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Abstract

Given a strongly connected digraph D of order n and a subset
S of V(D), we prove that if any two nonadjacent vertices of S have
degree sum at least 2n-1, there is a directed cycle in D that contains
all the vertices of §. This result generalizes the Theorem of Meyniel
on hamiltonicity. '

Résumé

Soit D un graphe orienté fortement connexe d’ordre n et .S un sous
ensemble de V(D). On démontre que si pour toute paire de sommets
non adjacents de S la somme des degrés vaut au moins 2n-1, alors il
existe dans D un cycle orienté qui contient tous les sommets de S. Ce
résultat généralise le Théoréme de Meyniel sur les cycles hamiltoniens. |
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-1 Introduction

For convenience, terminciogy and notations will be given in details in Section
2. We will just recall the notion of cyclability for undirected graphs.

A set S of vertices in ar undirected graph G is said to be cyclable in G if
G contains a cycle through all the vertices of §. This definition was first
introduced by K. Ota in {9]. Clearly, if putting S = V(@), we get as corollar-
ies classical results on hzmiltonicity. There are many well known conditions
which guarantee the cyclability of a set of vertices in a graph. Most of them
can be seen as restrictior s of hamiltonian conditions to the considered set of
vertices. Let us cite for 2xample the following ones that involve minimum
degree or minimum degrze sum for pairs of nonadjacent vertices.

. Theorem 1.1 [10, (Shii] Let G be a 2-connected graph of order n and S C
V(G). If d(z) > % for ail vertices x € S, then S is cyclable in G.

Theorem 1.2 [10, (Shi/] Let G be a 2-connected graph of order n and S C
V(G). If d(z) + d(y) = 2 for any two nonadjacent vertices x € S, y € S,
then S 1s cyclable in G. - :

Notice that the 2-corectivity assumption has be weakened in later arti-
cles. Also Theorems 1.1 :nd 1.2 generalize the classical Theorems on hamil-
“tonicity of Dirac and Ors, respectively (in which theorems the 2-connected
assumption is not menticned since it is in fact implied by the degree condi-
tion). : '

We can also mention the more general result on k-LTW-sequences ([4]),
.where a non-negative res! sequence a = (a1, ag, ..., Gg41) is called a k-LTW-
sequence if a; < 1 and for any 41,42, ...,0 € {2,3,..,k +1}, T i; <
k+1— Zfi:l(a,-j — 1) < 1. For this result, we need to recall the following

notations. Given a graph G and an independent set X of p vertices in V(G),
S(X)={ue¥ :INwnX|=1}, for i=0,1,..,p,
‘and h
NY(X) ={u e V(G) :minyexdg(u,v) = i},
where dg(u,v) is the distance between v and v in G. Clearly N(X) = N'(X),
CNY(X) = X and S5p(X) = X U (UaNEH(X)). Let n{X) : |IN®(X) U
NYX)UNYX)| = n— | Usg N X)) ' '
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Theorem 1.3 [{, (Favaron, Flandrin, Li, Tian, )] Let G be a k-connected
graph (k > 2) of order n and S C V(G). If there exist somet, 1 <t < k and
some t-LTW-sequence a = {a,,as, -..,a;41} such that for each independent
set X C 5 with t + 1 vertices, we have

iaz]S (x)| > n(X) -1,

i=1
then S is cyclable in G.

For directed graphs there are not in litterature as many conditions as for
undirected graphs that guarantee hamiltonicity and sufficient degree condi-
tions for hamiltonicity also assume the digraphs to be strongly connected (or
strong). The more classical ones are the three following

Theorem 1.4 [5, (Ghouila-Houri)] Let D be a strong digraph of order n. If
d(z) > n for all vertzces z € V(D), then D is Hamiltonian.

Theorem 1.5 [11, (Woodall)] Let D be a strong digraph of order n. If
dt(z) +d~(y} > n for all pairs of vertices = and y such that there is no arc
from x to vy, th en D is Hamiltonian.

