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Abstract
Querying large databases while taking ontolo-
gies into account is currently a very active do-
main research. In this paper, we consider ontolo-
gies described by existential rules (also known
as Datalog+/-), a framework that generalizes
lightweight description logics. A common ap-
proach is to rewrite a conjunctive query w.r.t an on-
tology into a union of conjunctive queries (UCQ)
which can be directly evaluated against a database.
However, the practicability of this approach is
questionable due to 1) the weak expressivity of
classes for which efficient rewriters have been im-
plemented 2) the large size of optimal rewritings
using UCQ. We propose to use semi-conjunctive
queries (SCQ), which are a restricted form of
positive existential formulas, and compute sound
and complete rewritings, which are union of SCQ
(USCQ). A novel algorithm for query rewriting,
COMPACT, is presented. It computes sound and
complete rewritings for large classes of ontologies.
First experiments show that USCQ are both effi-
ciently computable and more efficiently evaluable
than their equivalent UCQ.

1 Introduction
Querying data while taking ontologies into account is a cur-
rently active research domain, often referred to as ontology-
based data access (OBDA). Data is typically stored in a
database and basic queries are conjunctive queries. Different
means are available to represent ontologies. The mainstream
approach uses description logics [Baader et al., 2007]. In that
case, most studies for OBDA focuses on lightweight descrip-
tion logics, such as DL-Lite [Calvanese et al., 2007] or EL
[Baader, 2003]. In this paper, we focus on existential rules
[Baget et al., 2011], similar to Datalog± [Calı̀ et al., 2012].
On the one hand, they cover lightweight description logics
(and in fact, Horn Description Logics); on the other hand,
these rules allow for more flexibility, since both body and
head need not to be tree-shaped (as in DLs) and predicates
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can be of any arity (whereas they are restricted to arity 1 or 2
in DLs).

The fundamental decision problem1 we consider is the fol-
lowing: given a set of facts F , a (Boolean) conjunctive query
Q, and a set of existential rules R, is it true that F,R |= Q?
Due to the presence of existential variables in the head of
rules, this problem is undecidable. A variety of approaches
for query answering have been investigated, based on two
main mechanisms. First, some approaches include a step of
materialization, that is, all or part of the data that can be
inferred is added to the initial facts. These approaches in-
clude “pure” forward chaining (where we add all data that
can be inferred) and combined approach [Kontchakov et al.,
2011]. Combined approach (where a step of query rewriting
is added) can in particular be applied to DL-Lite and EL on-
tologies, and is thus arguably useful for practical purposes. A
similar approach can be applied to a class of existential rules
generalizing guarded rules [Thomazo et al., 2012]. However,
materialization-based approaches suffer from several draw-
backs: they require read and write permits, the saturation step
incurs a blow-up of data (and this is not acceptable when data
is huge), and, to the best of our knowledge, no solution has
been proposed when data is often changing, that is when facts
are added or removed on a regular basis.

Other approaches are based on “pure” query rewriting:
given Q and R, a new query Q′ is computed such that for
all set of facts F , F,R |= Q if and only F |= Q′. Only
read permits are necessary, no blow-up of data occurs since
it is not changed, and data updates do not impact the rewrit-
ings. Mostly two kinds of rewritings occurs in the literature:
Datalog programs and union of conjunctive queries. Poly-
nomial rewriting in Datalog programs have been proposed
for some existential rules [Gottlob and Schwentick, 2012;
Stefanoni et al., 2012; Rosati and Almatelli, 2010]. They
however do not cover all classes of rules treated here, and
their efficient evaluation remains an open problem.

More widely studied widely rewritings are using union
of conjunctive queries (UCQs). The rationale is that most
of the available data is stored in databases, and existing
database systems are optimized to efficiently evaluate con-

1We consider only the decision problem for the sake of simplic-
ity. We could consider non-boolean queries, as well as union of con-
junctive queries instead of a single CQ.
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junctive queries. This strand of work, initiated in [Calvanese
et al., 2007], has led to a number of prototypes, such as,
among others, Iqaros [Venetis et al., 2012], Nyaya [Gottlob
et al., 2011], QuOnto [Calvanese et al., 2007], Rapid [Chor-
taras et al., 2011], Requiem [Pérez-Urbina et al., 2009], or
the algorithm presented in [König et al., 2012], relying on
piece-based rewriting. More details about the characteristics
of some of them and how they relate with this work will be
presented in Section 6.

