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Abstract

Let G be a graph of order n and k an integer with 3 < k < n—1. We obtain that if
there are at least n/2— 1 vertices of degree at least k then either the circumference of
G is at least k or G has a subgraph isomophic to the graph obtained from K b1 kxn
by adding an edge between any pair of vertices in the &”invertex-part. (Hence
the circumference of G is at least & — 1). By using above result, we show that the
following conjecture of Woodall is true if the graphe is 3-connected and & > 25: if
a 2-connected graph of order n has at least 5 + k vertices of degree at least k, then
it has a cycle of length at least 2k. This conjecture was one of the 50 unsolved

problems in [2].

1 Introduction and notation

All the graphs considered in this paper are undirected and simple. We use the notation and
terminology in [2]. In addition, for a graph G = (V(G), E(G®)), let H be a subgraph of G.
Then the neighborhood in H of a vertex u € V(G) is Ng(u) = {v € V(H) : w € E(G)}
and the degree of u in H is dg(u) = |Ng(u}|. The minimum degree in G of the vertices in
H is denoted by §(H). If X C V(G), let Ng(X) = Upex (Ng(v)— X). In the case H = G,
we use N(u),d(u), § and N(X) instead of Ng(u), dg(u), 6(G) and Ng(X), respectively.

If C' = cie3...c01 is a cycle, we let Cle;, ¢4], for i < 7, be the subpath ¢;¢iqq...¢5, and
Clej, &;] = ¢j¢jo1...ci, where the indices are taken modulo p. We will consider Cle;, ¢;]
and Cle;, ¢;] both as paths and as vertex-sets. Define C(c;, ¢;] = Cleir,¢il, Cleiyc;) =
Cles, ¢j—-1] and Clg;, ¢;) = Cleiy, ¢j—1). For any ¢, we put ¢ = ¢;14, ¢; = ¢;—1, and for any
722,¢/7 =¢jand ¢;? = ¢ij. For AC C, weset At = {vFjv e A}, A~ = {v~|v € A},
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for any j > 2, A" = {v¥]v € A} and A~ = {v~7jv € A}. We will use similar definitions
for a path.
We denote by ¢(G) the circumference, i.e. the length of a longest cycle in G.

Various longest cycle problems are interesting and important in basic graph theory and
have been deeply studied. The main problem studied in this paper is the circumferences
of graphs. A classical result is due to Dirac

Theorem 1 [3]: If G is a 2-connected graph on n >3 vertices, then c(G) 2 min {n, 26}.

The above results based on conditions on degrees of all vertices of the graph. It is
natural to ask if we can still get a long cycle when the graph contains many vertices of
large degrees. We obtain the followings:

Theorem 2: Let G be a graph of order n» and &k an integer with 3 < k£ <mn — 1. If there
are at least n/2 — 1 vertices of degree at least & then either the circumference of G is at
least k£ or (@ has a subgraph isomophic to the graph K* S which is obtained from the

complete bipartite graph K k=l ki by adding an edge between any pair of vertices in the

k=1 .vertex-part.. (Hence the mrcumference of G is at least k — 1).

The following examples are interesting. Let K% i ks 1= D(X,Y) with | X| = %‘l

and |Y| = 2. Pick up ¢ copies D;(X;,Y;),1 < i < g, of D(X,Y) and let u;,v; € V.
Denate by H the graph obtained by identifying v; and u;,, for 1 < ¢ < g—1. Then H
has g(k - 1)/2 + q — 1 vertices of degree at least k& and we have g(k —1)/2+¢—1 =

s(a(k —1)/2+ (&2 — 1) + 1) + 2. These examples show that the circumference may
be less than k even 1f the number of vertices of degree at least % is at least n/2 + ¢ for
any fixed c.

As an improvement of Dirac’s theorems, Woodall made the following conjecture in
1975: If a 2-connected graph of order n has at least 2 + k vertices of degree at least £,
then it has a cycle of length at least 2k. This con_]ecture was one of the 50 unsolved
problems in the book [2] and has been essentially proved in [5]. But we give a proof of
the followings by using Theorem 2.

