Ph.D
Group : Graphs, ALgorithms and Combinatorics
Combinatoire des fonctions de parking : Espèces, Énumération d’automates et Algèbres de Hopf
Starts on 01/10/2012
Advisor : HIVERT, Florent
Funding : Contrat doctoral uniquement recherche
Affiliation : Université Paris-Saclay
Laboratory :
Defended on 07/12/2015, committee :
Directeur de thèse :
M. Florent HIVERT, Paris-Sud
Rapporteurs :
M. Jean-Christophe AVAL, LaBRI, Université de Bordeaux
M. Jean-Gabriel LUQUE, Université de Rouen
Examinateurs :
Mme Sylvie CORTEEL, LIAFA Université Paris-Diderot
M. Loïc FOISSY, Université du Littoral Côte d'Opale
M. Sylvain CONCHON, Université Paris-Sud
M. Cyril NICAUD, Université Paris-Est, Marne-la-Vallée
Research activities :
Abstract :
This thesis comes within the scope of algebraic, bijective and enumerative combinatorics. It deals with the study of generalized parking functions following those axes.
In the first part, we are interested in generalized parking as a species of combinatorial structures (theory introduced by A. Joyal and developed by F. Bergeron, G. Labelle et P. Leroux). We define this species from a functional equation involving the species of set sequences. We lift the cycle index series to the non-commutative symmetric functions, expressed in several bases. By specialization, we obtain new enumeration formula for generalized parking and its isomorphism types.
By replacing the species of sets by others species in the functional equation, one defines new structures : the χ-parking tables. In particular cases with chi : m