Français Anglais
Accueil Annuaire Plan du site
Home > Research results > Dissertations & habilitations
Research results
Ph.D de

Ph.D
Group : Learning and Optimization

Generative Neural Networks to Infer Causal Mechanisms: Algorithms and Applications

Starts on 01/01/2017
Advisor : GUYON, Isabelle

Funding : contrat doctoral UPS
Affiliation : Université Paris-Saclay
Laboratory : LRI - amphithéâtre Shannon du Bâtiment 660

Defended on 17/12/2019, committee :
Kristin Bennett, Professeur, Rensselaer Polytechnic Institute | Rapporteur
Kun Zhang, Assistant Professor, Carnegie Mellon University | Rapporteur
Jean-Pierre Nadal, Directeur de Recherche au CNRS, École Normale Supérieure | Examinateur
Julie Josse, Professeur, CMAP & INRIA | Examinateur

Research activities :

Abstract :
Causal discovery is of utmost importance for agents who must plan, reason and decide based on observations; where mistaking correlation with causation might lead to unwanted consequences. The gold standard to discover causal relations is to perform experiments. However, experiments are in many cases expensive, unethical, or impossible to realize. In these situations, there is a need for observational causal discovery, that is, the estimation of causal relations from observations alone. Causal discovery in the observational data setting traditionally involves making significant assumptions on the data and on the underlying causal model.
This thesis aims to alleviate some of the assumptions made on the causal models by exploiting the modularity and expressiveness of neural networks for causal discovery, leveraging both conditional independencies and simplicity of the causal mechanisms through two algorithms. Extensive experiments on both simulated and real-world data and a throughout theoretical analysis prove the good performance and the soundness of the proposed approaches.

Ph.D. dissertations & Faculty habilitations
CAUSAL LEARNING FOR DIAGNOSTIC SUPPORT


CAUSAL UNCERTAINTY QUANTIFICATION UNDER PARTIAL KNOWLEDGE AND LOW DATA REGIMES


MICRO VISUALIZATIONS: DESIGN AND ANALYSIS OF VISUALIZATIONS FOR SMALL DISPLAY SPACES
The topic of this habilitation is the study of very small data visualizations, micro visualizations, in display contexts that can only dedicate minimal rendering space for data representations. For several years, together with my collaborators, I have been studying human perception, interaction, and analysis with micro visualizations in multiple contexts. In this document I bring together three of my research streams related to micro visualizations: data glyphs, where my joint research focused on studying the perception of small-multiple micro visualizations, word-scale visualizations, where my joint research focused on small visualizations embedded in text-documents, and small mobile data visualizations for smartwatches or fitness trackers. I consider these types of small visualizations together under the umbrella term ``micro visualizations.'' Micro visualizations are useful in multiple visualization contexts and I have been working towards a better understanding of the complexities involved in designing and using micro visualizations. Here, I define the term micro visualization, summarize my own and other past research and design guidelines and outline several design spaces for different types of micro visualizations based on some of the work I was involved in since my PhD.