Theorem 3: If k£ > 25 and a 3-connected graph of order n has at least 2 s + k& vertices of
degree at least k, then it has a cycle of length at least 2k.

2 Preliminary lemmas

Lemma 1: Let G = (V, E) be any 2-connected graph and B := {v : d(v) > k — 1},
3 <k <n/2. 8 :=G— B is independent and if for any set X C S with a common



neighbor (i.e., X C SN N(z) for some z € B),

N > B

then G has a cycle of length at least min{|B|, k}.

Proof of Lemma 1 : Here we just give a proof for existence of a cycle with at least
min{|B|, k — 3} vertices. A detailed proof of the lemma can be found in Appendix.
Let P := v1v5...t be a path in G such that

(a) vi,vp € B;
(b) subject to (a) P contains as many as possible vertices of B;

(c) subject to the above, P is as long as possible

Firstly we study several properties of the path P.

If there is a cycle C' containing all the B-vertices on P, then it is clear that either C
contains all B-vertices (and hence |C| > |B|) or there is another path containing more
B-vertices than P. We assume that no such cycle exists.

Ifvw; € N(v1)N P, the cycle Plvy, v;_;1]v;v1 is of length i. Thus there is a cycle of length
at least |V (v1) N P|+ 1. Since dg(v,) > k — 1, without loss of generality we assume that
Sy == N(v1) — P # { and similarly S, := N(v,) — P # @. By the choice of P and the
independence of S, we have S; € 5, 5, C S, $1NS, = P, N(S;) U N(S,) € BnP,
(N(S1) = {w})" U(N(S,) — {w,})* © S and $; N ST = SpNSF =10.

We have

N(S)™n N(Sp)+2 =0

since N(S1)” UN(S,)™ C S and S is independent, and
(N(v1) UN(51))™ N(N(Sp) UN(vp)) =0

since otherwise there is a cycle containing V'(P), a contradiction. If v, € N(S,)~NN (Sp)™,
then there is a cycle containing V(P) — {v,}, a contradiction because v, € S. It follows

that
N(S)) " NN(S,)*" =10.

Since G is 2-connected, there exists a vine Q = {Hw;,v;] : 1 <! < m} on the
path P(vy, v,), where Hj[v;,,v;] is a path between v;, and vj,, with all internal vertices in
G—P(Ul,’()p), such that 1 =i <l < f K i3 <o Kty < oo Sy, < Im-1 < Jm = p. We
have the following cycles:

If m is even,
Co = ﬂvg...ﬂgHzP[v;;,Uz?;]h_’,iP[vj;,v,;_a_]...v,;Hm_P-[vp_l,vL_l]
Hyp o Plo;, v 1Pl vfTH;
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and if m is odd,

Cq = ’U]_'Ug ; HQP[ Ul U ]H4P[qu,va] Wiy Hine P[_;m 13 Vpei]
P[v ]Hm 2 Plu; ..P[v;,

im? j‘m 2 Jm 4

Clearly we may choose the vine Q such that
(N(v1) N PYUN(S1) € Plvy,v5,] and (N(v,) " PYUN(S,) C Plv} . vp).
We will prove that [Cp| > & — 3.

Put
Ur = {oi} UNp(vi) U (Np(v,) — {wi, ).

and
Uy = N(S1)U(N(S) = {v1,v; 1) U (N(S,) — 185, i} U (N(8p) = {p, Vin Vju-1 1)

From the disjoint properties that we have obtained. above, it follows that

+2

[Col = |Uhl = |Np(vi)] + |Np(v,)|

and
[Col 2 V2| = 2|N(Si)| +2|N(S,)] — 6
= |51] + |8l — 4.
These give
1Cal = 3(th] + |U2])
= %( (”1)+d(”p) 4)
> k-

O

Lemma 2: Let & be an integer with 3 < k¥ < n -1 and G a connected graph of order n
such that

(a) there are at least n/2 — 1 vertices of degree at least k,

(b) all vertices of degree less than % are independent,

(c) any B-vertex is adjacent to at most one vertex of degree 1 and
(d

) there does not exist a vertex v such that G—v has at least two components containing
vertex of degree at least &,

then either the circumference of G is at least k or G = K3 Ao (in thiscase k =n—1
and the circumference is n — 2).

