Français Anglais
Accueil Annuaire Plan du site
Home > Research results > Dissertations & habilitations
Research results
Faculty habilitation de COHEN-BOULAKIA Sarah
COHEN-BOULAKIA Sarah
Faculty habilitation
Group : Bioinformatics

Data Integration in the Life Sciences: Scientific Workflows, Provenance, and Ranking

Starts on 17/06/2015
Advisor :

Funding :
Affiliation : Université Paris-Saclay
Laboratory : Université Paris-Sud

Defended on 17/06/2015, committee :
Peter Buneman, Val Tannen, Alain Viari, Christine Froidevaux, Olivier Gascuel, Ioana Manolescu, Patrick Valduriez

Research activities :

Abstract :
Biological research is a science which derives its findings from the proper analysis of experiments. Today, a large variety of experiments are carried-out in hundreds of labs around the world, and their results are reported in a myriad of different databases, web-sites, publications etc., using different formats, conventions, and schemas. Providing a uniform access to these diverse and distributed databases is the aim of data integration solutions, which have been designed and implemented within the bioinformatics community for more than 20 years. However, the perception of the problem of data integration research in the life sciences has changed: While early approaches concentrated on handling schema-dependent queries over heterogeneous and distributed databases, current research emphasizes instances rather than schemas, tries to place the human back into the loop, and intertwines data integration and data analysis. Transparency -- providing users with the illusion that they are using a centralized database and thus completely hiding the original databases -- was one of the main goals of federated databases. It is not a target anymore. Instead, users want to know exactly which data from which source was used in which way in studies (Provenance). The old model of "first integrate, then analyze" is replaced by a new, process-oriented paradigm: "integration is analysis - and analysis is integration". This paradigm change gives rise to some important research trends. First, the process of integration itself, i.e., the integration workflow, is becoming a research topic in its own. Scientific workflows actually implement the paradigm "integration is analysis". A second trend is the growing importance of sensible ranking, because data sets grow and grow and it becomes increasingly difficult for the biologist user to distinguish relevant data from large and noisy data sets. This HDR thesis outlines my contributions to the field of data integration in the life sciences. More precisely, my work takes place in the first two contexts mentioned above, namely, scientific workflows and biological data ranking. The reported results were obtained from 2005 to late 2014, first as a postdoctoral fellow at the Uniersity of Pennsylvania (Dec 2005 to Aug 2007) and then as an Associate Professor at Université Paris-Sud (LRI, UMR CNRS 8623, Bioinformactics team) and Inria (Saclay-Ile-de-France, AMIB team 2009-2014).

More information: https://hal.archives-ouvertes.fr/tel-01245229
Ph.D. dissertations & Faculty habilitations
CAUSAL LEARNING FOR DIAGNOSTIC SUPPORT


CAUSAL UNCERTAINTY QUANTIFICATION UNDER PARTIAL KNOWLEDGE AND LOW DATA REGIMES


MICRO VISUALIZATIONS: DESIGN AND ANALYSIS OF VISUALIZATIONS FOR SMALL DISPLAY SPACES
The topic of this habilitation is the study of very small data visualizations, micro visualizations, in display contexts that can only dedicate minimal rendering space for data representations. For several years, together with my collaborators, I have been studying human perception, interaction, and analysis with micro visualizations in multiple contexts. In this document I bring together three of my research streams related to micro visualizations: data glyphs, where my joint research focused on studying the perception of small-multiple micro visualizations, word-scale visualizations, where my joint research focused on small visualizations embedded in text-documents, and small mobile data visualizations for smartwatches or fitness trackers. I consider these types of small visualizations together under the umbrella term ``micro visualizations.'' Micro visualizations are useful in multiple visualization contexts and I have been working towards a better understanding of the complexities involved in designing and using micro visualizations. Here, I define the term micro visualization, summarize my own and other past research and design guidelines and outline several design spaces for different types of micro visualizations based on some of the work I was involved in since my PhD.