Français Anglais
Accueil Annuaire Plan du site
Accueil > Production scientifique > Résultat majeur
Production scientifique
Résultat majeur : L2R: A LOGICAL METHOD FOR REFERENCE RECONCILIATION
L2R: A LOGICAL METHOD FOR REFERENCE RECONCILIATION
22 juillet 2007

By Fatiha Saïs, Nathalie Pernelle, and Marie-Christine Rousset, AAAI'07.
The reference reconciliation problem consists in deciding
whether different identifiers refer to the same data,
i.e., correspond to the same world entity. The L2R system
exploits the semantics of a rich data model, which
extends RDFS by a fragment of OWL-DL and SWRL
rules. In L2R, the semantics of the schema is translated
into a set of logical rules of reconciliation, which are
then used to infer correct decisions both of reconciliation
and no reconciliation. In contrast with other approaches,
the L2R method has a precision of 100% by
construction. First experiments show promising results
for recall, and most importantly significant increases
when rules are added.



Activités de recherche
  ° Intégration d'informations

Equipe
  ° Intelligence Artificielle et Systèmes d'Inférence

Contact
  ° SAÏS Fatiha
Résultats majeurs
HOW FAST CAN YOU CONVERGE TOWARDS A CONSENSUS VALUE?
28 octobre 2021
In their recent work, Matthias Fuegger (LMF), Thomas Nowak (LISN), and Manfred Schwarz (TU Wien) stu

MODEL TRANSFORMATION AS CONSERVATIVE THEORY-TRANSFORMATION
30 octobre 2020
We present a new technique to construct tool support for domain-specific languages (DSLs) inside the

BEST STUDENT PAPER AWARD (ML) AT ECML 2019
20 septembre 2019
Guillaume Doquet (A&O), Best Student Paper Award (category Machine Learning) at ECML 2019.

BEST PAPER AWARD - HPCS 2019 - ON SERVER-SIDE FILE ACCESS PATTERN MATCHING
17 juillet 2019
Francieli Zanon Boito¹ , Ramon Nou², Laércio Lima Pilla³, Jean Luca Bez⁴, Jean-François Méhaut¹, T

BEST FULL PAPER AWARD EDM 2019 - EDUCATIONAL DATA MINING
05 juillet 2019
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Ski