery, if applied to the same input
in which the ODB predicates are just considered as additional EDB predicates,
would be the same as the one produced by Import-by-Query. The reason is
that the only difference of Import-by-Query is to replace successive matching of
atomic goals against the facts by matching all at once the atomic goals compos-
ing the external queries produced by QESQ. This does not impact the global
boolean result of the sequence of goal matching.

Datalog Revisited for Reasoning in Linked Data 131

Combining Forward and Backward Chaining

Like any backward chaining method, Import-by-Query (and its main component
QESQ) re-starts from scratch for each new goal it tries to solve, even if the facts
and the rules remain unchanged. The intermediate subgoals generated and han-
dled by QESQ can be simplified if the input rules are replaced by their (partial)
instantiations obtained by the propagation of the facts into (the conditions of)
the rules.

Fact propagation is a forward chaining method used in inference engines
such as RETE [21] for rule-based systems. It avoids redundant evaluation of
same conditions appearing in several rules by memorizing, for each fact f , which
condition it satisfies in which rule (possibly already partially instantiated by
facts previously propagated), and the corresponding variable substitution that
is then applied to all the remaining conditions of the rules.

In our setting, we perform fact propagation as a pre-processing step of the
Import-by-Query algorithm, by computing at the same time the set SAT (F,R)
of facts that can be inferred locally, and the set PI(F,R) of partial instantiations
of the rules in R. This forward reasoning step can be summarized as follows,
where SAT (F,R) is initialized as F and PI(F,R) is initialized as R:

– for each f in SAT (F,R)
for each rule Condr → Concr in PI(F,R) having a condition c that can
be matched with f , i.e., there exists θ such that θ.c = f

* IF c is the only condition in Condr THEN add θ.Concr to SAT (F,R)
* ELSE add to PI(F,R) the rule obtained from θ.Condr → θ.Concr by

removing the condition θ.c (that is satisfied by the fact f).
– Remove from PI(F,R) those rules whose condition contains EDB predicates

that are not ODB predicates (and thus cannot be satisfied by local facts).
– RETURN (SAT (F,R), P I(F,R))

Each partially instantiated rule ri returned in PI(F,R) is issued from an
input rule r in which some conditions have been matched to facts f1, ..., fk

that have been inferred before (and added to SAT (F,R)), and thus allows us
to infer the same conclusion as the input rule r on any set of facts including f1,
..., fk. The result SAT (F,R)∪PI(F,R) is then logically equivalent to the input
deductive dataset F ∪ R for inferring facts on IDB predicates from the union of
F and a set OF of external facts (with ODB predicates), i.e. for every fact f an
external set of facts OF :

(F ∪ OF,R) � f iff (SAT (F,R) ∪ OF,PI(F,R)) � f

Therefore, it can be equivalently used for proving goals by checking whether
they belong to SAT (F,R), or for rewriting goals by applying QESQ to the
PI(F,R) (instead of the original R).

Experiments

We have conducted experiments on a real deductive dataset composed of 35
rules and about 6 million RDF facts from INA dataset. Most of the 35 rules

132 M.-C. Rousset et al.

capture local knowledge in the domain (functional properties and keys declared
as schema constraints, and rules provided by INA experts), mappings between
INA and DBpedia vocabularies, and general properties of owl:sameAs and
owl:differentFrom. Some of the rules of our experiments involve a built-in pred-
icate (called built-in:name-similar) to allow slight differences when comparing
literal values corresponding to person names (e.g. R8 in Table 1). This predi-
cate depends on a built-in function which checks if the similarity of the two
name strings is above a given threshold. In all our experiments we used edit
distance and 0.99 as a threshold. Other built-in predicates involved in the rules
are not-equal, less-or-equal, sum, etc. It is worth noting that the 35 rules can be
extended or modified without the need of changing the algorithmic machinery
of our approach.

Experimental Goals and Set-Up. The goal of our experiments was threefold: (1)
to show that external information available in Linked Open Data is useful to
infer owl:sameAs and owl:differentFrom facts within INA referenced persons,
and, thus, to disambiguate local homonyms; (2) to assess the gain in reduced
imported facts of our Import-by-Query approach compared to approaches based
on forward reasoning only; and (3) to evaluate the runtime of our Import-by-
Query algorithm and the possible amortized gain if fact propagation is performed
beforehand.

The external datasets from Linked Open Data with which the INA vocabu-
lary shares terms are DBpedia.org and DBpedia.fr. The baseline for evaluating
our two first goals is a set of 0.5 million external facts obtained by downloading
from DBpedia.org and DBpedia.fr (using their SPARQL endpoints) all the facts
about entities having the same name as one of the homonyms in the INA dataset.
We applied a preprocessing step on the original INA dataset to keep only the
facts on predicates appearing in the rules conditions. The resulting dataset con-
tains almost 1.15 million of RDF facts and will be the INA dataset referred to
henceforth.

Our algorithms have been implemented in SWI-Prolog. All the evaluations
were done on a machine with an Intel i7 Quad-core processor and 6 GB of memory.

Experimental Results. For evaluating our first goal, we applied (using our forward
reasoner) the set of 35 rules to (a) the INA dataset only and (b) the union of the
INA dataset with the baseline external facts, and then we compared the num-
ber of owl:sameAs and owl:differentFrom facts on INA homonyms we obtained.
The rules applied to the INA dataset only allowed to infer 2 owl:sameAs facts
and 108 owl:differentFrom facts, compared to the 4,884 owl:sameAs and 9,764
owl:differentFrom facts inferred when the external facts were added to the
process. This clearly demonstrates the benefit of using external information from
Linked Open Data for local disambiguation. These resulting 14,648 facts are
guaranteed to be correct under the assumption that both rules and data are cor-
rect. However, since this is not ensured for DBpedia data, we asked INA experts
to evaluate a random sample of 500 of such facts, and all of them were assessed
to be true.

Datalog Revisited for Reasoning in Linked Data 133

The rule expressing sameAs transitivity is crucial for inferring all the
owl:sameAs facts that cannot be inferred locally. More generally, full reasoning is
very important to discover owl:sameAs and owl:differentFrom facts. In order to
show this, we applied Silk to the same two datasets (the INA dataset only, and
the union of the INA dataset with the baseline external facts). For doing so, we
first had to translate our rules into the Silk specification language. It is not pos-
sible, however, to translate into Silk our rules concluding on owl:differentFrom
atoms. Thus, we focused on the rules leading to owl:sameAs inference. Among
the 4,884 owl:sameAs facts discovered by our full forward reasoner, Silk (which
does not perform full reasoning) only discovered 88, i.e. less than 2% of the total.
This shows that inference is important for data linkage.

For evaluating our second experimental goal, we took as reference boolean
queries the above sample of 500 owl:sameAs and owl:differentFrom facts, and
we applied our Import-by-Query algorithm to each of these boolean queries.
The number of external facts imported by our algorithm for all boolean queries
was 6,417, which makes, on average, 13 imported facts per boolean query. In
contrast, the total number of baseline external facts needed to conclude the
boolean queries with the forward reasoner was much higher (∼500,000). This
shows that our Import-by-Query algorithm reduces drastically the number of
imported facts needed for disambiguating local data.

Concerning the runtime evaluation, the import-by-query algorithm requires
3 iterations on average — it successively outputs and evaluates 3 external sub-
queries (each of them being produced by calling QESQ) — before termination.
It takes on average 186 s per boolean query when applied to the initial set of
rules and the local dataset. This drops to 7 s when it is applied to the partially
instantiated rules obtained by fact propagation beforehand, which means a gain
in time of 179 s (∼96%). With respect to the fact propagation, we propagated
all facts involving properties of class ina:Person. This took 191 s but it is done
only once for all queries, and its cost is amortized very fast, as shown by the
above numbers.

Discussion

We have proposed a novel approach for data linkage based on reasoning and
adapted to the decentralized nature of the Linked Data cloud. This approach
builds on the formal and algorithmic background of answering Datalog queries
over deductive databases, that we have extended to handle external rewriting
when local answers cannot be obtained. In contrast with existing rule-based
approaches for data linkage [31,40] based on forward reasoning to infer same-
as facts, Import-by-Query is a backward chaining algorithm that imports on
demand only external facts useful to infer target same-as facts handled as
boolean queries. Our experiments have shown that this approach is feasible and
reduces the number of facts needed to be imported. Compared to the depth-first
approach sketched in [1] for distributed Query-Subquery, our QESQ algorithm
generates external rewriting in a breadth-first way.

134 M.-C. Rousset et al.

Performing fact propagation beforehand in order to apply Import-by-Query
to a set of more specific rules than the original ones is an optimization close to
the ones proposed in QueryPIE [46] for efficient backward reasoning on very large
deductive datasets. One important difference, though, is that in the QueryPIE
setting, the problem of handling recursive rules can be fully delegated to for-
ward reasoning because all the facts are given and the recursive rules concern
a well identified subset of them (so called terminological facts). Another major
difference is that Import-by-Query performs query rewriting if no local answer
is obtained from the input deductive dataset.

The Import-by-Query approach in [25] is limited to ABox satisfiability queries
used as oracles in Tableau-based reasoning. Compared to the many recent works
on ontology-based data access initiated by [14], in which query rewriting is done
independently of the data, we have designed a hybrid approach that alternates
(external) query rewriting and (local) query answering. We plan to look into
this hybrid approach further, in particular to deal with ontological constraints
expressible in Datalog+− [13].

The interest of our rule-based approach is that it is generic and declarative:
new rules can be added without changing the algorithmic machinery. At the
moment the rules that we consider are certain. As a result, the same-as facts
that they allow to infer are guaranteed to be correct (under the assumption that
the input data does not contain erroneous facts). This is crucial to get automat-
ically same-as facts that are certain, in particular when the goal of discovering
same-as links is data fusion, i.e. replacement of two URIs by a single one in all
relevant facts. Another added-value to get certain same-as and different-from
facts is to find noisy data thanks to contradictions. However, in many cases,
domain knowledge is not 100% sure such as pseudo-keys [11] and probabilistic
mappings [45]. Data itself may be uncertain due to trust and reputation judge-
ments towards data sources [9]. Handling uncertain domain knowledge should
enable to discover more same-as facts that may be true even if inferred with
some uncertainty. This is addressed in the next section.

3.2 Reasoning over Uncertain RDF Facts and Rules [3]

We have designed a probabilistic framework to model and reason on uncer-
tain RDF facts and rules, based on the semantics of probabilistic Datalog [23].
Probabilistic Datalog extends (deterministic) Datalog [2] by associating each
ground fact and each instantiated rule with a basic probabilistic event that the
corresponding fact or rule is true. Each derived fact is then inferred with its
provenance in the form of an event expression made of a boolean combination of
the basic events of the ground facts and rules involved in its derivation. It can
be put in disjunctive normal form, in which a conjunction of events represents a
derivation branch, and disjunctions represent the different derivation branches.
Some simplifications can be performed before the computation of the resulting
probabilities: a conjunction containing disjoint events can be suppressed; basic
events known to be certain can be removed from the conjunctions where they are
involved thus leading to conjunctions with only uncertain events. An extreme

Datalog Revisited for Reasoning in Linked Data 135

case is when a conjunction is made of certain events only, which represent a
way to derive a fact with certainty. In this case the whole event expression can
be simplified to � which denotes certain events. The logical semantics of the
(simplified) event expression is then the basis for computing the probability of
the corresponding derived fact in function of the probabilities assigned to the
events identifying the input facts and rules participating to its derivation. In
the general case, computing the probability of the disjunction of conjunctions of
events requires to know the probabilities of all the combinations of events in the
expression. In practice, in particular in applications dealing with large amounts
of data, only the probabilities of single events will be known. We will then make
the same default assumptions of independence or disjointness of single events, as
usually done in most Information Retrieval models [22]. To fit with such assump-
tions, we have to impose some constraints on the rules, that will be explained
below.