However, as all these tools compute rewritings which are
UCQs, they share the major drawback of these rewritings:
even reasonable sets of existential rules can generate huge
rewritings. We propose to produce rewritings that are neither
a union of conjunctive queries nor a Datalog program, but a
union of so-called semi-conjunctive queries (SCQ). We ad-
vocate that such queries can be both efficiently computed and
evaluated. For that purpose, we adopt a two-step approach:

1. we design a novel algorithm that produces a union of
semi-conjunctive queries (USCQ), for any set of existen-
tial rules and any query that admits a finite union of most
general (CQ) rewritings. It computes short rewritings,
and first experiments show that they are generated faster
than their equivalent UCQ by state-of-the-art tools, even
though these tools are dedicated to that particular case.

2. we compare the evaluation efficiency of the USCQ with
the evaluation efficiency of the optimal rewriting in con-
junctive queries. First experiments show that the view-
based evaluation of USCQ is more efficient than the
evaluation of the corresponding UCQ.

We first recall some technical preliminaries, and in partic-
ular piece unifiers, that we generalize in this paper. Section
3 introduces semi-conjunctive queries. Section 4 introduces a
generalization of piece unifiers for semi-conjunctive queries,
as well as the COMPACT algorithm. We evaluate both the
rewriting step and the evaluation step of COMPACT in Sec-
tion 5. Last, we stress similarities and novelties with respect
to existing algorithms in Section 6.

2 Preliminaries
We consider first-order logical (FOL) languages with con-
stants but no other function symbols. A language L = (P, C)
is composed of two disjoint sets: a set P of predicates and
a set C of constants. An atom on L is of form p(t1, . . . , tk)
where p is a predicate in P of arity k and ti are terms, i.e.,
variables or constants in C. A fact is an existentially closed
conjunction of atoms2. A conjunctive query is an existentially
quantified conjunction of atoms - it is Boolean if it is closed.

Definition 1 An existential rule (or simply rule) R =
(B,H) on a language L is a closed formula of form
∀x1 . . . ∀xp(B → ∃z1∃zq H) where B and H are two (fi-
nite) conjunctions of atoms on L; {x1, . . . , xp} = var(B);
and {z1, . . . , zq} = var(H) \ var(B).3 B and H are re-
spectively called the body and the head of R, also denoted
by body(R) and head(R). The frontier of R (denoted by

2This generalizes the usual notion of fact.
3Quantifiers are usually omitted, since there is no ambiguity.

fr(R)) is the set of variables occurring in both B and H:
fr(R) = var(B) ∩ var(H).

W.l.o.g., we will consider that all existential rules have
atomic head, i.e., the head of the rule is restricted to a sin-
gle atom. Moreover, we will assume (w.l.o.g.) that rules and
queries share no variables.4 We will often consider logical
formulas as sets: a conjunction or a disjunction of atoms will
be seen as a set of atoms, and a conjunction of disjunctions
will be seen as a set of disjunctions. It will be clear from the
context which object is dealt with. Given two atom sets A
and B, a homomorphism from A to B is a substitution h of
vars(A) by terms(B) such that h(A) ⊆ B. Given two formu-
las ϕ and ψ, we say that ϕ is more general than ψ (denoted
by ϕ ≥ ψ) if ψ |= ϕ. In the case of (existentially closed)
conjunctions of atoms, A ≥ B if and only if there exists a
homomorphism from A to B.