Proof of Lemma 2 : Again put B = {v :d(v) > &k} and S = V(@) — B.
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Let H be the graph obtained from @ by deleting all vertices of degree 1. We will show
that there is a cycle of length at least min{|B|, k} in H.

To prove this, without loss of generality we assume that H is a minimum counter-
example. H is 2-connected and every B-vertex has degree at least k — 1 in H. For
any subset S* C SN H, since every vertex in B — N #(S*) is of degree at least k — 1,
by the minimality hypothesis, we get |B — Ng(S*)| < (|H — §*|)/2 — 1, which gives
|S*| < 2{Ng(S*)|. By using Lemma 1, there is a cycle of length at least min{|B|, k} in
H.

Surzpose that G does not contain a cycle of length at least k. Hence k& > |B|+1 > n/2.
By a theorem in [6] and {1] , G has a cycle containing all B-vertices. Let C be a longest
cycle in G with B C V(C). Let By be the set of all B-vertices such that their processors
in C' belong to B. Since S is independent, |By| = |B| ~ |S N C].

If two Bg-vertices b, and by have a common neighbor w € S — C, by the definition, b7
and b5 are in B and thus, have degrees at least n/2. By a traditional proof, we can get a
longer zycle than C, a contradiction. So we assume that any pair of By-vertices have no
commoa neighbor in S — C.

Let b € By. Since b" has degree at least k and |C| < k ~ 1, b+ has some neighbor
s € S — C with d(s) > 2 by (c). So from (b), s has a neighbor b, € C — {b,b%,b"?}. By
the maximality of C, we deduce b is not adjacent to b7. So we assume that any By-vertex
has at least one nonadjacency in C.

It £ollows from the above assumptions and |C| < k—1 that every Bp-vertex has at least
three neighbors in S —C and all these neighbors are different. So |S—C| > 3(|B|—|SNC|).
Also |51 = |S—C|+|5NC| > 31B|—2[SNC/|. Hence |SNC| > |B|—1 since |B| > n/2—1.
Wehave k—12> |C|=|B|+|SNC|>2{B|-1>n-3.

If # =mn—11itis easy to deduce directly that G = Ky 141 Ifk=mn—2, all the
equalizies holds in the above paragraph. From |SNC| = |B|—1, By = {b} forsome b e B.
by the above angment, b has at least three neighbors in S — C. Similarly b* should have
three neighbors in § — €. But S — C has at most three vertices. It follows that b and b™

have common neighbor in § — C and C can be extended, a contradiction.
|

3 'The main results

Proof of Theorem 2 : Let k£ and n be integers with 3 < k < n — 1. Suppose to the
contrary, that there is a graph G of order n such that there are at least n/2 — 1 vertices
of degrae at least £ and that the circumference of G is less than £ and G has no subgraph
isomophic to the graph K}_, 44a.

2 ' 2

To et a contradiction, we just prove that G satisfies the conditions of Lemma 2. With-
out loss of generality, we assume that G is a minimum counter-example of the theorem.
By the minimality, we may assume that G is connected and S is independent. '



Suppose first that there exists some vertex v such that G — v has at least two compo-
nents Hy and Hy with By := H{N B # (0 and B, := H,N B # §. Put G, = G[H U {v}]
and Gy = GlH;U{u}]. Since |B)|+|By| > |B| ~ [{o}] > n/2—2 2 H(|V(G1)|+[V(Ga)| -

1) —2 2> 3[V(G1)| — 1+ }|V(Ga)] — 1 — & and hence at least one of Gi-and G, say Gy,
has at least £|V(G1)| — 1 vertices of degree at least k. By the minimality hypothesis of
G, either the circumference of G, is at least k or Gy has a subgraph isomophic to the
graph K73 ket s Since G1 is a subgraph of G, we have a contradiction. Therefore we

assume tha,t there does not exist a vertex v such that G — v has at least two components
containing vertex of degree at least k.