Theorem 1.6 [8, (Meyniel)] Let D bea strong digraph of order n. If
d(z) + d(y) > 2n — 1 for all pairs of non-adjacent vertices in D, then D

1s Hamiltonian.

Theorems 1.4 and 1.5 are in fact corollaries of Theorem 1.6. In this paper
we prove that Theorem 1.6 has a cyclable version and even better, where
a set of vertices of a digraph D is said ‘to be cyclable in D if D contains a
directed cycle trough all the vertices of S.

Theorem 1.7 Let D be digraph of ordér n and S C V(D). If D is S-strong
and if d(z) +d(y) > 2n — 1 for all pazrs of non-adjacent vertices in S, then
S is cyclable in D.

This result admits clearly the following theorem as a corollary, and con-
sequently, making S = V(D), Meyniel’s Theorem and therefore Woodall’s
and Ghouila-Houri’s Theorems are also corollaries of Theorem 1.7,



Theorem 1.8 Let D be a strong digraph of order n and S C V(D). If
d(z) +d(y) > 2n — 1 for all pairs of non-adjecent vertices in S, then S is
cyclable in D, - '

In Section 3 'we will prove two technical lémmas, Theorem 1.7 will be
proved in Section 4 and we will give some conjectures and concluding remarks
in Section 5. ? o :

2 Terminology and notations

For standard terminology we refer to [3] and for complementary results on
directed graphs to [1]. When considering directed graphs (or digraphs}, cycles
and paths are implicitely directed. Given a vertex z of directed path P or
a directed cycle C, we use the notations 2+ and z~ for the successor and
the predecessor of z (on P or C) according to the orientation and in case of
ambiguity, we precise P or C as a subscript (that is z},...). The length of a
path is equal to its number of arcs and a digraph is hamiltonian if it contains
a cycle through all its vertices. We assume that graphs and digraphs have
no loops nor multiple edges or arcs respectively.

Let D be a digraph and x,y be distinct vertices in D. If there is an arc
from z to y in D, we say that © dominates y dnd use the notation z—y to |
denote this. For a vertex z in V(D) and a subgraph H in D, the in-degree,
dg(z), of z with respect to H is the number of vertices in H dominating .
The out-degree, df;(z), is the number of vertices in H dominated by z. We
also write N (z) (Nj(z)) to denote the set of the vertices of H dominating
x (dominated by x), respectively. The degree of # with respect to H is
du(x) = dg(z) + df(x). When H = D, the subscript H will be omitted.

Given two distinct vertices ¢ and b in V(D), a directed path P from a
to b is called an (a,b)—path. If x and y are vertices of P, the subpath of
P from z to y is denoted by P[z,y|. Let C be is a directed cycle in D
containing vertices z and y; analogously C|z,y] denotes the subpath of C
from x to y and we define an (z,y)—path P to be a C-bypass if |V(P)| > 3
and V(P)NV(C) = {z,y}. We call the length of the path Clz,y] the
gap of P with respect to C. Given a directed path P = v1v3...v in D and
a vertex v in V(D) — V(P), we say that v is insertible in P if there exists
i, 1 <% <k — 1 such that v;,—v and v—wv; 4. If v is insertible in P, then D
clearly contains the path P' = vy...0;0v;11...V%.
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The digraph D is said -strongly. connected (or just strong) if there exists
an (z,y)-path and a (y,z)—path in D for any pair of distinct vertices z,y .
in D. If we only consider the set S C V(D), we denote the vertices of S
by S-vertices and the number of S-vertices in a path or a cycle is called
its S-length. We also define a notion of strong connectivity restricted to §
as follows : D is S-strongly connected (or S-strong) if for any pair z,y of
distinct S-vertices there exists an (z, y)—path and a (y, z)—path in D.

3 Technical Lemmas

We first give a lemma that is in fact a refinement of the classical “bypass
lemma” (see for example [6]) when taking in account a subset § of V(D).