We recall below the definition of piece unifiers [König
et al., 2012], which will be extended in this work. If rules
were plain Datalog rules, this unification would be the clas-
sical one. However, in order to take existential variables of
the head into account, we may unify several atoms at once.
If Q is a set of atoms, for any set Q′ ⊆ Q, we define
sep(Q′) = var(Q′) ∩ var(Q̄′), where Q̄′ = Q \Q′.
Definition 2 (Piece unifier) Let Q be a CQ and R be a rule.
A piece unifier of Q with R is a pair µ = (Q′, u) with Q′ ⊆
Q, Q′ 6= ∅, and u is a substitution of fr(R) ∪ var(Q′) by
terms(head(R)) ∪ C such that:

1. for all x ∈ fr(R), u(x) ∈ fr(R) ∪ C (for technical con-
venience, we allow u(x) = x);

2. for all x ∈ sep(Q′), u(x) ∈ fr(R) ∪ C;
3. u(Q′) ⊆ u(head(R)).
We define the notion of rewriting using piece unifiers.

Given a query Q, Qk is an R-rewriting of Q if Qk can be
obtained from Q by a sequence of rewritings.
Definition 3 (Rewriting) Given a CQ Q, a rule R and a
piece unifier µ = (Q′, u) of Q with R, the rewriting of Q
according to µ, denoted β(Q,R, µ), is u(body(R) ∪ Q̄′).
Example 1 Let Q = p(x) ∧ r(x, y) ∧ r(z, y) ∧ q(z), and
R = h(x1) → r(x1, y1). There is only one unifier of R with
Q, which is µ = ({r(x, y), r(z, y)}, {x → x1, y → y1, z →
x1}), and β(Q,R, µ) = p(x1) ∧ h(x1) ∧ q(x1).
Definition 4 (R-rewriting of Q) Let Q be a CQ and R be
a set of rules. An R-rewriting of Q is a CQ Qk obtained by
a finite sequence (Q0 = Q), Q1, . . . , Qk such that for all
0 ≤ i < k, there is Ri ∈ R and a piece unifier µ of Qi with
Ri such that Qi+1 = β(Qi, R, µ).
Theorem 1 (Soundness and completeness) (basically
[Salvat and Mugnier, 1996]) Let F be a fact, R be a set of
existential rules, and a (Boolean) CQ Q. Then F,R |= Q iff
there is anR-rewriting Q′ of Q such that F |= Q′.

In this paper, we will consider rewritings that are not nec-
essarily CQs or UCQs. Given a class Φ of formulas, we define
sound and complete Φ-rewritings.

4One can always rename apart the variables in a rule and thus
satisfy our assumption.
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Definition 5 (Φ-rewriting soundness and completeness)
Let Q be a first-order formula, Φ be a class of first-order
formulas andR be a set of existential rules.
• A sound Φ-rewriting of Q (w.r.t R) is a formula ϕ be-

longing to Φ such that for each fact F , F |= ϕ implies
that F,R |= Q.
• A complete Φ-rewriting of Q (w.r.t R) is a formula ϕ

belonging to Φ such that for each fact F , F,R |= Q
implies that F |= ϕ.

An interesting class of rules when performing backward
chaining is the class of finite unification sets, which are sets
of rules for which any query admits a finite UCQ-rewriting.
Definition 6 (Finite unification set) Let R be a set of rules.
R is a finite unification set (fus) if for any Q there exists a
finite UCQ-rewriting of Q (w.r.t.R).

The fus property is unrecognizable. However, some rec-
ognizable subclasses are known: atomic-body rules [Calı̀ et
al., 2008; Baget et al., 2009], (join)-sticky-rules [Calı̀ et al.,
2010], aGRD [Baget et al., 2011].

3 Semi-conjunctive Queries
CQs are considered as the basic queries in databases, and
UCQs can be dealt with by processing each CQ separately.
Hence, most of the research effort in OBDA has focused
on UCQs. The query rewriting approach usually focuses on
creating UCQ-rewritings. One of the reasons is that UCQs
are efficiently dealt with by existing DBMS. However, this
last statement is questionable in this setting, since the size
of UCQ-rewritings is generally large, in particular when on-
tologies contain large class/role hierarchies (which is often
the case). We first introduce the notion of a semi-conjunctive
query - which allows for a limited use of disjunction - and
illustrate with Example 3 what it has to offer to OBDA.