For any, v € B such that Sg := {u € SNN(v} : d(u) = 1}. Put G, := G — 8;. Clearly
Gy has at least |B—{v}] vertlces of degrees at least k. By the minimality of G, we deduce
that |B| — 1 < 3|G4| — 1 = 1(n — |Sp]) — 1 and hence |S,| < 1.

We have shown that G satisfies the conditions (a),(b),(c) and (d) of Lemma 2 and so
by Lemma, 2, either the circumference of G is at least & or G has a subgraph isomophic
to the graph Kj_, sys. This contradiction completes the proof.

2+ 2

g

Proof of Theorem 3 : Suppose that G is a 3-connected graph of order n such that at
least & - k vertices are of degree at least &k, & > 25 and G does not contain a cycle of
length at least 2k. Denote by B = {u € V(G) : d(u) >k} and S = V(Q) —

Let ' = cyic...cpc1 be a longest cycle in . Since G — C contains at least S+k—
(26 —1)=%—k+1>|S|+1 vertices in B. Hence there exists a component H of G-C
such that |HOB[ > |SNH[+1. Letd =k - maz{|N(u)NC|: v € Hn B} and
N{ug) NC = {Cmy;s Cmgs -y €my_y } © C. Then every vertex of H N B has degree at least
din H.

By Theorem 2, either H admits a longest cycle Cgx of ¢ > d vertices or H has a
subgraph C} isomophic to K% d-1 ats-

We claim that the longest cycle Cg = ujUs...uquy in [ has at least 8 vertices.

If HNB = {u} then H = {u} and by the maximality of C, |C| > 2d(u) > 2k. Assume
that |[HN B| > 2 and ¢ < 7. For any vertex u € H N B — {u;}, by the maximality of
C, we have |C| > |Ng(ug)™| -+ [Neo(up)it? + |No(u)] > 2(k — d) + |Ne(u)| and hence
[No(u)| < 2d — 1 and | Ny (u)| > k — 2d + 1. It follows that in the subgraph H — {u;},
there are at least @)ﬂ vertices of degree at least & — 2d. By Theorem 2, H — {uy} has
a cycle of at least min{k —2d — 1,d — 1} vertices. Then k ~2d -1 < 7andd—-1< 7,
contrary to k > 25. The claim holds.

Since G is 3-connected, there are three disjoint paths P, P;, P; between three distinct
vertices ¢;, ¢j, ¢ € C and three distinet vertices Ust, Ugr, Uy € Cyr respectively.



Assume first that d > % 2. By the maximality of C, if GH_lia. cycle of ¢ > d vertices,
we have |C(ci, ;)] > [Carlu, tny Ottt usll, 1C(cs, cm)] > Crluy, 171 (e, ]| and
|Cem, )| > |Crrlitrmr, e JCr{uy, ug]|.

C]| He, cjy em |+ |g_£9m ¢i)l +|_CY__(CJ', m)| + IC(&n_, c;)| . - —_ -
Hei, ¢y em}l + Crlur, nw ]C8 (ume, up]| + [Crrluege, us]Cor(uy, ]| + [Crt [ty , w3 ]Cor (e, u]|
3+2|Ch(uy, up)| + 2[Cr(ugr, un)| + 2|Cpr (v, u)| + 3Huw, wyr, e |
34 2|Cx|+3

2k.

VIV IVIVIV

When Cy = Kd 1 gss) then clearly |C(c;, ¢;)| > d—2, |C(c;, em)| = d—2 and |C(cpm, )| 2
d — 2. Tt follows that when & > 9,

ICl 2 Heicjyem}l +[Clei, )] +1C e, em)| + [Cem, i)l
> |{eicj em}l +3(d—2)
> 3k—9
> 2k

Then we assume that d < k — 3. Then clearly |C(cpm, , €m,,, )| > 1 for any g.

