FURTLEHNER Cyril
Faculty habilitation
Group : Learning and Optimization
Statistical Physics methods for machine learning and traffic forecasting
Starts on 18/06/2020
Advisor :
Funding :
Affiliation : vide
Laboratory :
Defended on 18/06/2020, committee :
- Cécile Appert-Rolland (Dr. LPT Paris-Saclay)
- Adriano Barra (Pr. Université Salento)
- Alexander Hartmann (Pr. Université Oldenburg)
- Jean-Pierre Nadal (Dr. ENS, Pr. EHESS)
- Kirone Mallick (CEA IPht, Pr. Ecole polytechnique)
- Martin Weigt (LCQB, Pr. Université Sorbonne)
- Lenka Zdeborova (CEA Ipht)
Research activities :
Abstract :
I will present recent and less recent research activities relative to different applications of statistical physics methods to traffic modellinginference and machine learning. As a
guideline the transverse notion of pattern formation will be exploited to make sense of large scale behavior of the various stochastic processes, distributed algorithms and learning mechanisms I will be discussing.