Definition 7 (Semi-conjunctive query) A semi-conjunctive
query (SCQ) is a closed logical formula of the following form:

∃x D1 ∧D2 ∧ . . . ∧Dn

where Di is a disjunction of atoms (for any i), and x is the
set of variables that appear in the formula.

Definition 8 (Selection) Let S =
∧

iDi be an SCQ. A CQ
Q =

∧
i di is a selection of S if, for each i, we have di ∈ Di.

Example 2 (Selection) Let S = (r1(x, y) ∨ r2(x, y)) ∧
(s1(y, z) ∨ s2(y, z)). S has four selections, which
are r1(x, y) ∧ s1(y, z), r1(x, y) ∧ s2(y, z), r2(x, y) ∧
s1(y, z), r2(x, y) ∧ s2(y, z).

Example 3 By generalizing Example 2 with k disjunctions
of q atoms, the smallest UCQ equivalent to a single USCQ
would contain qk CQs.

Property 1 Let Q be a CQ, and S be an SCQ. S is a sound
SCQ-rewriting of Q w.r.t. R if and only if every selection of
S is a sound CQ-rewriting of Q w.r.t.R.

If S1 is more general than S2, one can discard S2 from a
USCQ-rewriting. We thus define the notion of cover of a set
S of SCQs, which contains only most general elements of S.

Definition 9 (Cover) Let S be a set of first-order queries. A
cover of S is a set Sc ⊆ S such that:

1. for any S ∈ S, there is S′ ∈ Sc such that S ≤ S′,
2. elements of Sc are pairwise incomparable w.r.t. ≤.

Of course, a cover of a sound and complete USCQ-
rewriting is also sound and complete. In the case of UCQ-
rewriting, being a sound and complete cover is a sufficient
condition for being of minimal size [König et al., 2012].
However with SCQs, this condition does not ensure the min-
imality of the USCQ-rewriting, as shown by the Example 4.

Example 4 Let S1 be a set of SCQs containing:

• (r1(x, y) ∨ r2(x, y)) ∧ (s1(x, y) ∨ s2(x, y)),

• (r1(x, y) ∨ r3(x, y)) ∧ (s1(x, y) ∨ s2(x, y)),

• (r1(x, y) ∨ r2(x, y)) ∧ (s1(x, y) ∨ s3(x, y)),

• (r1(x, y) ∨ r3(x, y)) ∧ (s1(x, y) ∨ s3(x, y)).

All elements of S1 are incomparable by the “more gen-
eral” relation, but S2 = {(r1(x, y) ∨ r2(x, y) ∨ r3(x, y)) ∧
(s1(x, y)∨ s2(x, y)∨ s3(x, y))} is equivalent to S1 and con-
tains strictly less SCQs.

Property 2 Let S and S′ be two SCQs. S ≥ S′ iff for every
selectionQ′ of S′, there exists a selectionQ of S s.t.Q ≥ Q′.

4 Query Rewriting Using SCQs
In this section, we present COMPACT, an algorithm that com-
putes USCQ-rewritings. We define for that purpose piece uni-
fiers for SCQs. This notion naturally generalizes the corre-
sponding notion for CQs by operating a selection on SCQs.
As for CQs, given an SCQ S and a set of disjunctions S′ ⊆ S,
we define sep(S′) = var(S′) ∩ var(S̄′), where S̄′ = S \ S′.

Definition 10 (Piece unifier) Let S be an SCQ and R be a
rule. A piece unifier of S with R is a triple µ = (S′, Q′, u)
with S′ ⊆ S, S′ 6= ∅, Q′ a selection of S′, and u is a substi-
tution of fr(R) ∪ vars(Q′) by terms(head(R)) ∪ C such that:

1. for all x ∈ fr(R), u(x) ∈ fr(R) ∪ C (for technical con-
venience, we allow u(x) = x);

2. for all x ∈ sep(S′), u(x) ∈ fr(R) ∪ C;

3. u(Q′) ⊆ u(head(R)).