Lemma 3.1 Let D be a digraph of order n and S C V(D), S # 0. Assume

that D is S-strong and satisfies for any pair of nonadjacent vertices z,y in S = -

the degree condition d(z) +d(y) > 2n —~ 1. If C is a cycle in D of mazimum
S-length and s o S-vertex of V(D) — V(C), then D contains a C-bypass
through s. ' '

Proof: Let C = ¢jep...cp¢; and S NC = {sy, 83, ..., 8;} in that order on
C. It is easy to show that C' contains at least two S-vertices since any two
S-vertices are on a cycle of length at most 4 by our degree condition (cf for
example [6]). Since s is not in C, let us consider seperately the case when s
has a neighbor on C or not.

Case 1. Ng(s) £ 0

We can assume without lost of generality that there is a vertex u in C
such that s—u. Let z be any vertex of SN V(C). As D is S-strong, there
exists a path from z to s, and consequently an u's-path P with «' € € and
V(P)NV(C) = {«'}. If «' is different from u, then we have a C-bypass
through s, so assume u' = 4 and P is chosen with minimum length from u
to s. Put P/ = Plu™,s] and B = V(D) — (V(C)UV(P')). The sets V(C),
V(P') and R make a partition of V(D) and [V(C)| + [V(P")| + |R| =n. Let -
s' be a vertex of SN V(C) different from u. We suppose that s and s’ are
not adjacent, otherwise we can obtain a C-bypass through s with extremities
u and s’. We now consider d(s) + d(s') and assume there is no C-bypass
through s.



- Clearly N¢ (s) = {u} and so d}(s) = 1. Also dz(s) =1 or 0 according
to the fact that u dominates s or not.

- Vertex s' can be zdjacent to any vertéx in C but itself, therefore dC( ! )—i—

di(s) < 2V(C)| ~1).

- From our minimality assumption on P, s is dommated by exactly one
vertex of P’ if |V(P'}: > 2 and otherwise we are in the case when  dominates
s. In any case, we heve dg(s) +dp(s) = 1.

- Vertex s can dominate every vertex but itself in P’ which implies
a5 (s) < V(P - 1,

- Similarly, every vertex in P’ but s can dominate &', and dn(¢') <
[V{F)| - 1.

- Vertex s' dominz.ies no vertex in P’ otherwise we would get a C-bypass
and df(s') = 0.

- For the same rezson, for every vertex r in R, we cannot have s—r and
r—s' nor s'—r and + —+s, which implies d5(s) + dz(s') < |R| and dgz(s) +
di(s") < |R). | ,

We now compute -i(s)+d(s") = deo(s) +do(s') +dp(s) +dp(s) +dr(s) +
dr(s’) and from the ..hove observations obtain the majoration

d(s)+d(s’) < 1+2(|V’J_C')|—1)-+-1+_|V(P')|~1+|V(P’)|-—1+0—|~[R|+|R| = 2n—2,
a contradiction. "

Case 2. Ng(s) =10

Similarly to Case 1, from the S-strong connectivity of D and the fact
that C contains (at .2ast two) vertices of S, there are necessarily an su;-
path- P, and an ugs math P, where u; and us are two vertices of C' such
that P, N V(C) = {+4} and P, NV(C) = {uz}. Let us choose those two’
pathes P and P, suc:: that [V/(P1)UV (P,)| is minimum. To simplify further
computations, put V' Pi[sT,uy]|) N V(Pfuf,s7]) = L, V(P[st,ui]) — _
I, V(Puf,s)—.. =Ty and R=V(D) - (V(C)UIL; UIl, U LU {s}).
Notice that B, V/(C), IIy, II, L and {s} form a partition of V(D), and that
n=|R|+ |V (C)| + [i}] + |II2| + | L] + 1. : |

In the case when V(P;) and V(B,) are disjeint, we obtain a C-bypass
through s, so we only consider the case when they are not. Let us choose a
vertex s’ in S N V(C" which is by hypothesis nonadjacent to s.



As in Case 1, we will compute d(s) +d(s'), assuming there is no C-bypass
through s.

