Français Anglais
Accueil Annuaire Plan du site
Accueil > Production scientifique > Résultat majeur
Production scientifique
Résultat majeur : ONTOLOGY-AWARE PREDICTION FROM RULES: A RECONCILIATION-BASED APPROACH
ONTOLOGY-AWARE PREDICTION FROM RULES: A RECONCILIATION-BASED APPROACH
01 juillet 2014

Fatiha Saïs and Rallou Thomopoulos, (Knowledge-Based Systems Journal)
Our work is related to the general problem of constructing predictions for decision support issues. It relies on knowledge expressed by numerous rules with homogeneous structure, extracted from various scientific publications in a specific domain. We propose a predictive approach that takes two stages: a reconciliation stage which identifies groups of rules expressing a common experimental tendency and a prediction stage which generates new rules, using both descriptions coming from experimental conditions and groups of reconciled rules obtained in stage one. The method has been tested with a case study related to food science and it has been compared to a classical approach based on decision trees. The results are promising in terms of accuracy, completeness and error rate.



Activités de recherche
  ° Intégration de données et de connaissances

Equipe
  ° Données et Connaissances Massives et Hétérogènes

Contact
  ° SAÏS Fatiha
Résultats majeurs
HOW FAST CAN YOU CONVERGE TOWARDS A CONSENSUS VALUE?
28 octobre 2021
In their recent work, Matthias Fuegger (LMF), Thomas Nowak (LISN), and Manfred Schwarz (TU Wien) stu

MODEL TRANSFORMATION AS CONSERVATIVE THEORY-TRANSFORMATION
30 octobre 2020
We present a new technique to construct tool support for domain-specific languages (DSLs) inside the

BEST STUDENT PAPER AWARD (ML) AT ECML 2019
20 septembre 2019
Guillaume Doquet (A&O), Best Student Paper Award (category Machine Learning) at ECML 2019.

BEST PAPER AWARD - HPCS 2019 - ON SERVER-SIDE FILE ACCESS PATTERN MATCHING
17 juillet 2019
Francieli Zanon Boito¹ , Ramon Nou², Laércio Lima Pilla³, Jean Luca Bez⁴, Jean-François Méhaut¹, T

BEST FULL PAPER AWARD EDM 2019 - EDUCATIONAL DATA MINING
05 juillet 2019
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Ski