A unifier of a rule with one body atom is local if S′ con-
tains only one disjunction, and if u restricted to terms(S′)
is injective and does not map a variable to a constant. A
non-local unifier µ = (S′, Q′, u) is prime if for any D ∈
S′, there exists no uL, substitution of fr(R) ∪ vars(Q′D) by
terms(head(R)) ∪ C, such that µ = ({D}, Q′D, uL) is a lo-
cal unifier, where Q′D is the selection of {D} that selects the
same elements as Q′.

Example 5 Let R1 = p(x) → r(x, y), R2 = q(x′) ∧
h(x′)→ s(x′, y′), and S = r(x1, x2)∧t(x1, x3)∧r(x3, x4)∧
s(x1, x5) ∧ s(x3, x5). S is a CQ, thus an SCQ too.

• let µ1 = ({{r(x1, x2)}}, {r(x1, x2)}, {u1(x1) =
x, u1(x2) = y}). µ1 is a local unifier of R1 with S.
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• let µ2 = ({{s(x1, x5)}, {s(x3, x5)}}, {s(x1, x5),
s(x3, x5)}, {u2(x1) = x′, u2(x5) = y′, u2(x3) = x′})
is a prime (non-local) unifier of R2 with S, because R2

has a non-atomic body

• let µ3 = ({{r(x1, x2)}, {r(x3, x4)}}, {r(x1, x2),
r(x3, x4)}, {u3(x1) = x, u3(x2) = y, u3(x3) =
x, u3(x4) = y}). µ3 is a non-local (two disjunctions
unified at once), non-prime unifier (because µ1 is a lo-
cal unifier) of R1 with S.

• let µ4 = ({{s(x1, x5)}}, {s(x1, x5)}, {u4(x1) =
x′, u4(x5) = y′}). µ4 is not a unifier of R2 with S, be-
cause x5 is mapped to an existential variable of R2, and
there is a disjunction of S containing x5 but not belong-
ing to the unified disjunctions.

To define the rewriting operations of our algorithm, we first
need the definition of X-entailment.
Definition 11 (X-entailment) Let D be a set of atoms, and
X a set of variables. Let a be an atom. a is X-entailed by
D if there is a homomorphism π from a to D such that if
x ∈ var(a) ∩X , then π(x) = x.

Example 6 Let D = {r(x, y), p(x, u)}. p(x, v) is {x,y}-
entailed by D, but r(y, x) is not.

We distinguish two kinds of rewriting operations. Local
rewritings, which are performed when rewriting w.r.t. a lo-
cal unifier, and non-local rewritings otherwise. Local rewrit-
ings are the novelty of our approach: they can introduce dis-
junctions. Non-local rewritings are a simple recast of usual
rewritings in the framework of SCQs. Disjunctions that have
a unified atom are removed, the substitution is applied to each
atom of the body of the rule, creating a new disjunction for
each of these atoms.

Definition 12 (Local rewriting) Let S =
∧n

i=1Di be an
SCQ, R be an atomic body rule and µ = ({D1}, Q′, u)
be a local piece unifier of R with S. The local rewriting
of S with respect to µ (denoted by γL(S,R, µ)) is S′ =
D′1 ∧

∧n
i=2 u(Di), where D′1 = u(D1) ∨ u(body(R)), if

u(body(R)) is not sep({D1})-entailed by D1, and S other-
wise.

Checking that u(body(R)) is not sep({D1})-relatively en-
tailed by D1 ensures that the same unification will not add
twice equivalent atoms. Thus, given an SCQ, we can satu-
rate it by applying local rewritings until all of them have been
applied. This process, called LU-Saturation, is presented in
Algorithm 1.

Definition 13 (Non-local rewriting) Let S =
∧n

i=1Di be
an SCQ, R be a rule (with body(R) =

∧b
i=1 bi(R)) and

µ = ({D1, . . . , Dk}, Q′, u) be a non local unifier of R with
S. The non-local rewriting of S with respect to µ (denoted
by γNL(S,R, µ)) is S′ =

∧b
j=1D

′
j ∧

∧n
i=k+1 u(Di), where

D′j = u(bi(R)).