Probabilistic RDF facts extends the standard data model of Linked Data
used to state properties on entities referenced by so-called Uniform Resource
Identifiers (URIs). Properties are themselves identified by URIs. So-called data
properties relate entities with literals (e.g., numbers, strings or dates), while
object properties relate two entities.

A probabilistic RDF fact is an RDF triple t = (s, p, o) (in which the
subject s is a URI, the predicate p is a URI, and the object o may be either a
URI or a literal) associated with an event key e denoting the probabilistic event
that t is true. A probabilistic RDF rule is a safe rule with variables, associated
with an event key denoting the probability that any of its instantiations is true.

Each probabilistic RDF fact and rule are assigned a distinct event key, except
the certain facts and rules that are assigned the special event key � denoting
events that are certain. For a probabilistic fact f (respectively rule r), we will
denote e(f) (respectively e(r)) the probabilistic event e associated with the fact
f (respectively the rule r).

In the rules, we also allow conditions B(x̄, ā) where B is a built-in pred-
icate (i.e., a function call), x̄ a vector of variables appearing in the triple
conditions of the same rule, and ā may be a non empty set of values of
parameters for calling B. The following rule is an example of a rule with a
built-in predicate:Similar(?s1, ?s2, levenshtein, 0.2): r0 : (?xhasName ?s1) ∧
(?y hasName ?s2)∧ Similar(?s1, ?s2, levenshtein, 0.2) → (?x sameName ?y)
For each pair of strings (s1, s2) for which the two triple conditions are satisfied
by facts (i1 hasName s1) and (i2 hasName s2), Similar(s1, s2, levenshtein, 0.2)
applies the normalized Levenshstein distance levenshtein(s1, s2) on the two
strings s1 and s2, and if this distance is less than 0.2 returns the corresponding
probablistic fact Similar(s1, s2, levenshtein, 0.2) with 1 − levenshtein(s1, s2)
as probability.

The semantics of inferred probabilistic facts is defined by extending the defi-
nition of SAT (F,R) (see Definition 1) with their provenance defined as boolean
combinations of all the events associated with the input facts and rules involved
in their inference.

136 M.-C. Rousset et al.

Definition 2 (Provenance-based semantics of probabilistic inferred
facts). For every fact f in SAT (F,R), its provenance (denoted ProvR,F (f))
is defined as follows:

– if f ∈ F : ProvR,F (f) = e(f)
– else: ProvR,F (f) =

∨
(r,θ)∈R(f) e(r) ∧ ∧

i∈[1..k] ProvR,F (θ.TPi(vi))
where R(f) is the set of instantiated rules (r, θ) having f as conclusion (i.e.,
rules r of the form TP1(v1)∧ . . .∧TPk(vk) → TP (v) for which θ is a mapping
such that θ.TP (v) = f and θ.TP(vi) ∈ SAT (F,R) for every i ∈ [1..k]).

For every fact f in SAT (F,R), its probability (denoted P (f)) is defined as the
probability of its provenance: P (f) = P (ProvR,F (f))

Illustrative Example

Let us consider the following probabilistic RDF facts and rules (for which we
omit to display the event keys) composed of 5 input facts and of 4 rules expressing
different ways to infer sameAs facts between individuals (to have the same name,
to have the same name and the same birthdate, to be married to the same
individual, or by transitivity of the sameAs relation):

f1: (i1 sameName i2)
f2: (i1 sameBirthDate i2)
f3: (i1 marriedTo i3)
f4: (i2 marriedTo i3)
f5: (i2 sameName i4)
r1: (?x sameName ?y) → (?x sameAs ?y)
r2: (?x sameName ?y), (?x sameBirthDate ?y) → (?x sameAs ?y)
r3: (?xmarriedTo ?z), (?y marriedTo ?z) → (?x sameAs ?y)
r4: (?x sameAs ?z), (?z sameAs ?y) → (?x sameAs ?y)

Three derived facts are obtained with their provenance:

ProvR,F ((i1 sameAs i2)) =
(e(r1) ∧ e(f1)) ∨ (e(r2) ∧ e(f1) ∧ e(f2)) ∨ (e(r3) ∧ e(f3) ∧ e(f4))

ProvR,F ((i2 sameAs i4)) = (e(r1) ∧ e(f5))
ProvR,F ((i1 sameAs i4)) =

e(r4) ∧ ProvR,F ((i1 sameAs i2)) ∧ ProvR,F ((i2 sameAs i4)

The first one captures that the fact (i1 sameAs i2) can be inferred as a result of 3
different derivation branches (one using the rule r1 and the input fact f1, another
one using the rule r2 and the input facts f1 and f2, and the third one using the
rule r3 and the input facts f3 and f4). The second one captures that (i2 sameAs i4)
results from a single derivation branch, using the rule r1 and the fact f5. The last
one illustrates how the provenances can be built iteratively during the saturation
process: the last derivation step leading to the inference of (i1 sameAs i4) involves
the rule r4 and two facts inferred at a previous iteration (namely, (i1 sameAs i2)

Datalog Revisited for Reasoning in Linked Data 137

and (i2 sameAs i4)) for which the event expressions computed beforehand as their
provenance can be combined with the event key of r4.

These event expressions can be simplified by exploiting facts and rules that
are certain. For instance, if we know that the two facts f2 and f3 are certain as
well as the rule r4, we can suppress e(f2), e(f3) and e(r4) in the conjuncts of the
above expressions because they are all equal to the event � always true. We now
obtain for ProvR,F ((i1 sameAs i2)): (e(r1)∧e(f1))∨(e(r2)∧e(f1))∨(e(r3)∧e(f4))

When many facts and several rules are certain, such simplifications lead to
a drastic reduction of the size of event expressions, which is important for the
feasibility and the scalability of the approach in practice.

This example illustrates how the construction and the simplification of the
provenance can be incorporated into the saturation process and thus how a given
forward-reasoning algorithm can be easily extended to compute the provenance
during the inference of the corresponding facts.

The ProbFR Algorithm

Algorithm 1 describes the ProbFR algorithm that we have implemented and used
in our experiments.

Algorithm 1. The ProbFR algorithm
Input: A set F of input (probabilistic) facts and a set R of (proba-
bilistic) rules
Output: The set Fsat of inferred (probabilistic) facts with for each
inferred fact f its event expression x(f)
(1) for each f ∈ F : x(f) ← e(f)
(2) Fsat ← F
(3) Δ ← F
(4) repeat
(5) Δ1 ← ∅
(6) foreach rule r: c1 ∧ . . . ∧ ck → c for which there exists

a substitution θ and facts f1, . . . , fk ∈ Fsat (among which
atleast one of them belongs to Δ) such that fi = θ.ci for
every i ∈ [1..k]:

(7) let f = θ.c:
(8) if f �∈ Fsat

(9) add f to Δ1

(10) x(f) ← N∨(e(r) ∧∧i∈[1..k] x(fi))

(11) else x(f) ← x(f)∨
(12) N∨(e(r) ∧∧i∈[1..k] x(fi))

(13) Fsat ← Fsat ∪ Δ1

(14) Δ ← Δ1

(15) until Δ1 = ∅
(16) return Fsat

138 M.-C. Rousset et al.

It starts with the set of initial facts and rules and repeats inference steps
until saturation. Each inference step (Line (4) to (15)) triggers all the rules
whose conditions can be matched with known facts (i.e., input facts or facts
inferred at previous steps). At each iteration, the set Δ contains the facts that
have been inferred at the previous iteration. The constraint (expressed in Line
(6)) that rules are only triggered if atleast one of their conditions can be matched
with facts in Δ guarantees that instantiated rules are not triggered twice during
the inference process. The algorithm stops as soon as no new fact has been
inferred during a given iteration (i.e., Δ1 remains empty over this iteration). The
algorithm returns the set Fsat of inferred facts, and computes for each of them
an event expression x(f) (Lines (10) and (11)). The function N∨ denotes the
transformation of a conjunction into its disjunctive normal form. It consists in
applying iteratively the distributivity of the conjunction connector (∧) over the
disjunction connector (∨), and in simplifying when possible the (intermediate)
results as follows: (1) remove the duplicate events and the certain events � from
each conjunction of events, (2) if a conjunction within a disjunction becomes
empty (i.e., if all its events are certain), replace the whole disjunction by �.
Each event expression x(f) is thus either � or of the form Conj1 ∨ ... ∨ Conjl

where each Conji is a conjunction of event keys tracing the uncertain input facts
and rules involved into one of the l branches of uncertain derivation of f .

The termination of the ProbFR algorithm is guaranteed by the fact that the
rules are safe. The only facts that can be inferred from safe rules and a set F of
ground atoms are instantiations of conclusion atoms by constants appearing in
F . Their number is finite. More precisely, since the input facts and conclusion
atoms are built on are binary predicates, the number of constants appearing in
the input facts is less than 2 × |F | (at most two distinct constants per input
fact), and the number of inferred facts is then less than 4 × |R| × |F |2 (atmost
as many predicates in conclusion as rules, and for each of them, atmost as many
instantiations as pairs of constants).

The following theorem states the soundness and completeness of the
algorithm.

Theorem 1. Let Fsat be the result returned by ProbFR(F,R):
Fsat = SAT (F,R).
For each f ∈ Fsat, let x(f) be the event expression x(f) computed

by ProbFR(F,R):
x(f) ≡ ProvF,R(f)

For the first point, we prove by induction on i that each iteration i ≥ 1 of the
algorithm computes the set of facts Fi = TR(Fi−1) (as defined in Definition 1),
and thus SAT (F,R) at the last iteration where the least fixed point reached.
For the second point, for a derived fact f , we prove, by induction on the number
n of iterations of ProbFR after which no new instantiation of rules can infer f ,
that x(f) is a disjunctive normal form of ProvF,R(f), and therefore is logically
equivalent to it.

Datalog Revisited for Reasoning in Linked Data 139

As a result of Definition 2 and Theorem 1, it worths to emphasize that the
probabilities values of inferred facts is independent of the order in which the
rules are triggered to derive them.

Data Complexity Analysis

We are interested in estimating how the worst-case time complexity of the algo-
rithm depends on the size |F | of the input data, which is the most critical
parameter in the setting of Linked Data. The number of iterations of ProbFR
is atmost |Fsat|, which is less than 4 × |R| × |F |2 as shown just above. At each
iteration, in the worst case, the condition part of each rule must be evaluated
against the facts, and the event expressions for the provenance of the inferred
facts must be computed. Let c the maximum number of conditions per rule. The
evaluation of each condition part of each rule can be performed in polynomial
time (in fact, in at most |R| × |Fsat|c elementary steps).