- Clearly d5(s) +dg(s) = 0. :

" - Vertex s’ can be adjacent to any vertex in C but itself, therefore d,(s")+
d(s") < 2(V(C)| - 1). -

- From our minimality assumption on P; U P, s dominates exactly one
vertex on Pj[«*, 47| and can be dominated only by vertices of P[s*, u; ] that
are not in P and alse possibly by the vertex of L which is the closest to s.
Analogous observations hold for s and P,. More prec1sely

dH (s) < {i1y] and dfi,(s) < |ILy|,

dii (s) =11if st ¢ L and 0 otherwise,

dﬁz (s) =1 if sp, ¢ L and 0 otherwise,

df(s) =0if st ¢ L and 1 otherwise,

dr(s) = 0if sp, ¢ L and 1 otherwise.

Consequently dm,um,uz(s) < [II] + |IIz| + 2 in any case.

- Similarly, we can prove dm,um,ur(s’) < ||+ |IIz| + 2 (distinguishing
several cases zccording to the fact that the closest vertex to C on Py[st, u]
and Pylug, s~ is in L or not).

- For the ;ame reason as in case 1 dR(s) + dz(s') < |R| and dgz(s) +
df(s') < |R].

Summing all ¢he above inequalities, we obtain
d(s) +4(s") <0+ 2(|V(C)] — 1)+ 2(|I1| + [TIa| + 2) + 2| B| =

(2n-2)+(2-2|L) <2n—2if |L| > 1.

. In the case when |L| = 0; necessarily u; = uy = u, otherwise Py[us, s}Pi[s, u1]
is a C-bypass through S. Now we choose s € SN V(C) different from this
vertex u. We get as above dm,um,(s) < |IIi| + |Ia] + 2 but dm,um,(s’) <
IIIy| + |TIaf siuce dp (s') = di,(s') = 0 from the absence of a C-bypass
through s. We also obtain d(s) + d(s') < 2n — 2 and in any case we have a
contradiction with our degree assumption which achieves the proof of Lemma
3.1. O

We now prove the following result on insertibility.



Lemma 3.2 Let D be a digraph and P = v1vy...v3 a path in D with k ver-
tices. Let v be a vertex of V(D) — V(P) which is not insertible in P. Then
dp(v) <k —1+df(v) +d, (v). , '

Proof: The proof is quite easy. Because of the noninsertibility of v in
P, for any ¢, 1 <4 < k—1, we have d, (v) +d], (v) < 1. Since dp(v) =
@,1 & (0)+d,, (V) +ZEF (d, (’u)-i— w11 (), we then have the proclaimed result.

4 Proof of Theorem 1.7

The outline of the proof follows the usual way for hamiltonian problems in
digraphs.

Assume that D fulfills the assumptions of Theorem 1.7 but S is not
cyclable in D. Let us choose a cycle C = z12s...7; that contains as many
vertices of § as possible and a S-vertex s in V(D) V(C). From Lemma 3.1,
we know that D contains a C-bypass through s, P = uy...s...t,. Without
loss of generality, let u; = 21, 4 = Tas1, @ < t. We assume that the pair
(C, P) is gap-minimal through s, that is for every other pair Z, R, where Z is
a cycle so that V(Z) = V(C) and R a Z-bypass through s, the gap of R with
respect to Z is not smaller than the gap of P. We also assume that, under
the condition of gap minimality, P is chosen as short as possible through
s and put P' = Plug,um 1] and R = V(D) — (V(C) U V(P")). Clearly
V(C)| + [V(P)| + IV(R)| = n. Let C; = C[z2,%a|, Co = Clzatr, 1]
Necessarily from the non cyclability of S, C; and Cs both contain at least
one vertex of 5. Let &' be the first S-vertex of €y, that is the closest to z;
following C, which cannot be adjacent to s.

We are going to compute the degree sum of the vertices s and &'

- Since (C’, P) is gap minimal, s has no neighbors in C; and d¢,(s) = 0.

- Vertex s' is not adjacent to itself and so dg, (s') < 2(|V(Cy)| — 1).