Without loss of generality we may choose the paths P, P, P53 such that if uy € Cy,
Uy = Upy and if uy ¢ Cpy, there is a path P; between u; and the vertex uns such that
Ps = Pafugy, up)usen.

When C(c;, ¢;) NN (ug) # 0 and Clcj, ¢) NN (uy) # 0, let em,, s Om, € N(uf)ﬂC’(cz,cj) ,
and ¢, , Cm, € N{uf)NC(cy, ¢;) such that (C‘(cmh, ci)UC (ci, ey, ) )N (ug)U{c;}) = 0 and
(C(cmg, ¢ )UC(cj, emy )NV (ug)U{e;}) = O (i.e., Cpm, is the last vertex of N(uy)NC' before
Ciy Cm,, is the first vertex of N (up) N C after ¢;, ¢, is the last vertex of N(uys) N C before
c;) and ¢y, is the first vertex of N(us) N C after ¢;). If Cy is a cycle, by the maximality
of C, we have |Clemg, cs))| 2 |Crlum, ur]Crr(ug, ug]| and |C(cs, em )| 2> [Corlthm, ug]|-
These give [C(cm,,m, )| > |Cr| + 3. Similarly we have |C(cmh,cmh,)| > |Cul+3. It
follows that when ¢ > “d

lef [N (up)| =2+ [ N(ug)| — 4 + 2(Cal +3)
2k—d)—6+2¢+6

> 2k,

2
>

a contradiction. It follows that 8 <¢ < d-—1and Cg = K}, e Clearly |C(cm,,,¢:)| =
e
d—2, |C{e, emy, )| 2 d—2 |Clem,, )| 2 d—2 and |C{cj, ¢m, ,)| > d — 2. Then we obtain

ICl > IN(up)| + [N(uf)| ~ 4+ 4(d - 2)
> 2(k—d)—4+4d—8
> 2k+2d—12
> 2k,

a contradiction.



Assume then that at least one of C(c;, ¢;) NN (us) and T(ey, ¢;) NN (ug), say Clcs, ¢)N
N(Uf) = {. ) :

let cmy, my € N(ug) 0 Clej, ;) such that (C(ep,,c) U Cle;, Crmg) N N(ug) =0 (ie., .
Cmy, 18 the last vertex of N{uz) NC before ¢;, ¢y, is the first vertex of N (ug) NC after ;).

Let Clemy, ¢i) # 0 and Clem,, c) N (N(uz) U {c;}) = 0 (i.e., cp, is the last vertex of
N(uz) N C before ¢;) and let Clcy, ¢m,) # 0 and C(c;, 6m,) N (N{ugyU{c}) =0 (i.e., cm,
is the first vertex of N(uy) N C after ¢;). ‘

If O is a cycle, by the maximality of C, we have |C(cm, , ¢;))| > |Car(uz, i }Cr [ty , U],
’O(Ci!cj” 2 I@{ui’:um’)o_f;[um’;uj’” and IO(Cj, cmy)l 2 ,@[uj’:uﬂ).a-l:f-[ui”um’“' These
give - o

Cl = [N(up)| + [N(ug)| ~ 3+2|Ca| +3
> 2(k —d) + 2q, .

a contradiction when ¢ > d. It implies that 8 < ¢ < d — 1 and Cyg = Ki_i 443. Since
212
d > 9 and |C(emy,, )| 2 d =2, |Clei, )l > d— 2 and |C(¢51Cm,)| 2 d — 2, we obtain

IO = [N(ug)| + [ N(up)] - 3+ 3(d - 2)
> 2(k—d)+3d—9
> 2%k+d—9
> 2k,

a, contradiction.

The proof is complete.