For the computation of the event expressions, the most costly opera-
tion is the transformation N∨ into disjunctive normal form of conjunctions
e(r) ∧ ∧

i∈[1..k] x(fi). The number k of conjunctions is less than the bound c

of conditions per rule, and each x(fi) is a disjunction of at most l conjunctions
of event keys, where l is the maximum number of uncertain derivation branches
for inferred facts. This parameter l is bounded by bd where d is the maximal
depth of reasoning to infer a fact from F and R, and b is the maximal branch-
ing factor of ground(F,R) (which denotes the set of rules triggered during the
execution of ProbFR(F,R)). Therefore, each call of N∨ performs at most bd×c

distributivity operations on conjunctions of at most |F | + |R| event keys. Since
the maximal depth of reasoning is the number of iterations of ProbFR(F,R), d
can be equal to |Fsat|. Then, the data complexity of the provenance computation
may be exponential in the worst-case. This meets known results on query evalua-
tion in probabilistic databases [43]. Different solutions are possible to circumvent
this worst-case complexity, like restricting the form of rules/queries like in [17]
or imposing some constraints on the input facts (such as a bounded treewidth in
[6]). In practice, in particular if most of the input facts are certain, the size of the
event expressions remains small. If all the input facts are certain, the only event
keys that can be involved in the event expressions are the ones attached to the
uncertain rules. The complexity of the algorithm can be controlled by imposing
a practical bound in the number l of conjunctions produced in Line (11). This
solution is justified in our setting since the computed probabilities are used to
keep only the most probable inferred facts, i.e., the facts that are inferred with
a probability greater than a given high threshold. For our experiments, we have
limited this number l to be 8.

Effective Computation of Probabilities of Inferred Facts from Their
Provenance

For each inferred fact, given its provenance as an event expression in disjunctive
normal form, the following formula is the basic theoretical tool to compute its
probability:

P (A ∨ B) = P (A) + P (B) − P (A ∧ B). (1)

140 M.-C. Rousset et al.

The recursive application of the above formula for computing the probability
of a disjunction of l conjunctions of events E1 ∨ . . . ∨ El leads to alternate the
subtractions and additions of the probabilities of all the possible conjunctions
Ej1 ∧ . . . ∧ Eji . This raises two major issues: first, their number is exponential
in l; second the exact values of all these probabilities is usually not available.

An usual way to circumvent the latter is to make the assumption of inde-
pendence between events, as it is done in probabilistic databases [43] or in most
Information Retrieval models [22]. In our case however, two rules such that the
condition part of one rule is contained in the condition part of the second (like
the rules r1 and r2 of the example) are obviously not independent. For such
rules, we enforce pairwise disjointness by imposing that the more general rule
applies only if the more specific rules do not apply. In this way, we are sure
that the corresponding dependent events do not appear in any event expression
computed during the saturation process. To be consistent with the probabilistic
setting, we also impose that the probability assigned to the event corresponding
to the more specific rule (r2 in our example) is higher than the one assigned to
the event of more general rule (r1 in our example).

For each pair r, r′ with same conclusion (up to variables names), let us denote
r � r′ if Condr is contained into Condr′ . Checking whether r � r′ can be done
by using any conjunctive query containment algorithm [15] with a complexity
independent of the data.
To summarize, we make the assumptions of:

– pairwise disjointness between events associated with pairs of rules r, r′ such
that r � r′

– independence of the events that are not disjoint.
For the effective computation of the probability of an inferred fact f ,

– first, the provenance expressions x(f) = E1∨. . .∨El computed by the ProbFR
algorithm are simplified by removing each conjunction of events Ei in which
an event e(r) appears if there is a conjunction of events Ej (j 	= i) such that
e(r′) appears in Ej and r � r′.

– second, the probability of f is computed by iteratively applying the formula
(1) on the resulting event expression.

In our example, the rules r2 and r1 are such that r1 � r2. We can thus remove
the conjuncts containing e(r1) and we obtain for x((i1 sameAs i2)):

(e(r2) ∧ e(f1)) ∨ (e(r3) ∧ e(f4)).

Now, considering the remaining events as independent, we can compute the
effective probability P ((i1 sameAs i2)) as follows:

P ((i1 sameAs i2)) =
(P (e(r2)) × P (e(f1))) + (P (e(r3)) × P (e(f4)))
− (P (e(r2)) × P (e(f1)) × P (e(r3)) × P (e(f4)))

Datalog Revisited for Reasoning in Linked Data 141

Note that the above simplification can be incorporated into the ProbFR
algorithm at each update of event expression (Line (11)) and that determin-
ing the possible pairs of rules r, r′such that r � r′ can be done in advance before
launching ProbFR as it is independent of the set of facts F .

This simplification has an impact on the practical complexity of the effec-
tive computation of the probabilities, even if, in theory and in the worst-case, it
remains exponential in the number l of conjunctions within provenance expres-
sions. As we have explained it before, this number l can be bounded in practice.

The assumption of disjointness between events associated with rules r, r′ such
that r � r′ is important for the feasability of the approach but it also fits well
with the open-world assumption that holds in Linked Data. In fact, it captures
a restricted form of negation since, under this disjointness assumption, the event
e(r) models worlds where the condition of r is satisfied and the additional con-
ditions of r′ are not satisfied.

Setting Up of the Input Probabilities

The above approach for probabilistic inference is agnostic with respect to the way
the input probabilities are obtained, either given by experts, returned by built-in
predicates or tools, or learned by supervised methods. This said, it is important
to note that training sets (required by supervised machine learning techniques)
that would be big enough to scale to the setting of Linked Data do not exist and
are almost impossible to build manually. On the other hand, it is quite easy for
domain experts to decide whether a given rule is uncertain, but setting up its
probability is tricky. The two-steps computation of a provenance-based approach
as ours has the big advantage to possibly re-compute the numerical values of
probabilities for the inferred facts from the provenance expressions computed
once for all. This enables to start with a rough setting of rules probabilities
chosen from a small set of values just for distinguishing rules on a simple scale
of uncertainty (for instance set at 0.9 the rules a priori considered as almost
always certain, 0.8 the rules judged as highly probable but less than the previous
ones, and so on), and to adjust these values a posteriori based on a feedback
on a sample of results. The provenance of wrong sameAs links inferred with a
high probability provides explicitly the rules involved in the different reasoning
branches leading to their derivation. It is a useful information for a domain expert
to choose the rules to penalize by decreasing their numerical probabilities.

3.3 Rule-Based Data Linkage with Uncertainty

When used for data interlinking, rules typically translate varied knowledge that
combines schema constraints, alignments between different ontologies and gen-
eral properties on OWL relations such as owl:sameAs. This knowledge may be
certain, but, very often, it has some degree of uncertainty. It is the case when
a correspondence in an ontology alignment is attached a confidence value lower
than 1, or when domain experts provide knowledge they are not 100% sure
about, or the case of pseudo-keys that are automatically computed by pseudo-key

142 M.-C. Rousset et al.

Table 2. Certain rules for interlinking person entities in DBpedia and MusicBrainz.

ID Conditions Conclusion

musicalArtist (?w dbo:musicalArtist ?x) (?w dbo:artist ?x)

enrich dboBand1 (?x rdf:type schema:MusicGroup) (?x rdf:type dbo:Band)

sameAsVIAF (?x dbp:viaf ?id), (?y mb:ViafID ?id) (?x :sameAsPerson ?y)

sameAsIsPerson1 (?x :sameAsPerson ?y), (?z mb:is person ?y) (?x :sameAsPerson ?z)

similarNamesPerson (?x rdf:type dbo:Person), (?x rdfs:label ?l),

MBsolrsimilar(?l,0.8,?z, ‘persons mb’)

(?x :solrPSimilarName ?z)

Table 3. Uncertain rules for interlinking person entities in DBpedia and MusicBrainz.

ID Conditions Conclusion Weight

sameAsBirthDate (?x :solrPSimilarName ?l), (?y

skos:myLabel ?l), (?x dbo:birthDate

?date), (?y mb:beginDateC ?date)

(?x :sameAsPerson ?y) w1

sameAsPersonArtistWr (?w1 dbo:artist ?x), (?w1

:solrWrSimilarName ?lw), (?y

mb:writer ?w2), (?w2 skos:myLabel

?lw), (?x :solrPSimilarName ?lp), (

?y skos:myLabel ?lp)

(?x :sameAsPerson ?y) w2

sameAsMemberOfBand (?x :solrPSimilarName ?l), (?y

skos:myLabel ?l), (?y

mb:member of band ?gr2), (?gr2

skos:myLabel ?lg), (?gr1

dbp:members ?x), (?gr1

:solrGrSimilarName ?lg)

(?x :sameAsPerson ?y) w3

discovery tools [11,44]. This uncertain knowledge can be translated by means of
probabilistic rules.

Tables 2 and 3 show rules translating, respectively, certain and uncer-
tain knowledge for the task of interlinking person entities in DBpedia and
MusicBrainz datasets. These rules are actually part of the rules that we used
in our experiments (reported in Sect. 3.4). Rule musicalArtist in Table 2, for
example, is a certain rule that translates the DBpedia knowledge that the
class dbo:musicalArtist is subsumed by dbo:Artist. Rule enrich dboBand1 trans-
lates a certain correspondence in an alignment between Schema.org vocabulary
and DBpedia ontology stating that the class schema:Person is subsumed by
dbo:Person. The rule sameAsVIAF is a certain rule that translates the assertion
that the VIAF id is a key for persons and, therefore, allows to infer sameAs links
between person entities from DBpedia and MusicBrainz. Notice that this rule
actually involves the two equivalent properties dbp:viaf and mb:ViafID of DBpe-
dia and MusicBrainz vocabularies. This means that the condition (?x dbp:viaf
?id) in the rule will be instantiated by a DBpedia entity, and (?y mb:ViafID ?id)
by a MusicBrainz entity. This kind of “key across different datasets” is called a
link key in the literature [10]. Note also that, instead of using owl:sameAs, we
use our own customized sameAs predicates (:sameAsPerson) which allowed us

Datalog Revisited for Reasoning in Linked Data 143

to easily identify the type of the inferred sameAs links in our experiments. Rule
sameAsIsPerson1 is a certain rule that translates transitivity of sameAs.

Rule similarNamesPerson deserves special attention because it contains a
built-in predicate (namely MBsolrsimilar) that encapsulates the call to a full-
text search tool (namely Solr3) to extract strings from MusicBrainz similar to
labels of person entities in DBpedia. More precisely, for each string instanti-
ation s of the variable ?l, obtained by mapping with DBpedia facts the two
first conditions (?x rdf:type dbo:Person) and (?x rdfs:label ?l) of the rule,
MBsolrsimilar(s, 0.8, ?z, ‘person mb’) is a procedure call returning as many
probabilistic facts MBsolrsimilar(s, 0.8, s′, ‘person mb’) as labels s′ of person
entities in MusicBrainz detected by Solr as similar to s with a similarity greater
than 0.8. The probability attached to each probabilistic fact MBsolrsimilar(s,
0.8, s′, ‘person mb’) is the calculated string similarity. Thus similarNamesPer-
son is a certain rule that will infer uncertain facts of the form (?x :solrPSimilar-
Name ?z) due to condition MBsolrsimilar(?l,0.8,?z, ‘persons mb’), which will be
instantiated with built-in uncertain facts. Built-in predicates such as MBsolrsim-
ilar enable to embed standard similarity functions into our rule-based approach
to overcome the problem of misspelling errors in names of persons, groups and
songs that may occur in DBpedia and MusicBrainz datasets.

