Français Anglais
Accueil Annuaire Plan du site
Accueil > Production scientifique > Thèses et habilitations
Production scientifique
Doctorat de

Doctorat
Equipe : Systèmes Parallèles

Modèles de mobilité et synchronisation d’horloge dans les réseaux sans fil

Début le 01/10/2018
Direction : LAMBERT, Alain
[NOWAK Thomas]

Ecole doctorale : ED STIC 580
Etablissement d'inscription : Université Paris-Saclay

Lieu de déroulement : LRI - ParSys

Soutenue le 08/11/2021 devant le jury composé de :
Directeur de thèse :
- Alain LAMBERT, Maître de Conférences, Université Paris-Saclay, LISN

Co-encadrant :
- Thomas NOWAK, Maître de Conférences, Université Paris-Saclay, LISN

Rapporteurs et examinateurs :
- Marc SHAWKY, Professeur, Université de Technologie de Compiègne, Heudiasyc
- Anthony BUSSON, Professeur, IUT La Doua Université Lyon 1, LIP

Examinateurs :
- Janna BURMAN, Maître de Conférences, Université Paris-Saclay, LISN
- Aminu MOHAMMED, Professeur, Usmanu Danfodiyo University Sokoto Nigeria, Computer Science Laboratory

Activités de recherche :

Résumé :
La mobilité dans les réseaux adhoc conventionnels est un défi en raison de l’invalidation constante des chemins de bout en bout. Nous traitons, dans cette thèse, spécifiquement des réseaux mobiles ad-hoc où les humains sont les principaux porteurs d’appareils mobiles communicants. Une bonne compréhension de la mobilité humaine permet la conception d’un modèle de mobilité réaliste en tant qu’outil d’évaluation des protocoles de réseau. Les modèles conventionnels d’évaluation des protocoles des premiers réseaux ad hoc (par exemple, random walks, random waypoints, random directions) ne parviennent pas à simuler correctement la mobilité humaine. Des études récentes ont montré que la mobilité humaine est influencée par les habitudes personnelles, les relations sociales, les caractéristiques environnementales et les préférences de localisation. Par conséquent, un modèle réaliste devrait inclure ces caractéristiques. À cet égard et à l’aide de traces réelles, nous avons développé une heuristique pour définir un modèle de mobilité humaine basée sur des caractéristiques spatiales, temporelles et de connectivité. Nous avons remarqué des clusters de mouvements dynamiques temporels associés à des utilisateurs individuels. Nous avons étudié la distribution de la distance parcourue, du temps de pause, de l’angle de déplacement, de la durée de contact et de la durée d’inter-contact. Motivés par nos résultats, nous avons proposé un nouveau modèle de mobilité qui imite de manière réaliste les caractéristiques de la mobilité humaine. Notre modèle a été validé en comparant ses traces synthétiques à des mesures de mobilité réelles. Dans un environnement de campus intelligent, les réseaux prennent en charge les applications de surveillance environnementale et de positionnement intérieur/extérieur, parfois avec un déploiement important de capteurs. Compte tenu des limitations des capteurs telles qu’autonomie énergétique, capacité de calcul limité, et la dynamique, les horloges des capteurs doivent être synchronisées pour exécuter des algorithmes de fusion de données, mettre en œuvre des protocoles de gestion de l’énergie ou un traitement temps réel des applications où la sécurité est importante. Compte tenu de cela, nous avons proposé un algorithme de synchronisation d’horloge distribuée à couplage d’impulsions pour des réseaux de capteurs sans fil. Notre algorithme permet de réduire les décalages d’horloge dus aux conditions ambiantes, à la mobilité ou aux défauts de fabrication. Pour ce faire, les capteurs mesurent les différences de temps en échangeant uniquement des impulsions au lieu de paquets. Par conséquent, notre algorithme est léger et robuste à la défaillance de capteurs du réseau. L’algorithme proposé est comparé aux travaux antérieurs avec des paramètres statiques et mobiles. Les résultats montrent qu’il peut réduire le décalage d’horloge, en particulier dans un environnement dynamique avec une dérive d’horloge importante et des changements topologiques inattendus comme ceux apparaissant dans les réseaux de véhicules.