4 Appendix: Proof of Lemma 1

For any vertex v and a condition A, let 6(v : A) = {v} if A is satisfied or O(v : 4) = @ if
A is not satisfied. :

Proof of Lemma 1 : Let P := U1¥3...U, be a path in G such that
(a) v1,v, € B;
(b) subject to (a) P contains as many as possible vertices of B;
(c) subject to the above, P is as long as possible and

(d) subject to the above, maz{i : viv; € E(G)} is as large as possible.

Firstly we study several properties of the path P.



If there is a cycle C containing all the B-vertices on P, then it is clear that either C
contains all B-vertices (and hence |Cf > |B|} or there is another path containing more
B-vertices than P. We assume that no such cycle exists.

If v; € N(v) N P, the cycle Plvy, v;_1]v;vy is of length 3. Thus there is a cycle of
length at least |N(v;) N P|+1. Since dg{vy) > k— 1, without loss of generality we assume
that S¢ = N(v;) — P 75 0 and similarly S9 := N(vp) P #D. Put Sy = 5008wy :
vp € N(51)7) and S, := S0 U B(v,y : v, € N(82)*). By the choice of P and the
independence of S, we have 51 C 8,5 CS8 5N S = @, N(S1) UN(S,) C BN P,
(N(S) = {n )" UV(Sp) = {w, )T C .S' and S N Sy =SpﬂS;' = {).

We have _

N(S1) " NN(S)P =0

since N(S;)” U N(S,)" C S and § is independent, and
(V{(v1) UN(51))™ N (V(Sp) UN(v,)) = D

since otherwise there is a cycle containing V (P), a contradiction. Ifv, € N(S1)"NN(S,)*,
then there is a cycle containing V(P) — {v,}, a contradiction because v, € S. It follows
that

N(S)™ A V(S,)* =

For any w* € S1NN(v3) and w** € S;NN (vp.2), define a path Py 4o 1= 010 U304 Up_aw** vy
which has the same properties as P.
Since G is 2-connected, there exists a vine Q := {Hjvy,v;] : 1 <1 < m} on the
path Ppye 4++), where H; [v”,'uﬂ] is a path between v; and t}ﬂ, with all internal vertices in
G — Pyrgmry, such that 1 =4 <dp < ) <3< 52 € g < voe €y < et < Jm = p. We
have the following cycles:
If m is even,

OQ = wnw. HZP[ Viys 24]H4P[ 341’0 ] U m AT P[ Jm 1]
Ty Plog,_, v, ] Plug, o¢ 1

Z'rn. 1? “Im—3
and if m is odd,

Co = nw. H2 [32,v14]H4P[ w**]

H P[ Jm 2]Hm 2‘P[

] i Hm—IP[

T — Jm 1?

] P[w z]Hl

jar U
%m 2? Jm 4
We note that in the above cases, the paths H, and H,, are contained in the cycles..

We may choose a vine @ (N(vl) NPYUN(S;) C P[vl, v;,] and (N(v,) NPYUN(S,) C
Plul ).

Jm—2*

Let v* be the first vertex on P that is adjacent to v,. Put

Ui = {01} UNp(u) U (Ne(vy) — {vi, ) UB(vy,,_, 2 upv;,_, ¢ B(G) and vivy, , ¢ B(G))
UB(v* : v* & N(vy)) U 8wy : v, € N(S1)) UB(ws : vy, € N(S,p))

9



and

Up = N(S)UN(S) — {m}) —0(vj—1 : v}, € N(S1))
U(N(S,) — {vp})t = 0(vip s - Vin € N(8p) = {vj,,.,})) U (N (S ) {vp})+2
B(Uzm+l Vi —1 € N( ) {‘U ) (9(7)1m+2 Ui = N(S) {’UJ 1=U3m 1}))
UB(wy : v, € N(S1)) U O(ws : v, ¢ N(S N UB(ugive & N(S9)7)
UB(vp : up-2 & N(Sy)),

where w1 € N{v;,) N N(S7} and we € N(v;,,) N N(Sg).
It follows that

ICol = |Uil= |NP(U1)| + I Np(vp)| + 80y 2 vpv;,_, € B(G) and vyv;,,_, ¢ E(G))]
HOW" :v* & N(v,))| +[0(wr : v, € N(S1))] + |8(ws : vi,, € N(Sp))-