Table 3 shows three additional rules allowing to infer sameAs links between
person entities from DBpedia and MusicBrainz datasets, but, in contrast with
the sameAsVIAF rule explained above, they are not 100% certain. Rule sameAs-
BirthDate, for example, says that if two persons have similar names and the
same birthdate then they are likely to be the same person. This rule must be
considered uncertain for two reasons. First, it relaxes the strict condition of
having exactly the same name by the soft constraint of having similar names
as it is specified by (?x :solrPSimilarName ?l). Second, strictly speaking the
properties “name” and “birthdate” do not constitute a key, even if it is likely
that two named entities representing persons that are well-known enough to
be described in datasets like DBpedia and MusicBrainz will refer to the same
person if they share the same name and birthdate. In fact, sameAsBirthDate
translate a soft link key, as it combines the equivalent properties dbo:birthDate
and mb:beginDateC that are used in DBpedia and MusicBrainz vocabularies
to relate a person with her date of birth. The rules sameAsPersonArtistWr and
sameAsMemberOfBand are uncertain too. The first one says that, if two persons
have similar names and they are artists of songs with similar names, they are
the same person, and the second rule says that if two persons have similar names
and are members of musical bands with similar names, they are the same person.
Again, this may not be always true, but in most cases. The weights in Table 3
correspond to the probabilistic events associated with each of these uncertain
rules.

An important point to emphasize is that the (certain or uncertain) rules
allowed in our rule-based modeling express pieces of knowledge that can be
assembled and combined through several reasoning steps. For instance, the

3 http://lucene.apache.org/solr/.

http://lucene.apache.org/solr/

144 M.-C. Rousset et al.

condition (?w1 dbo:artist ?x) of the sameAsPersonArtistWr rule may be trig-
gered by facts inferred by the musicalArtist rule. The chaining between rules is
not known in advance and is determined by the input datasets which they apply
to. In addition, due to recursive rules (such as sameAsIsPerson rule), even if the
termination of the saturation process is guaranteed, the number of reasoning
steps cannot be known in advance and also depends on the input datasets. It is
worthwhile to note that recursive rules add an expressive power that is required
for data linkage in particular to express sameAs transitivity.

The translation into rules can be semi-automatic, for instance for translating
into certain rules schema constraints that have been declared in OWL such as the
functionality or transitivity of some relations, or for translating into (certain or
uncertain) rules alignments discovered by ontology mapping tools [19]. A certain
number of uncertain rules useful for data interlinking must however be provided
by domain experts to express fine-grained knowledge that may be specific to the
datasets concerned by the linkage task. While it is quite easy for domain experts
to decide whether a given rule is uncertain, setting up its probability is tricky.
The two-steps computation has the big advantage to possibly re-compute the
numerical values of probabilities for the inferred facts, starting from the event
expressions built once for all in the first step that is a symbolic computation
independent of the numerical values of rules probabilities. This enables to start
with a rough setting of rules probabilities chosen from a small set of values just
for distinguishing rules on a simple scale of uncertainty (for instance set at 0.9 the
rules a priori considered as almost always certain, 0.8 the rules judged as highly
probable but less than the previous ones, and so on), and to adjust these values
a posteriori based on a feedback on a sample of results. The event expressions
of wrong sameAs links inferred with a high probability provide explicitly the
rules involved in the different reasoning branches leading to their derivation. It
is a useful information for a domain expert to choose the rules to penalize by
decreasing their numerical probabilities.

In our experiments, such an incremental adjustment for the probabilities
of the three uncertain rules of Table 3 resulted into: w1 = 0.9, w2 = 0.4 and
w3 = 0.6.

It is worth emphasizing that rules with quite low probabilities (such as 0.4
for the sameAsPersonArtistWr rule) can yet significantly contribute to the final
probability of a fact inferred by different reasoning branches.

3.4 Experimental Evaluation

We have conducted experiments to evaluate the performance of our method on
real datasets. Our main goal was to measure the effectiveness of our method to
discover links at large scale, and to assess the expected gain in terms of recall
and the loss in precision when using uncertain rules instead of certain rules only.
We also wanted to show how the probabilistic weights attached to the links
allow to filter out incorrect links. Finally, we aimed at comparing our tool to a
state-of-the-art interlinking tool, namely Silk [48].

Datalog Revisited for Reasoning in Linked Data 145

Experimental Setting. We used three datasets in our experiments: DBpedia,
INA and MusicBrainz. The objective was to find sameAs links between named
entities of person, musical band, song and album included in the datasets. Our
choice of these datasets was based upon the fact that these are all large datasets
(tens of millions of triples), and of a very different nature: DBpedia was built from
Wikipedia infoboxes, INA from catalog records mainly containing plain text, and
MusicBrainz from more structured data coming from a relational database.

The DBpedia version we used was DBpedia 2015-04,4 the latest version at
the time the experiments were conducted. From all available (sub) datasets, we
only used the ones including RDF triples with properties appearing in the rules
that we used in the experiments (below we give more details about the rules),
which make together one single dataset of around 73 million RDF triples. The
INA dataset contains around 33 million RDF triples, while the MusicBrainz
dataset around 112 million RDF triples. The INA dataset was built from all
the records (plain text) in a catalog of French TV musical programs using an
specialised RDF extractor. Some RDF facts in the INA dataset have numerical
weights between 0 and 1 since their accuracy could not be 100% assessed during
the extraction process. The MusicBrainz dataset was built from the original
postgreSQL table dumps available at the MusicBrainz web site using an RDF
converter. This version is richer than the one of the LinkedBrainz project.5

Table 4 shows the number of person, musical band, song and album entities
in each of the considered datasets, where Person, e.g. symbolises the class union
of all the classes that represent persons in each dataset. No bands or albums are
declared in INA, written NA (not applicable) in Table 4.

Table 4. Number of person, musical band, song and album entities in DBpedia,
MusicBrainz and INA.

Class DBpedia MusicBrainz INA

Person 1, 445, 773 385, 662 186,704

Band 75, 661 197, 744 NA

Song 52, 565 448, 835 67,943

Album 123, 374 1, 230, 731 NA

We have designed two sets of rules that we used as inputs for our algo-
rithm to interlink DBpedia and MusicBrainz first and then MusicBrainz and
INA. We came up with 86 rules for interlinking DBpedia and MusicBrainz, from
which 50 of them are certain and 36 are uncertain, and 147 rules for interlinking
MusicBrainz and INA, 97 of them certain and 50 uncertain. By a way of exam-
ple, Tables 2 and 3 of Sect. 3.3 include some of the certain and uncertain rules
that we used for interlinking DBpedia and MusicBrainz.

4 http://wiki.dbpedia.org/Downloads2015-04.
5 http://linkedbrainz.org/.

http://wiki.dbpedia.org/Downloads2015-04
http://linkedbrainz.org/

146 M.-C. Rousset et al.

ProbFR has been implemented on top of Jena RETE and uses SWI-Prolog
v6 to compute the disjunctive normal forms for the event expressions during
RETE inference. Prolog is also used to implement the second step of ProbFR,
i.e. to compute effective probabilities given event expressions. In order to avoid
potential combinatorial explosion, the current parameter of ProbFR is tuned
to a maximum of 8 derivation branches for each event expression. All ProbFR
experiments were run on a Bi-processor intel Xeon 32 × 2.1 GHz, 256 GB of
RAM, with Linux CentOS 6 as operating system.

Experimental Results. We ran our algorithm to interlink DBpedia and
MusicBrainz first, and then MusicBrainz and INA, using in each case the cor-
responding rules. Our algorithm discovered 144,467 sameAs links between enti-
ties of DBpedia and MusicBrainz and 28,910 sameAs links between entities of
MusicBrainz and INA. Additionally, our algorithm found 132,166 sameAs links
internal to the INA dataset.

In order to evaluate the quality of the found links, and since no gold standard
was available, we estimated precision, recall and F-measure by sampling and
manual checking. In order to compute precision, for each of the classes considered
we took a sample of 50 links from the links found by our algorithm (i.e. 200
links in total for DBpedia and MusicBrainz, and 100 links for MusicBrainz and
INA), and we manually checked whether these links were correct. For computing
recall, we randomly selected 50 instances of each of the classes, and we found
links manually. Then, we calculated recall based on this make-do gold standard.
F-measure was based on the estimations of precision and recall.

In order to assess the gain of using uncertain rules, we also ran our algorithm
only with certain rules, and then we compared the results obtained using only
certain rules with the ones obtained using all rules (both certain and uncertain
rules). This concerned the experiments between DBpedia and MusicBrainz only,
as no other certain rule than sameAs transitivity was used for MusicBrainz and
INA.

Table 5. Precision (P), recall (R) and F-measure (F) for the task of interlinking
DBpedia and MusicBrainz datasets, and MusicBrainz and INA datasets, using certain
rules only, and certain and uncertain rules together.

DBpedia and MusicBrainz MusicBrainz and INA

Only certain rules All rules Only certain rules All rules

P R F P R F P R F P R F

Person 1.00 0.08 0.15 1.00 0.80 0.89 NA NA NA 1.00 0.34 0.51

Band 1.00 0.12 0.21 0.94 0.84 0.89 NA NA NA NA NA NA

Song NA NA NA 0.96 0.74 0.84 NA NA NA 1.00 0.40 0.57

Album NA NA NA 1.00 0.53 0.69 NA NA NA NA NA NA

Datalog Revisited for Reasoning in Linked Data 147

Table 5 shows all the results. Let us focus on the results concerning DBpedia
and MusicBrainz. As expected, when certain rules were used only, precision
was 100%. This only concerns Person and Band classes because the initial set
of rules did not include any certain rule concluding links for Song and Album
(written NA in Table 5). However, recall was very low: 0.08 for Person and 0.12
for Band. When both certain and uncertain rules were used, a 100% precision was
achieved for Person and Album classes only, since for Band and Song, precision
was 0.94 and 0.96, respectively. However, recall increased significantly for Person
and Band: 0.80 and 0.84. This shows the gain of using uncertain rules for data
linkage. Now, when looking at the samples of Band and Song classes, we realised
that all wrong links had a probability value lower than 0.9 and 0.6, respectively.
This means that, when limited to those links having a probability value higher
or equal to 0.9 and 0.6, the estimated precision for the classes Band and Song
was 100% (Table 6). The estimated recall was 0.80 and 0.54. This shows the gain
of using weights for interlinking.

Table 6. Gain of using weights for interlinking DBpedia and MusicBrainz.

P R F

Band�0.90 1.00 0.80 0.89

Song�0.60 1.00 0.54 0.72

Table 7 shows the number of links that are discovered when n sameAs rules6

are implied in the derivation. For instance, 28,614 links are discovered using two
sameAs rules, and among these links 27,692 are new links, i.e. they were not
discovered using only one rule. With tools like Silk and LIMES, using the same
set of rules, we can expect to find around 115,609 links only.

Table 7. Number of links discovered when n rules are implied in the derivation. Results
given for interlinking DBpedia and MusicBrainz.

rules # links # new links

1 115, 609 115, 609

2 28, 614 27, 692

3 1, 790 1, 152

4 59 14

6 We only consider rules that conclude to sameAs statements because other rules can
be handled with preprocessing by tools like Silk or LIMES.

148 M.-C. Rousset et al.

Comparison with Silk. Since Silk cannot handle rule chaining, we divided
the rules used by ProbFR into sameAs rules (i.e. rules with sameAs in the
conclusion), and intermediate rules that are used to trigger antecedents of other
rules (including the sameAs rules). We manually translated these intermediate
rules into SPARQL Update queries and these updates were performed before the
Silk execution. Some sameAs rules could not be translated into Silk because they
are recursive (sameAs appears in their antecedent and conclusion). To be able
to compare methods on the same basis, we employed the levenshtein normalised
distance with a threshold of 0.2, which corresponds to the similarity parameter
set up to 0.8 in Solr. The aggregation of different comparisons within a rule was
performed using maximum distance to be compliant with the conjunction used
in rules. We executed Silk for interlinking DBpedia and MusicBrainz. Silk found
101,778 sameAs links, from which 100,544 were common to the ones found by
ProbFR. ProbFR found 43,923 links that were not discovered by Silk and Silk
found 1,234 links not discovered by ProbFR. In theory all the links discovered by
Silk should have been discovered by ProbFR and Silk should have found up to
115,609 links. These differences can be explained by the way levenshtein distance
are implemented in each tools and by a normalisation of URL that is performed
by ProbFR and not available in Silk. As a conclusion, ProbFR outperformed Silk
because of rule chaining (more links are discovered). Dealing with uncertainty
allows to enhance precision without losing much recall.