Example 5 ((cont.) Local and non-local rewriting) The
rewriting of S:

• w.r.t. to µ1 is (r(x1, x2)∨p(x1))∧t(x1, x3)∧r(x3, x4)∧
s(x1, x5) ∧ s(x3, x5).

• w.r.t. to µ2 is r(x, x2)∧ t(x, x)∧ r(x, x4)∧ q(x)∧h(x).
• w.r.t. to µ3 is p(x)∧ r(x, x)∧ s(x, x5)∧ s(x, x5), which

is simplified to p(x) ∧ r(x, x) ∧ s(x, x5).

Let us now focus on properties of piece-based rewriting for
SCQs. Property 3 ensures that soundness is preserved while
performing a rewriting.

Property 3 Let S be a sound SCQ-rewriting of a CQ Q.
If µ is a local (resp. non-local) unifier of R with S, then
γL(S,R, µ) (resp. γNL(S,R, µ)) is a sound SCQ-rewriting
of Q.

Performing an LU-saturation is relevant since applying a
local unifier does not prevent any other unifier to be applied.

Property 4 Let S be an SCQ, R1 and R2 be two rules, µ1 be
a local unifier ofR1 with S and µ2 be a unifier (not necessar-
ily local) ofR2 with S. µ2 is a unifier ofR2 with β(S,R1, µ1).
Moreover the (possible) locality of µ2 is conserved.

We now present the key properties that will ensure the com-
pleteness of our algorithm.

Property 5 Let R be a set of rules, S be an SCQ, and Q a
selection of S. Let Q′ be a one step R-rewriting of Q. Either
Q′ is less general than a selection of the LU-saturation of
S, or there exists a one step rewriting S′ of S s.t. Q′ is less
general than a selection of S′.

The following property ensures that computing the cover
at each step does present completeness.

Property 6 Let S and S′ be two SCQs such that S ≥ S′.
For any selection Q′r of a one step-rewriting S′r of Sr, either
there exists a selection Q of LU-saturation(S) such that Q ≥
Q′r, or there exists a selection Qr of a one step rewriting of
LU-saturation(S) such that Qr ≥ Q′r.

COMPACT (Algorithm 2) performs a breadth-first exploration
of the SCQ-rewritings of Q. For each SCQ S to be explored,
S is first LU-saturated. Then, any prime unifier is used to
generate new SCQs - which are in turn explored. To ensure
that COMPACT halts, one should check that newly created
SCQs are not less general than previously explored SCQs.
This check is not trivial: in particular, we use the very spe-
cific structure of the rewriting generated by COMPACT in or-
der to avoid to blow-up each SCQ, as would be suggested by
Property 2.

Algorithm 1: LU-SATURATION

Data: A SCQ S, a set of existential rulesR
Result: S saturated with respect to local unifications
So = null;
Sn = S;
while So 6= Sn do

So = Sn;
for every rule R ∈ R do

for every local unifier µ of R with Sn do
Sn = γL(Sn, R, µ);

return Sn
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Algorithm 2: COMPACT

Data: A CQ S (thus as SCQ), a fusR
Result: A sound and complete USCQ-rewriting of S

w.r.t.R
SF = {S};
SE = {S};
while SE 6= ∅ do
St = ∅;
for every S′ ∈ SE do

S′ = LU-SATURATION(S′);
for every rule R ∈ R do

for every prime unifier µ of R with S′ do
St = St ∪ {γNL(S′, R, µ)}

St = cover(SF ∪ St);
SE = St \ SF ;
SF = St;

return SF

Property 7 Algorithm 2 outputs a sound and complete
rewriting of S w.r.t.R.

