The advantages of grouping enzymes into metabolons and into higher order structures have long been debated. To quantify these advantages, we have developed a stochastic automaton that allows experiments to be performed in a virtual bacterium with both a membrane and a cytoplasm. We have investigated the general case of transport and metabolism as inspired by the phosphoenolpyruvate:sugar phosphotransferase system (PTS) for glucose importation and by glycolysis.
We show that PTS and glycolytic metabolons can increase production of pyruvate eightfold at low concentrations of phosphoenolpyruvate. A fourfold increase in the numbers of enzyme EI led to a 40% increase in pyruvate production, similar to that observed in vivo in the presence of glucose. Although little improvement resulted from the assembly of metabolons into a hyperstructure, such assembly can generate gradients of metabolites and signaling molecules.
Patrick Amar, G. Legent, M. Thellier, C. Ripoll, G. Bernot, T. Nystrom, M. Saier Jr and Vic Norris
Keyword
°
Design °
Bioinformatics
Group
°
Bioinformatics
Contact
°
AMAR Patrick