In terms of time performance, Silk took more than 53 h (with 16 threads,
blocking activated, on a Bi-processor Intel Xeon, 24 × 1.9 GHz) while ProbFR
achieved the task in 18 h (on a Bi-processor Intel Xeon, 32 × 2.1 GHz). Even if the
difference could be partially explained by the difference in hardware, the main
reason comes from implementation design. Silk mainly relies on disk indexing
and uses few RAM (around 1–2 GB) while ProbFR runs into main memory and
uses around 250 GB of RAM for this experiment.

3.5 Discussion

Dedupalog [7] is a Datalog-like language that has been specially designed for
handling constraints useful for record linkage. It handles both hard and soft
rules that define respectively valid clusterings and their costs. The associated
algorithm computes a valid clustering with a minimal cost. Whereas the general
problem is NP-complete, they provide a practical algorithm that scales to the
ACM database that contains 436,000 records. Even if the algorithmic techniques
are very different from ours, the scalability is obtained by similar restrictions on
the rule language. However, the goal is to compute a valid clustering and not to
compute probabilities of inferred facts.

Probabilistic logical frameworks such as Markov logic [41] and Probabilistic
Soft Logic (PSL) [12] have been used for entity resolution. Markov Logic allows
for full probabilistic reasoning. The weights attached to formulas are learned
either from data or from probabilities arbitrarily given. This learning phase is
made under closed-world assumption. Once a Markov Logic Network is learned,
the weighted satisfiability of any candidate link has to be computed. This is not

Datalog Revisited for Reasoning in Linked Data 149

scalable in practice. Then, candidate pairs are filtered using a cheap similar-
ity such as TF.IDF: non matching pairs are added as false atoms. Experiments
have been conducted on Cora dataset (1295 instances) and a sample of Bib-
serv (10, 000 instances). PSL allows probabilistic inference based on similarities
functions. As Markov Logic, formulas’ weights are learned making closed world
assumption. Furthermore, it allows to assign weights to facts using the similar-
ity of sets of property values (which assumes that sets are fully known). Like
Datalog, it is restricted to conjunctive rules. Experiments have been performed
on the task of Wikipedia article classification and ontology matching.

Contrary to aforementioned approaches, in ProbFR, probability computa-
tion and inference are separated. All rules are iteratively applied to compute
the saturation and the provenances of every deduced facts. Probabilities are
then computed from the provenances. This allows to change the probabilities
assigned to rules and reevaluated quickly the probabilities of inferred facts with-
out recomputing the saturation. Another difference is that probabilities attached
to formulas can be given or learned from data. No further learning is required.

Decoupling the symbolic computation of provenances from the numerical
computation of probabilities makes probabilistic reasoning more modular and
more transparent for users. This provides explanations on probabilistic inference
for end-users, and useful traces for experts to set up the input probabilistic
weights.

Currently, the threshold for filtering the probabilistic sameAs facts that will
be retained as being true must be set up and adjusted manually. As future work,
we plan to design a method to set up this threshold automatically by, besides
inferring sameAs facts, inferring differentFrom facts too, and then exploiting
the sameAs and differentFrom facts (and their probabilities) that are inferred
for the same pairs of entities. We also plan to design a backward-reasoning
algorithm able to deal with probabilistic rules, that could be combined with
the ProbFR probabilistic forward-reasoner for importing on demand useful data
from external sources.

4 Extraction of Modules from RDF Knowledge Bases [39]

The Semantic Web consolidated a legacy of ontologies and databases today seen
as reference systems for building new Semantic Web applications. To illustrate,
consider a medical application for anatomy, whose goal is to showcase the struc-
ture of the human body, the most common pathologies and diseases, and the
scientists that contributed to their study. A structural description of human
anatomy can be drawn from FMA7 or My Corporis Fabrica (MyCF).8 A tax-
onomy of clinical terms about diseases can be extracted from SNOMED,9 while
biographical informations about scientists implied in studies can be taken from
DBPedia.10 These reference system contain knowledge that can be reused to
7 fma.biostr.washington.edu.
8 www.mycorporisfabrica.org.
9 www.ihtsdo.org/snomed-ct.

10 www.dbpedia.org.

http://fma.biostr.washington.edu
www.mycorporisfabrica.org
www.ihtsdo.org/snomed-ct
www.dbpedia.org

150 M.-C. Rousset et al.

minimize the introduction of errors in the application. However, it is inconvenient
to integrate in the application the whole datasets, as they contain complemen-
tary data and ontology axioms that are logically redundant. It is thus preferable
to extract lightweight fragments of these reference systems - the modules - that
are relevant for the application, and then to build on top of them.

While extracting modules from ontologies has been largely investigated for
Description Logics (DL) [24,32], module extraction from RDF triplestores has
received little attention. Yet, more and more huge RDF datasets are flourishing
in the Linked Data and some of them, like DBPedia or YAGO [42], are increas-
ingly reused in other more specialized datasets. RDF is a graph data model based
on triples accepted as the W3C standard for Semantic Web data, with a simple
ontology language, RDF Schema (RDFS). The W3C proposed OWL for writing
expressive ontologies based on DL constructors. Whereas OWL is often seen as
an extension of RDFS, this is not exactly the case. Both RDFS and the RDF
query language (SPARQL) feature the possibility of accessing at the same time
the ontology data and schema, by making variables ranging over classes or prop-
erties. This domain meta-modeling goes beyond the first-order setting typically
considered in DL [18]. As a consequence, DL modularization frameworks are
not applicable to popular RDF datasets like DBpedia or YAGO. Also, the clear
separation between the ABox and the TBox made in DL to define the seman-
tics of modules is not appropriate for RDF where facts and schema statements
can be combined within a single RDF triplestore to accommodate heterogeneous
knowledge from the Web. Another limit of the current approaches is that the
existing semantics do not allow to limit the size of the extracted modules. As
discussed in [24], the risk in practice is to output large portions of the initial
ontologies, thus jeopardizing the gains of modularization.

The RDF knowledge bases that we consider are deductive RDF datasets as
defined in Sect. 2.3: an RDF knowledge base is a pair 〈D,R〉 where D is an RDF
dataset and R is a finite set of (possibly recursive) rules.

Figure 4 presents an RDF dataset, together with its graph version. The exam-
ple is inspired by the MyCF ontology [36], which classifies digital representation
of human body parts, acquired by IRMs or tomographies, according to anatom-
ical knowledge. For instance, the type edge connecting irm42 with knee, corre-
sponds to the triplestore atom (irm42, type, knee), which is the standard RDF
syntax for class membership.

A path p(u0,un) = (u0, v1, u1), (u1, v2, u2), . . . , (un−1, vn, un) is a sequence of
atoms where each ui, vi are terms. The length of a path is the number of its
atoms, here |p(u0,un)| = n.

We denote a rule by r and a set of rules by R. To illustrate, the rules for
class subsumption
r1 : (x , type, y), (y , subClassOf, z) → (x , type, z)
r2 : (x , subClassOf, y), (y , subClassOf, z) → (x , subClassOf, z)
on D1 entail that irm42 has type anatomical structure, and that a subclass of this
last one is tendon gastr. muscle.

Datalog Revisited for Reasoning in Linked Data 151

Fig. 4. Triplestore D1

Datalog supports recursion by design. A rule r is said to be recursive if its
conclusion unifies with one of its premises. In this work, we consider sets of rules
where recursion is limited to recursive rules, like

r1 : (x , hasPart, y) → (y , partOf, x)
r2 : (x , insertOn, y), (y , partOf, z) → (x , insertOn, z)
r3 : (x , partOf, y), (y , partOf, z) → (x , partOf, z)

and, we exclude the presence of indirect recursion, in all cases where this involves
non-recursive rules, like

r4 : (x , contains, y) → (x , partOf, y)
r5 : (x , partOf, y), (y , partOf, z) → (z , contains, x)

This mild restriction on recursion is of practical relevance, as it is enjoyed by
the most relevant RDFS rules, like the mutually recursive ones for domain and
range.
rdom : (x , domain, z), (y , x , y ′) → (y , type, z)
rran : (x , range, z ′), (y , x , y ′) → (y ′, type, z ′)

Following Definition 1, the saturated RDF dataset obtained from D and the
set of rules R, is defined as Sat(D,R) = {t ∈ D′ |D,R � D′}.

We write D,R � p(u0,un) for the entailment of a path that holds if all path
atoms are in Sat(D,R).

Rule entailment, also referred as the immediate consequence operator for
rules defines, by means of semantic conditions, when a Datalog rule r is entailed
by a set R.

Definition 3 (Rule Entailment). A rule r is entailed by a set R, denoted by
R � r, if for all triplestore D it holds that Sat(D, r) ⊆ Sat(D,R). A set R′ is
entailed from R, denoted by R � R′ when R � r for all r ∈ R′.

152 M.-C. Rousset et al.

Finally, knowledge base entailment, denoted by 〈D,R〉 � 〈D′, R′〉, holds when
D,R � D′ and R � R′.

4.1 Bounded-Level Modules

We propose a novel semantics for bounded-level modules allowing to effectively
control their size. We employ a notion of level of detail for modules in such a
deductive setting. For example, a signature (subClassOf, partOf)3[eye] limits the
module-data extracted from a triplestore, by allowing to retrieve a description
of all subclasses and subparts of the eye up to three levels.

A module is declared by means of a signature Σ of the form Σ =
(p1, . . . , pn)k[a] where the constants p1, . . . , pn represent the properties of interest
of the module, the constant a represents an object of interest of the module, and
k is a positive integer denoting the level of detail of the module. An example of
module signature is (partOf)3[eye]. Intuitively, a module M induced by a signa-
ture Σ on a reference system 〈D,R〉 is a deductive triplestore M = 〈DM , RM 〉
which is logically entailed by 〈D,R〉 and conforming to Σ, in the sense that
all data and rule atoms employ the properties p1, . . . , pn only. Furthermore, to
control the module size, the facts in M are restricted to the paths rooted at the
object of interest a, of length bounded by k.

We say that an atom conforms to Σ, denoted by (v1, u, v2)
◦
◦ Σ, if u is a

property of Σ or u ∈ Vars. A set of atoms Δ conforms to Σ if all of its atoms
do. Then, 〈D,R〉 conforms to Σ if so do D and R.

In Fig. 5(c) it holds that D3
◦
◦ (partOf, subClassOf)2[knee]. However, it does

not hold that D3
◦
◦ (subClassOf)1[knee].

Fig. 5. Triplestore examples

Restricting the module paths is a way to effectively control the module size.
Nevertheless, for the completeness of the module data, it is essential to guarantee
that the module entails all of such bounded paths entailed by 〈D,R〉. In a

Datalog Revisited for Reasoning in Linked Data 153

deductive setting, adding new paths in the graph, defining properly DM becomes
challenging.