Sketch of proof: Property 3 ensures that all generated queries
are sound. An induction on the length of the smallest deriva-
tion generating a CQ-rewriting of Q based on Property 5 and
Property 6 shows that for any CQ-rewriting of Q, there ex-
ists an SCQ SQ generated by Algorithm 2 such that Q is less
general than a selection of SQ. �

Example 5 ((Cont.)Execution of COMPACT on S,R)
We start from S and LU-saturate it. We obtain
S′ = LU-Saturate(S) = (r(x1, x2) ∨ p(x1)) ∧ t(x1, x3) ∧
(r(x3, x4) ∨ p(x3) ∧ s(x1, x5) ∧ s(x3, x5). The only prime
unifier applicable to S′ unifies R2 with S′, which is rewritten
into S′′ = (r(x, x2)∨p(x))∧t(x, x)∧(r(x, x4)∨p(x))∧q(x).
No new unifications are possible, and thus {S′, S′′} is a
sound and complete rewriting of S w.r.t.R.

The efficiency of the USCQ representation of sound and
complete rewritings is striking when dealing with class or role
hierarchies, which are covered by the following property.
Property 8 Let R be a set of rules with no constants, no ex-
istential in the head, and such that no variable appear twice
in the same atom. Let Q be a conjunctive CQ. The sound and
complete SCQ-rewriting of Q w.r.t.R is a single SCQ.

5 Experimental Evaluation
We now evaluate both steps of our query rewriting approach
for OBDA. One the one hand, we want a rewriting algo-
rithm that computes quickly sound and complete rewritings.
On the other hand, we want these rewritings to be efficiently
evaluable by current RDMS. For both steps, we use the on-
tologies introduced for benchmarking in [Pérez-Urbina et al.,
2009], which have been also used in [Gottlob et al., 2011;
Chortaras et al., 2011; Imprialou et al., 2012]. Moreover,
since these ontologies are rather flat, we slightly modify
the LUBM ontology5, creating LUBMn, by adding n sub-

5http://swat.cse.lehigh.edu/projects/lubm/

predicates for each original predicate (e.g., Course has as
sublcasses Course1,. . ., Coursen). This process is very simi-
lar to what has been done in [Rodriguez-Muro and Calvanese,
2012] and [Lutz et al., 2012]. As for the queries, we use two
sets of queries for each ontology. First, the original hand-
crafted queries, which are only five. Then, we use the query
generator Sygenia6 [Imprialou et al., 2012] in order to have a
larger number of queries. For space reasons, we only present
the results on the LUBMn ontologies and its modified ver-
sion, which are representative of other experiments.

Rewriting. To test the rewriting step of COMPACT, we
compare the rewritings obtained by COMPACT and by Iqaros,
which has been shown to be faster than other tools on the
considered benchmarks [Imprialou et al., 2012]. For COM-
PACT, we present the number of output SCQs, the number of
selections (i.e., the number of CQs that would be obtained
by exploding each output SCQ), as well as the time needed
to generate the USCQ. For Iqaros, we present the number of
output CQs and the time required for computing them.

Querying. Since generating queries is only half of the story,
we also test how efficiently the output queries can be evalu-
ated against a database. The method is the following: given
a CQ Q, let Q be the optimal UCQ-rewriting, and S be the
USCQ output by COMPACT. We separately evaluate each CQ
of Q by translating them into an SQL query, and compute
the time required for evaluating all queries. We do the same
thing for each SCQ of S, where the translation involves the
creation of views. The data we evaluate the query on is gen-
erated from the LUBM generator, with 20 universities (for a
total of 556k unary atoms, and 2,2M binary atoms). A time-
out has been set: all queries of the benchmark should have
been answered within 30 minutes. COMPACT is implemented
in Java. All tests have been performed on a 2.4GHz processor,
with 4GB of RAM. The RDMS used is Sqlite.

5.1 Rewriting Step
Rewriting results are presented in Tables 1 and 2. For most
queries, the USCQ rewriting output by COMPACT contains
only one SCQ. On the benchmarks, the time needed for com-
puting USCQs is better than the time needed for computing
UCQs. The difference increases dramatically as the size of
the UCQ rewritings increases, as witnessed by handcrafted
queries with the LUBMn ontologies.

5.2 Querying Step
Figures 1 and 2 present the time, in seconds, needed to eval-
uate the optimal UCQ rewriting (black bars), and USCQ
rewriting (white bars), for Sygenia-generated queries and
for handcrafted queries, respectively. The ontologies are
LUBMn, for n from 0 to 8. Missing bars are timeouts.