Since N() N NS,)" = 0, [0(timss : o1 € N(S) ~ (72,1 + Ploipae : 03, €
N(Sp) = {v5,,,, v, DI < 1. Because |N(v1) — P| = |Sy| = [8(vs : v € N(N (1) — P)))|
and |N(vp) ~ P| = |Sp| — |#(vp—1 : vp—1 € N(N(vp) — P)¥)|, we obtain

1Col = [Us]
= 2AN(S) -1~ |0(vj-1:v; € NS+ 2IN(Sp)] = 2 = [6(vip 1 : Vi € N(S,)))]
~10(int1 2 Vim—1 € N(Sp) = {057 DI = 10(vius2 2 vis € N(Sp) — {v5 _,, 972, }))]
HO(wy < vy € N(S))| + [8(ws < vy, € N( p))l + vz s w2 & N(ST)7)]
+|0(vp : vp-1 ¢ N(SP)H)|
11| + 18] — 2 — IH(% 12U € NS — 10(vi 11 03, € N(S,))]
+|O(ws : v, € N(S1))| + [0(ws rvs, € N(Sp))i+ [0z : w2 & N(S7)7)]
+0(vp s vp1 & N{SP)T)|
= N(vr) — P|+ [N (vp) — P| ~ 2+ |9(os : szN(N( 1) = P)7))
HO(Vp—1 2 U1 € N(N(vp) ~ P)H)], + |9(v2 vz & N(S)) )+ 10(vp - vp—1 ¢ N(SP)T)]
IN(01) = P[+ |N(v,) — P|.

v

I

It follows that

|Col 3|0 + [Ua])
2N (v1) = P|+|N(u,) — P+ |Np(v1)| + [Np(w)| + |8(v" : v* & N(m))]

+!9(’Uymm1 05, ¢ B(G) and viv;,_, & E(G))|+ |0(w: : vj, € N(S1))| + 10(ws : v, € N(S,
3 (d(w) +d(’~”p) + 18w 2 vy, € N(S)) +[0(ws : v, € N(Sp))]

+19(U vt ¢ N(Ul))i+|9(%m U, ¢ E(G) and vy, , ¢ B(G))])

k—1+3(10(v" : v* & N(w))| + |0()._, : vpv;,_, ¢ B(G) and niv;,_, ¢ E(G))|

+0(w; : v, € N(S))| + |0(ws : v, € N(S ))|)

Then we assume that [Cp| = k—1 and deduce that Cg = Uy = Uy, v* € N(v1) NN (vp)
(which implies 2 < m < 3), v;, ¢ N (Sl) Vi, & N(Sp) and either uw; = € B(G) or
V1Y, € E(G) . One of v, and vi?is in N(S,). By symmetric, we may get either
vnv;, € E(G) or vy, € E(G) If m = 3, then vy, ¢ E(G) and v,v;, ¢ F(G). Thus
upv;, € B(G) and vivf € E(G). It implies that V(P) C Cg, a contradiction. So we

AVEAYS

v

v
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assume that m = 2. It fellows that v, U ¢ E(G) and hence v1v;, € E(G). Similarly
vpty, € E(G).
If v;? € N(S) then v;, ¢ N(vi) and since V{(Cg) = Uy, v, € N(vp). Then let
w* € Ser N N(v;?} and put
P* = Pluy, v, *lw*upvy, Plvsy, vp—g]{vp_1 }-
If v;; € N(Sp). Let w* € S, N(v}) and put

P = Pluy, vy, v, w*vyvs, P(vsy, tp_s]{vp-11}-

Where v,_1 is in P* or P* if and only if it is in B ~ {w*}. P* and P** satisfy the

hypotheses (a)(b) and (c), but are contrary to (d) because N(vy) N Plu;,, vp_z] # 0.
‘ O
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