First, we observe that to avoid incomplete modules, the paths of DM have
to be drawn from Sat(D,R). To see this, consider D2 in Fig. 5(a) and a rule
inferring pairs of organs (y , z) physically connected by a tendon
r2 : (x , insertOn, y), (x , insertOn, z), (x , subClassOf, tendon)⇒(y , tendonConnected, z)

A user interested in the organs directly and indirectly connected to
the femur of this triplestore can declare the module signature Σ2 =
(tendonConnected)2[femur]. By restricting the module data DM to the paths
in D2 of length bounded by 2 that are rooted at femur and that use the property
tendonConnected only, we get:

DM = {(femur, tendonConnected, gastroc.Muscle)}.
This dataset has however to be considered incomplete. As shown in Fig. 5(b),
the rule r2 entails on D2 also the fact

(gastroc.Muscle, tendonConnected, knee).
This forms a path of length two together with the original triple

(femur, tendonConnected, gastroc.Muscle),
that should be included in DM . The example illustrates clearly that DM depends
from the rules in R.

However, taking into account all paths in Sat(D,R) is not desirable for
defining modules of bounded size. In some cases, the triples entailed by recur-
sive rules may produce new edges in the data graph that behave like shortcuts
between resources, thereby wasting the module parametricity. Consider D3 in
Fig. 5(c) and the recursive rule r3 defining the transitivity of partOf
r3 : (x , partOf, y), (y , partOf, z) → (x , partOf, z)
The saturated triplestore Sat(D3, r3) is depicted in Fig. 5(d).

It contains (patella, partOf, knee) but also
(patella, partOf, leg)
and (patella, partOf, inferiorBody).
More generally, it contains all triples of the form tb = (patella, partOf, b)

entailed by the transitivity of partOf. This means that if we take into account
the recursive rule r3 for defining the module paths, then all triples tb are likely
to be part of the module induced by signature (partOf)1[knee]. This undermines
the module parametricity because it retrieves all resources connected with knee
regardless of the level of detail k.

Our solution to both keep into account implicit triples and make parametric-
ity effective, is to define the module data as a subgraph of a partially-saturated
triplestore obtained by applying non-recursive rules only, while fully delegating
the recursive rules to the module rules. This leads to the following novel defini-
tion of module.

Definition 4 (Module). Let 〈D,R〉 be a deductive triplestore and Σ =
(p1, . . . , pn)k[a] a signature. Then, M = 〈DM , RM 〉 is a module for Σ on 〈D,R〉 if

1. 〈DM , RM 〉 ◦
◦ Σ

2. 〈D,R〉 � 〈DM , RM 〉

154 M.-C. Rousset et al.

3. if p(a,b)
◦
◦ Σ and |p(a,b)| ≤ k then

(a) D,RNonRec � p(a,b) implies DM , RM � p(a,b)
(b) DM , R � p(a,b) implies DM , RM � p(a,b)

Point 1 and 2 of the definition state the well-formedness and the logical
entailment of the modules, respectively. Point 3 is the crux of the definition.
Property 3(a) says that every path rooted at a of k-bounded length and con-
forming to Σ, that is entailed by the non-recursive rules of the reference system
RNonRec, must also be inferable by M . Property 3(b) enforces that the module
rules RM infer the same paths conforming to Σ as the whole set of rules R,
but only when applied to the module data DM . In contrast with the spirit of
previous approaches (e.g., [24]), our definition does not enforce that every fact
in the signature entailed by the reference triplestore also belongs to the module.
Relaxing the module conditions in this way allows to control the module size,
and cope with recursive rules.

To illustrate the definition, consider the triplestore D4 of Fig. 6(a) equipped
with the rules below.
r4 : (x , hasFunction, y) → (x , participatesTo, y)
r′
4 : (x , participatesTo, y), (y , subClassOf, z) → (x , participatesTo, z)

Fig. 6(b) depicts Sat(D4, {r4, r
′
4}). Consider now:

Σ4 = (participatesTo, subClassOf)2[knee].
A module M4 for Σ4 contains all paths rooted at knee of length at most 2,

employing participatesTo and subClassOf only. Note that if the recursive rule
r′
4 is considered, then the triple t1 = (knee, participatesTo, bodyPosture) is

included in the module dataset, which is not desirable. In contrast, t2 =
(knee, participatesTo, kneePosture) is expected to be in a module for the signature
Σ4. A structure satisfying Definition 4 is M4 = 〈DM4 , RM4〉 with DM4 depicted in
Fig. 6(c) and RM4 = {r′

4}. Note that t2 is not explicitly in the module dataset DM4

but can be inferred by r′
4 as shown in Fig. 6(d).

Fig. 6. Triplestore and module examples

Datalog Revisited for Reasoning in Linked Data 155

Next, we present two algorithms for extracting module data and rules com-
pliant with this novel semantics.

4.2 Extracting Module Data

The extraction of the module dataset can be done by leveraging on the evaluation
of Datalog queries and implemented on top of existing engines. Given a module
signature Σ = (p1, . . . , pn)k[a], the Datalog program ΠΣ below computes all
paths rooted at a, of length bounded by k, and built on the properties of interest
of Σ. It does so, in the extension of the relation m, starting from a triplestore
modeled with a single relation t.

ΠΣ=

⎧
⎨

⎩

t(a, pi, x) → m1(a, pi, x)
mj(x1, y1, x) , t(x , pi, y)→ mj+1(x , pi, y)

mj(x , y , z) → m(x , y , z)

An instance of the rules is included for each i = 1..n and j = 1..k. ΠΣ is a
non-recursive set of rules of size O(nk) that can always be evaluated in at most
k steps. Then, to infer all paths of bounded length entailed by non-recursive
rules of a reference system, the set ΠΣ is evaluated together with RNonRec. As
a result, the union ΠΣ ∪ RNonRec gives a non-recursive set of rules that can
be evaluated in LOGSPACE data-complexity. The completeness of module data
extraction follows from the completeness of Datalog query evaluation. Below, we
write Qm(D,ΠΣ∪RNonRec) for the answer set of the evaluation of the Datalog
program ΠΣ∪RNonRec defining the relation m, on top of the dataset D. This
constitutes the module data DM .

Theorem 2 (ModuleDataExtraction). For all path p(a,b)
◦
◦ Σ with |p(a,b)| ≤ k

we have D,RNonRec � p(a,b) if and only if p(a,b) ∈ Qm(D,ΠΣ∪RNonRec).

4.3 Extracting Module Rules

We now present an algorithm for module rule extraction that, together with the
dataset extracted in the previous section, yields a module compliant with our
semantics.

By Definition 4, a module is constituted of rules entailed by that of the ref-
erence system, and built on the properties of interest only. As the properties
of interest of a module may restrict those employed by a reference system, the
module rules cannot be just a subset of the original ones. Rule extraction is thus
performed by an unfolding algorithm, that proceeds by replacing the premises of
a rule with that of another one, until obtaining a set conforming to the signature.
To illustrate, consider Σ = (p, q)k[a] and the rules below.
r1 : (x , q, y), (y , partOf, x) → (x , q, y)
r2 : (x , p, y) → (x , partOf, y)

Although the rule r1 does not conform to Σ, it can be unfolded with r2 so
as to obtain a module rule. As the atom (y , partOf, x) in the body of r1 unifies

156 M.-C. Rousset et al.

with the conclusion of r2, it can be replaced by (y , p, x), so as to get the rule
r̄ = (x , q, y), (y , p, x) → (x , q, y). Rule r̄ is called an unfolding of r1 with r2.

In the above example, one unfolding step is enough to have a rule r̄ that
is conform to the module signature and that, by construction, is entailed by
{r1, r2}. It is easy to see that this can be generalized, and that rules belonging to
unfoldings of a set of rules R are entailed by R. However, in presence of recursive
rules the set of unfoldings of a rule may be infinite, as illustrated below.

Example 2. Consider Σ = (p, q)3[a1] and R with
r1 : (x , partOf, y) → (x , q, y)
r2 : (x , partOf, y), (y , partOf, z) → (x , partOf, z)
r3 : (x , p, y) → (x , partOf, y)

Here, r1 can be unfolded with r2 and r3, thus obtaining
r̄ : (x1, p, x2), (x2, p, x3) → (x1, q, x3)
However, there exist infinitely many unfoldings of rule r2 with itself that yield
expressions of the form (x1, p, x2), (x2, p, x3), (x3, p, x4) → (x1, q, x4) that use any
finite sequence of variables x1, . . . , xn. This set of unfoldings cannot be strictly
speaking a set of triplestore or module rules, because it is infinite.

Algorithm 2. MRE(NToUnfold, RToApply, Σ)
(1) for all r1 ∈ NToUnfold

(2) if r1
◦
◦ Σ then:

(3) RM ← r1
(4) remove r1 from RToApply

(5) else:
(6) for all r2 ∈ RToApply s.t. r1 �= r2
(7) for all r ∈ RuleUnfolding(r1, r2)
(8) if r

◦
◦ Σ then: RM ← r

(9) RM ← MRE({r}, RToApply\{r, r2}, Σ)
(10) return RM

To avoid ending up with infinite sets of module rules, we devised an unfolding
algorithm based on a breadth-first strategy. Algorithm MRE (Algorithm2) per-
forms Module Rules Extraction. It takes as input a set of rules to be unfolded
NToUnfold, a set of rules to be used for the unfolding RToApply, and a signa-
ture Σ. Given a deductive triplestore 〈D,R〉 the first call to the algorithm
is MRE(NToUnfold, R,Σ). The set NToUnfold ⊆ R is constituted of all rules
r ∈ R that conclude on a property of interest, that is head(r) ◦

◦ Σ. Any rule
belonging to NToUnfold (whose premises use properties that are not in Σ) is
unfolded in a breadth-first fashion until no rule in RToApply can be applied. All
rules in R are considered for unfolding (RToApply = R). Procedure RuleUnfold-
ing(r1, r2) progressively unfolds each subset of atoms in the body of r1 that
unify with the conclusion of r2. For example, the three breadth-first unfoldings
of r1 : (x , p, y), (x , p, z) → (x , p, y) with r2 : (x , partOf, y) → (x , p, y) are

Datalog Revisited for Reasoning in Linked Data 157

r̄3 : (x , p, y), (x , partOf, z) → (x , p, y)
r̄4 : (x , partOf, y), (x , p, z) → (x , p, y)
r̄5 : (x , partOf, y), (x , partOf, z) → (x , p, y)

Note that a rule is never unfolded with itself by the algorithm (thus avoiding
a depth-first fashion). The fact that r2 used for the unfolding is discarded from
RToApply (line 10) ensures the termination of the extraction procedure, even in
the presence of recursive rules.

Theorem 3 (Rule Extraction Algorithm). Let R be a set of rules and Σ a
module signature. Algorithm MRE always terminates in O(2|R|×|r|) and produces
a set of rules RM conforming to Σ such that for all r

◦
◦ Σ it holds

RM � r implies R � r (Soundness)

Furthermore, when RRec ◦
◦ Σ we also have

R � r implies RM � r (Completeness)

Algorithm MRE is sound, in the sense that it computes a set of rules entailed
by R. Furthermore, for the case where all recursive rules in R conform to Σ, the
algorithm is also complete, in the sense that it produces a set of rules RM

that entails all rules R can entail on the properties of Σ. As a consequence,
any dataset DM (computed as for Theorem 2) paired with RM constitutes a
module meeting Definition 4, and in particular the point 3(b). If this condition
does not hold, module extraction may be incomplete. To see this, consider again
〈D,R〉 of Example 2 with D = {(a1, p, a2), (a2, p, a3), (a3, p, a4)}. Recall that
Σ = (p, q)3[a1], and then notice that the recursive rule r2 	 ◦

◦ Σ. Here, module
data extraction yields DM = D. Observe now that the atom (a1, q, a4) belongs
to Sat(DM , R). As MRE outputs the set RM = {(x , p, y), (y , p, z) → (x , q, z)},
the triple (a1, q, a4) does not belong to Sat(DM , RM), while it should. Hence,
〈DM , RM 〉 does not satisfy Definition 4.