USCQs are evaluated faster than their equivalent (optimal)
UCQs. The difference grows as the size of the UCQ grows
(with a fixed size of USCQ), which typically happens when
class or role hierarchies are present.

6http://code.google.com/p/sygenia/
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Table 1: Rewriting time and output for Sygenia queries
COMPACT Iqaros

# SCQs # Selections Time # CQ Time
(ms) (ms)

0 102 486 44 486 152
1 102 1203 56 1203 171
2 102 1910 75 1910 182
3 102 2691 68 2691 205
4 102 3546 86 3546 257
5 102 4475 108 4475 342
6 102 5478 144 5478 440
7 102 6555 173 6555 556
8 102 7706 217 7706 692

Table 2: Rewriting time and output for handcrafted queries
COMPACT Iqaros

# SCQs # Selections Time # CQ Time
(ms) (ms)

0 5 19 68 19 200
1 5 102 73 102 247
2 5 360 143 360 460
3 5 972 213 972 1454
4 5 2190 303 2190 5242
5 5 4338 406 4338 17382
6 5 7812 530 7812 56095
7 5 13080 667 13080 155566
8 5 20682 823 20682 403229
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Figure 1: Querying time for Sygenia generated queries
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Figure 2: Querying time for handcrafted queries

6 Related Work
COMPACT has some similarities with two algorithms already
published: Rapid and the piece-based rewriting algorithm. In-
cremental rewriting performed by Iqaros being further from
our methods, we focus on these two.

First, the piece-based rewriting algorithm presented in
[König et al., 2012]: the distinguishing feature of this algo-
rithm is that it computes optimal CQ-rewritings for any finite
unification set. This generality - any finite unification set - is
due to the use of piece unifiers. COMPACT is based upon the
same mechanisms, modulo some generalizations in order to
take disjunction into account.

Rapid performs sound and complete rewritings for OWL-
QL ontologies. Rapid first performs a shrinking step, where
all possible “structures” of CQ rewriting are generated at
once. An important property of OWL-QL on which rapids is
based on (in order to be time-efficient) is that such a shrink-
ing step can be done only once. Then, every atom is sepa-
rately rewritten using the ontology. Last, a distributivity step,
including some compatibility checks, is performed. The sep-
arate rewriting for each atom can find a counter-part in COM-
PACT with the use of local unifiers, and creation of disjunc-
tions. The distributivity step is not done - which allows for a
dramatic time improvement when there are several large dis-
junctions in a single semi-conjunctive query.

7 Conclusion and Further Work
In this paper, we proposed a novel method to compute sound
and complete rewritings of conjunctive queries with respect
to finite unification sets of existential rules. Designing effi-
cient tools for that task is important because it allows one
to answer conjunctive queries against databases while tak-
ing ontologies into account without changing data. The dis-
tinguishing feature of our method is that it outputs a set of
semi-conjunctive queries, which are a more general form of
positive existential formulas than conjunctive queries. We ad-
vocated that such queries allow for a more compact repre-
sentation of sound and complete rewritings that can be effi-
ciently computed and evaluated. In particular, we presented a
novel algorithm, COMPACT, that outperforms state-of-the-art
algorithms on OWL-QL, while producing sound and com-
plete rewritings for any finite unification set. First experi-
ments showed that semi-conjunctive queries can be more ef-
ficiently evaluated than the equivalent union of conjunctive
queries, especially when the size of the disjunctions involved
is big enough - which happens even with queries and ontolo-
gies of moderate size.

Further work includes both practical and theoretical as-
pects. First, since existing benchmarks are limited, properly
evaluating rewriting algorithms is hard. In particular, we eval-
uated COMPACT only on OWL-QL ontologies, whereas it
is designed as a rewriting tool for any finite unification set.
Then, an interesting improvement of COMPACT would be to
take into account the possible completeness of a database
with respect to some predicates. This method has been proven
useful with some very light description logics [Rodriguez-
Muro and Calvanese, 2012]. We believe such an approach
could be successfully adapted to any finite unification set.
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