Surprisingly enough, this case of incompleteness is independent of algo-
rithm MRE. In fact, when R includes recursive rules that do not conform
to Σ, it does not exist an algorithm that outputs a finite set of rules RM

such that R � r implies RM � r, for all r
◦
◦ Σ. As Example 2 illus-

trates, the extracted RM must mimic an infinite set of rules of the form
(x1, p, x2), (x2, p, x3). . .(xn−1, p, xn)→(x1, q, xn). One may think of capturing this
infinite set by adding a recursive rule rp : (x , p, y), (y , p, z) → (x , p, z) together
with r̄ : (x1, p, x2), (x2, p, x3) → (x1, q, x3). However, adding this recursive rule
makes infer triples using p that are not entailed by the reference system, thereby
violating point 2 of Definition 4. We can also ask whether this infinite set of
rules can be reduced to a finite set that directly depends on k. Unfortunately,
the answer is negative. Furthermore, it is unpractical for real systems to consider
a specific module data DM and bound by O(|DM |) the number of self-unfolding
of a recursive rule during extraction, as this can output an unmanageable set
of rules, that are (still) not robust to updates. Therefore, understanding when
algorithm MRE is complete is key for module extraction.

158 M.-C. Rousset et al.

This kind of unfolding issues have also been recognized and studied by earlier
works on the optimization of recursive Datalog [28].

Finally, note that Theorem3 is actually stronger than what required by Defi-
nition 4, because (i) it is based on semantic conditions and therefore it holds for
any rule r entailed by R (unfoldings are just a particular case) and (ii) it is inde-
pendent from the module data, and thus suitable for other module semantics.

A characterization of the whole module extraction task follows as a corollary
of Theorems 2 and 3.

4.4 Experiments

We implemented bounded-level module extraction on top of Jena 2.11.2 TDB,
and compared it against two related approaches to show its benefits in terms of
flexibility and succinctness of the extracted modules. We considered the following
three Semantic Web datasets.

MyCF 0.5M triples 11 domain-specific rules

GO 1M triples 15 domain-specific rules

Yago2∗ 14M triples 6 RDFS rules

Yago2∗ is the union of Yago2Taxonomy, Yago2Types and Yago2Facts datasets.
We sampled classes and properties from these ontologies, and combined them to
obtain a set of signatures used to run module extraction. We considered 2500
MyCF ontology classes combined with 20 subsets of its properties, of size 1–4. For
the GO ontology (www.geneontology.org), we sampled 350 classes and 12 prop-
erty sets (size 1–4). Since Yago knowledge is more diverse than a domain-specific
ontology, to avoid empty modules we first selected three groups of properties that
are frequently used together, and then subset them (size 2, 4, 6). We tested 100
Yago resources for each group. Finally, we made k ranging over {1, 2, 3, 5, 10}.

Closest Competitor Approaches. Relevant methods to our work are Traver-
sal Views [35] and Locality-based modules [24]. Traversal Views (TV) compute
a bounded-level view of an RDF database, in the same spirit as our approach.
This method does not support inference rules, and it does not give any guar-
antee about extracted modules. In practice, in the presence of rules, a traversal
view may miss relevant triples. Locality-Based (LB) module extraction com-
putes a conservative extension of an ontology by checking logical conditions on
its schema. In contrast with our method, it cannot modularize untyped RDF
data and, because it enforces strong logical guarantees on a module, it cannot
control a priori its size.

www.geneontology.org

Datalog Revisited for Reasoning in Linked Data 159

Results of Module Data Extraction. Figures 7 and 8 report on the size
of bounded-level modules, compared with those of TV and LB. The graphs
show the average number of triples, for modules grouped by the same number
of properties and k value, in logarithmic scale. In Fig. 9 we report the test on
Yago2 with our approach, since LB does not support this RDF dataset.

Fig. 7. Size of extracted modules from MyCF

Fig. 8. Size of extracted modules from GO

As expected, the succinctness of bounded-level modules depends on k. The
transitivity of the properties declared in the signature also has an impact. This
is evident with Yago2 in Fig. 9. Group 2 has properties inherently transitive
(isLocatedIn, isConnectedWith) dominating for example (created, owns) in group
1 and (hasGender, isAffiliatedTo) in group 3. Hence, bounded-level modules can
be very helpful to control the data succinctness with transitive properties.

Being TV unaware of rules, it may miss relevant data when implicit triples
are not considered. We tested this claim, over the non-saturated MyCF ontology.
Indeed, 42% (15072/35740) of the (non-empty) modules extracted by TV were
missing relevant triples wrt our approach, as some subproperty rules were not
evaluated. To overcome this limitation, we tested TV over the saturated MyCF.
For concision, in Fig. 7 we report only the minimal level of detail (k = 1). This
already outlines a lower bound for the module size. As we can see, k = 1 already

160 M.-C. Rousset et al.

Fig. 9. Size of extracted modules from Yago2

produces fairly larger modules than our approach. This is because of the MyCF
rules for transitivity and property-chains. Increasing k gives modules of size in
the order of the saturated triplestore. The same discussion holds for GO in Fig. 8.
LB extraction for top-locality modules has been tested thanks to the available
prototype11. For MyCF and GO, it outputs almost the whole ontology (Figs. 7
and 8). This is due to ontology axioms that cannot be ignored for the logical
completeness of the method.

5 Rule-Based Integration of Heterogeneous Data
and Models [36,37]

Computer modeling and simulation of the human body is becoming a critical and
central tool in medicine but also in many other disciplines, including engineer-
ing, education, entertainment. Multiple models have been developed, for appli-
cations ranging from medical simulation to video games, through biomechanics,
ergonomics, robotics and CAD, to name only a few. However, currently available
anatomical models are either limited to very specific areas or too simplistic for
most of the applications.

For anatomy, the reference domain ontology is the Foundational Model of
Anatomy (FMA [38]) which is a comprehensive description of the structural
organization of the body. Its main component is a taxonomy with more then
83000 classes of anatomical structures from the macromolecular to the macro-
scopic levels. The FMA symbolically represents the structural organization of the
human body. One important limitation of the state-of-the-art available ontologies
is the lack of explicit relation between anatomical structures and their functions.
Yet, human body modeling relies on morphological components on the one hand
and functional and process descriptions on the other hand. The need for a for-
mal description of anatomical functions has been outlined in [30], with some
guidelines for getting a separate ontology of anatomical functions based on an
11 www.cs.ox.ac.uk/isg/tools/ModuleExtractor/.

www.cs.ox.ac.uk/isg/tools/ModuleExtractor/

Datalog Revisited for Reasoning in Linked Data 161

ontological analysis of functions in general formal ontologies such as GFO [27] or
Dolce [33]. Complex 3D graphic models are present in more and more application
software but they are not explicitly related to the (anatomical) entities that they
represent making difficult the interactive management of these complex objects.

Our approach for supporting efficient navigation and selection of objects in
3D scenes of human body anatomy is to make explicit the anatomic and func-
tional semantics of 3D objects composing a complex 3D scene through a symbolic
and formal representation that can be queried on demand. It has been imple-
mented in My Corporis Fabrica (MyCF), which realizes a rule-based integration
of three types of models of anatomy: structural, functional model and 3D mod-
els. The added-value of such a declarative approach for interactive simulation
and visualization as well as for teaching applications is to provide new visualiza-
tion/selection capabilities to manage and browse 3D anatomical entities based
on the querying capabilities incorporated in MyCF.

The core of MyCF is a comprehensive anatomical ontology, the novelty of
which is to make explicit the links between anatomical entities, human body
functions, and 3D graphic models of patient-specific body parts. It is equipped
with inference-based query answering capabilities that are particularly interest-
ing for different purposes such as:

– automatic verification of the anatomical validity of 3D models. Indeed, it is
important to select the correct set of anatomical entities that participates to a
simulation, e.g. a simulation of movements where the correct bones, muscles,
ligaments, . . . , are required to set up all the 3D and mechanical simulation
parameters. These requirements are very close to the selection requirements
described in the ‘Background’ section. They can be regarded as equivalent to
a selection operator;

– automatic selection and display of anatomical entities within a 3D scene.
Anatomical entities can vary largely in size, can be very close to each other
or even hidden by other anatomical entities. The use of geometric means to
select useful sets of entities is not suited whereas inference-based queries using
human body functions can provide much more suited means. Such selection
capabilities are particular relevant for diagnosis for instance;

– training students on anatomical entities participating to a certain body func-
tion. Here again, this purpose is close to that of selection functions where the
connection between function and anatomical entities provides new means to
browse and highlight features of anatomical structures accessible in 3D.

The current version of the ontology contains almost 74000 classes and rela-
tions as well as 11 rules stored in a deductive RDF triple store using a Sesame
server, and that can be queried with a remote-access facility via a web server12.
The ontology can be easily updated, just by entering or deleting triples and/or
by modifying the set of rules, without having to change the reasoning algorithmic
machinery used for answering queries. It is the strength of a declarative approach

12 http://mycorporisfabrica.org/mycf/.

http://mycorporisfabrica.org/mycf/

162 M.-C. Rousset et al.

that allows a fine-grained domain-specific modeling and the exploitation of the
result by a generic (domain-independent) reasoning algorithm.

MyCF features three distinct taxonomies linked by relations and rules:

– Anatomical entities, such as knee, shoulder, and hand, denote parts of the
human body, and give a formal description of canonical anatomy;

– Functional entities, such as gait, breath, and stability, denote the functions of
the human body, and are the fundamental knowledge to explain the role of
each anatomical entity;

– Finally, 3D scenes with entities such as 3D-object, 3D-scene define the content
required to get 3D views of patient-specific anatomical entities described by
3D graphical models related to anatomical entities.

Figure 10 shows an extract of this integrated ontology, in which the green
classes refer to the 3D models, the pink classes to the structural model and blue
classes to the functional entities.

Fig. 10. The general structure of MyCF integrated ontology (extract) (Color figure
online)

The inference rules of MyCF express complex connections between rela-
tions, within or across the three taxonomies. For instance, the follow-
ing rules express connections that hold in anatomy between the relations
rdfs:subClassOf and mcf:InsertOn, but also between rdfs:subClassOf and
mcf:IsInvolvedIn, rdfs:subClassOf and mcf:participatesTo, mcf:participatesTo
and mcf:IsInvolvedIn, mcf:PartOf and mcf:InsertOn respectively. The first rule
says that if a given class representing an anatomical entity ?a (e.g., Sartorius) is
a subclass of an anatomical entity ?c (e.g., Muscle) that is known to be inserted
on an anatomical entity ?b (e.g., Bone), then ?a is inserted on ?b (Sartorius
inserts on a Bone).

(?a rdfs:subClassOf ?c), (?c mcf:InsertOn ?b) → (?a mcf:InsertOn ?b)
(?a mcf:IsInvolvedIn ?c), (?c rdfs:subClassOf ?b) → (?a mcf:IsInvolvedIn ?b)

(?a mcf:participatesTo ?c), (?c rdfs:subClassOf ?b) → (?a mcf:participatesTo ?b)

(?a mcf:participatesTo ?c), (?c mcf:IsInvolvedIn ?b) → (?a mcf:participatesTo ?b)

(?a mcf:InsertOn ?c), (?c mcf:PartOf ?b) → (?a mcf:InsertOn ?b)

Datalog Revisited for Reasoning in Linked Data 163

The following rule crosses the anatomy domain and the 3D domain and expresses
that the conventional color for visualizing bones in anatomy is yellow:

(?x rdf:type 3D-object), (?x mcf:Describes ?y), (?y rdfs:subClassOf Bone)
→ (?x mcf:hasColour yellow)

Fig. 11. Illustration of ontology-based querying and visualization using MyCF (Color
figure online)

Figure 11 illustrates a complete example from query to 3D visualization. Data
are presented as a graph with corresponding RDF triples on the bottom. The
query is explained in English and translated in SPARQL. The answers are used
to select and highlight corresponding 3D models in the 3D scene.

We have extended this rule-based approach for 3D spatio-temporal modeling
of human embryo development in [37]. It results in a unified description of both
the knowledge of the organs evolution and their 3D representations enabling to
visualize dynamically the embryo evolution.

In an ongoing work, following a similar methodology for ontology-based inte-
gration of data extracted from several heterogeneous sources, we are developing
OntoSIDES to offer personalized and interactive services for student progress
monitoring on top of the national e-learning and evaluation platform of French
medical schools.

6 Conclusion

We have shown that Datalog rules on top of RDF triples provides a good trade-
off between expressivity and scalability for reasoning in the setting of Linked

164 M.-C. Rousset et al.

Data. It would be worthwhile to investigate the usefulness in practice and the
scalability of the Datalog extension proposed in [8] allowing for value invention
and stratified negation.

References

1. Abiteboul, S., Abrams, Z., Haar, S., Milo, T.: Diagnosis of asynchronous discrete
event systems: datalog to the rescue! In: Proceedings of the Twenty-Fourth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 13–
15 June 2005, Baltimore, pp. 358–367. ACM (2005)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

3. Al-Bakri, M., Atencia, M., David, J., Lalande, S., Rousset, M.-C.: Uncertainty-
sensitive reasoning for inferring sameAS facts in linked data. In: Proceedings of
the European Conference on Artificial Intelligence (ECAI 2016), August 2016,
The Hague (2016)

4. Al-Bakri, M., Atencia, M., Lalande, S., Rousset, M.-C.: Inferring same-as facts
from linked data: an iterative import-by-query approach. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015,
Austin, pp. 9–15. AAAI Press (2015)

5. Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Modeling in
RDF, RDFS and OWL. Morgan Kaufmann, San Francisco (2011)

6. Amarilli, A., Bourhis, P., Senellart, P.: Provenance circuits for trees and treelike
instances. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9135, pp. 56–68. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-47666-6 5

7. Arasu, A., Ré, C., Suciu, D.: Large-scale deduplication with constraints using dedu-
palog. In: Proceedings of the 25th International Conference on Data Engineering,
ICDE 2009, 29 March 2009–2 April 2009, Shanghai, pp. 952–963. IEEE Computer
Society (2009)

8. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. In: Proceedings of the International Conference on Principles of Database
Systems (PODS 2014) (2014)

9. Atencia, M., Al-Bakri, M., Rousset, M.-C.: Trust in networks of ontologies and
alignments. J. Knowl. Inf. Syst. (2013). doi:10.1007/s10115-013-0708-9

10. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey
extraction. In: ECAI 2014 - 21st European Conference on Artificial Intelligence,
18–22 August 2014, Prague, - Including Prestigious Applications of Intelligent Sys-
tems (PAIS 2014). Frontiers in Artificial Intelligence and Applications, vol. 263,
pp. 15–20. IOS Press (2014)

11. Atencia, M., David, J., Scharffe, F.: Keys and pseudo-keys detection for web
datasets cleansing and interlinking. In: Teije, A., et al. (eds.) EKAW 2012.
LNCS (LNAI), vol. 7603, pp. 144–153. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33876-2 14

12. Bröcheler, M., Mihalkova, L., Getoor, L.: Probabilistic similarity logic. In: Pro-
ceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence,
UAI 2010, Catalina Island, 8–11 July 2010, pp. 73–82. AUAI Press (2010)

13. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012)

http://dx.doi.org/10.1007/978-3-662-47666-6_5
http://dx.doi.org/10.1007/978-3-662-47666-6_5
http://dx.doi.org/10.1007/s10115-013-0708-9
http://dx.doi.org/10.1007/978-3-642-33876-2_14
http://dx.doi.org/10.1007/978-3-642-33876-2_14

Datalog Revisited for Reasoning in Linked Data 165

14. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

15. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational databases. In: Proceedings of the 9th ACM Symposium on Theory of
Computing, pp. 77–90 (1975)

16. Christen, P.: Data Matching - Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer, Heidelberg (2012)

17. Dalvi, N., Suciu, D.: The dichotomy of probabilistic inference for unions of con-
junctive queries. J. ACM 59(6), 17–37 (2012)

18. De Giacomo, G., Lenzerini, M., Rosati, R.: Higher-order description logics for
domain metamodeling. In: Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence (AAAI-11) (2011)

19. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013)
20. Ferrara, A., Nikolov, A., Scharffe, F.: Data linking for the semantic web. Int. J.

Semant. Web Inf. Syst. 7(3), 46–76 (2011)
21. Forgy, C.: Rete: a fast algorithm for the many patterns/many objects match prob-

lem. Artif. Intell. 19(1), 17–37 (1982)
22. Fuhr, N.: Probabilistic models in information retrieval. Comput. J. 3(35), 243–255

(1992)
23. Fuhr, N.: Probabilistic datalog: implementing logical information retrieval for

advanced applications. J. Am. Soc. Inf. Sci. 51(2), 95–110 (2000)
24. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-

gies: theory and practice. J. Artif. Intell. Res. (JAIR-08) 31, 273–318 (2008)
25. Grau, B.C., Motik, B.: Reasoning over ontologies with hidden content: the import-

by-query approach. J. Artif. Intell. Res. (JAIR) 45, 197–255 (2012)
26. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.

Morgan and Claypool, Palo Alto (2011)
27. Herre, H.: General formal ontology (GFO): a foundational ontology for conceptual

modelling. In: Poli, R., Healy, M., Healy, A. (eds.) Theory and Applications of
Ontology, vol. 2, pp. 297–345. Springer, Berlin (2010)

28. Hillebrand, G.G., Kanellakis, P.C., Mairson, H.G., Vardi, M.Y.: Undecidable
boundedness problems for datalog programs. J. Log. Program. (JLP-95) 25, 163–
190 (1995)

29. Hinkelmann, K., Hintze, H.: Computing cost estimates for proof strategies. In:
Dyckhoff, R. (ed.) ELP 1993. LNCS, vol. 798, pp. 152–170. Springer, Heidelberg
(1994). doi:10.1007/3-540-58025-5 54

30. Hoehndorf, R., Ngonga Ngomo, A.-C., Kelso, J.: Applying the functional abnor-
mality ontology pattern to anatomical functions. J. Biomed. Semant. 1(4), 1–15
(2010)

31. Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., Decker, S.: Scalable and
distributed methods for entity matching, consolidation and disambiguation over
linked data corpora. J. Web Semant. 10, 76–110 (2012)

32. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and module
extraction in description logics. In: Proceedings of the European Conference on
Artificial Intelligence (ECAI-08) (2008)

33. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.:
Wonder-web deliverable D17. The WonderWeb library of foundational ontologies
and the DOLCE ontology. Technical report, ISTC-CNR (2002)

http://dx.doi.org/10.1007/3-540-58025-5_54

166 M.-C. Rousset et al.

34. Ngonga Ngomo, A.-C., Auer, S.: LIMES - a time-efficient approach for large-scale
link discovery on the web of data. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, IJCAI 2011, Barcelona, 16–22 July 2011, pp.
2312–2317. IJCAI/AAAI (2011)

35. Noy, N.F., Musen, M.A.: Specifying ontology views by traversal. In: McIlraith, S.A.,
Plexousakis, D., Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 713–725.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30475-3 49

36. Palombi, O., Ulliana, F., Favier, V., Rousset, M.-C.: My Corporis Fabrica: an
ontology-based tool for reasoning and querying on complex anatomical models. J.
Biomed. Semant. (JOBS 2014) 5, 20 (2014)

37. Rabattu, P.-Y., Masse, B., Ulliana, F., Rousset, M.-C., Rohmer, D., Leon, J.-C.,
Palombi, O.: My Corporis Fabrica embryo: an ontology-based 3D spatio-temporal
modeling of human embryo development. J. Biomed. Semant. (JOBS 2015) 6, 36
(2015)

38. Rosse, C., Mejino, J.L.V.: A reference ontology for biomedical informatics: the
foundational model of anatomy. J. Biomed. Inform. 36, 500 (2003)

39. Rousset, M.-C., Ulliana, F.: Extractiong bounded-level modules from deductive
triplestores. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, 25–30 January 2015, Austin. AAAI Press (2015)

40. Säıs, F., Pernelle, N., Rousset, M.-C.: Combining a logical and a numerical method
for data reconciliation. J. Data Semant. 12, 66–94 (2009)

41. Singla, P., Domingos, P.M.: Entity resolution with Markov logic. In: Proceedings
of the 6th IEEE International Conference on Data Mining (ICDM 2006), 18–22
December 2006, Hong Kong, pp. 572–582. IEEE Computer Society (2006)

42. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
Proceedings of the World Wide Web Conference (WWW-07) (2007)

43. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Morgan & Clay-
pool, San Francisco (1995)

44. Symeonidou, D., Armant, V., Pernelle, N., Säıs, F.: SAKey: scalable almost key
discovery in RDF data. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp.
33–49. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 3

45. Tournaire, R., Petit, J.-M., Rousset, M.-C., Termier, A.: Discovery of probabilistic
mappings between taxonomies: principles and experiments. J. Data Semant. 15,
66–101 (2011)

46. Urbani, J., Harmelen, F., Schlobach, S., Bal, H.: QueryPIE: backward reasoning
for OWL horst over very large knowledge bases. In: Aroyo, L., et al. (eds.) ISWC
2011. LNCS, vol. 7031, pp. 730–745. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25073-6 46

47. Vieille, L.: Recursive axioms in deductive databases: the query/subquery approach.
In: Expert Database Conference, pp. 253–267 (1986)

48. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - a link discovery framework
for the web of data. In: Proceedings of the WWW 2009 Workshop on Linked
Data on the Web, LDOW 2009, Madrid, 20 April 2009, vol. 538. CEUR Workshop
Proceedings. CEUR-WS.org (2009)

http://dx.doi.org/10.1007/978-3-540-30475-3_49
http://dx.doi.org/10.1007/978-3-319-11964-9_3
http://dx.doi.org/10.1007/978-3-642-25073-6_46
http://dx.doi.org/10.1007/978-3-642-25073-6_46

	Datalog Revisited for Reasoning in Linked Data
	1 Introduction
	2 Datalog Rules on Top of RDF Datasets
	2.1 RDF Datasets in Linked Data
	2.2 Queries over RDF Datasets in Linked Data
	2.3 Deductive RDF Datasets

	3 Rule-Based Data Linkage
	3.1 Logical Approach for Data Linkage 4
	3.2 Reasoning over Uncertain RDF Facts and Rules 3
	3.3 Rule-Based Data Linkage with Uncertainty
	3.4 Experimental Evaluation
	3.5 Discussion

	4 Extraction of Modules from RDF Knowledge Bases 39
	4.1 Bounded-Level Modules
	4.2 Extracting Module Data
	4.3 Extracting Module Rules
	4.4 Experiments

	5 Rule-Based Integration of Heterogeneous Data and Models 36, 37
	6 Conclusion
	References