- By Lemma 3.2 and since s-is not insertible in 3 by the deﬁmtlon of C,
we know that dc,(s) < [V(Co)| — 1 +df  (s) +d, ().

- By the minimality assumption on P, s dominates no vertex in P[s%, t,, 1]
but possibly its successor if st # z441. Analogously, no vertex in Plug, s7]
dominates s but possibly s= if s~ # 3:1 Hence, in any case, since 8 is not
adjacent to itself, dpi(s) < [P'| + 1 —~d}  (s) —d,(s).



- Because of gap minimality, s’ dominates no vertex in P’[u,, 5] and is not
dominated by any vertex in P'[s, ¥p_1], and so dp (s') < |P'| — L.

- For the same reason, for every vertex r in R, we cannot have s—r and
r—s' nor s'—r and r—s, and so dg(s) + dg(s') < 2|R|.

Using now the above inequalities, we obtain

M — 1 < d(s) +d(s") < 0+ 2(|V(C)| = 1) + V()| — 1

+df | (s)+d, (s) +de, (s +|P|+1— df () ~dg (s} +|P'| - 1+2|R|.

Te+1

That is dg,(s") = 2|V(Cy)| + 2.

~ By Lemma 3.2, s’ is insertible in .C,. All the S-vertices of C; can be suc-
cessively inserted in C, in a similar way. Considering the new path obtained
from C, and all the S-vertices of Cy, together with the C-bypass through s,
we then obtain a cycle that contains all the s-vertices that were in C and the
vertex s, a contradictions that achieves the proof of Theorem 1.7. O

5 Concluding remarks
In [7], Y. Manoussakis proves the following :

Theorem 5.1 [7, (Manoussakis)] Suppose D is strong and satisfies the fol-
lowing condition for every tripple x,y,z € V(D) such that z and y are non-
adjacent: If there is no arc from z to z, then d(z) + d(y) + d* (z) +d~(2) >
3n—2. If there is no arc from z to z then d(z)+d(y)+d~ (z)+d* (z) > 3n—2.
Then D is Hamiltonian.

We put as a question to know if this result has a cyclable version.

We also are interested into the results of Bang-Jensen, Gutin and Li ([2])
concerning special pairs of vertices that do not satisfy the out-LSD or the
in-LSD property. Let us recall that the vertices z and y satisfy the out-LSD
property (the in-LSD property) if either z and y are adjacent or there is no
z € V(D) — {z,y} which dominates both z and y (is dominated by both z
and y). In other words, if some pair of vertices z and y does not satisfy the
out-LSD (in-LSD) property, then z and y are not adjacent and there exists
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a vertex z € V(D) — {z,y} which dominates both z and y (is dominated by
both z and y).

- Bang-Jensen, Gutin and Li have proved the two Theorems and made the
two conjectures that are following.

Theorem 5.2 Let D be a strong digraph. Suppose that, for every pair of
vertices x,y which does not catisfy the out-LSD property, either d(z) > n
end d(y) >n—1ord(z) >n -1 and d(y) > n. Then D is Hamiltonian.

Theorem 5.3 Let D be a st-ong digraph. Suppose that, for every pair of
vertices x,y which does not saiisfy either the out-LSD property or the in-LSD
property, dt(z)+d~(y) > n ev:d d~(z)+d"(y) = n. Then D is Hamiltonian.

Conjecture 5.4 Let D be o strong digraph. Suppose that, for every pair of
vertices x,y which does not satisfy either the out-LSD property or the in-LSD
property, d(x) +d(y) > 2n — i. Then D is Hamiltonian.

Conjecture 5.5 Let D be a :trong digraph. Suppose that, for every pair of
vertices x,y which does not saiisfy the out-LSD property, d(m)+d(y) > 2n—1.
Then D is Hamiltonian.

Those results only involv: special pairs of nonadjacent vertices in the
graph. If considering a special subset of vertices, we put the question of the
adaptation of the notions of ©ut-LSD and in-LSD and if together with the
strong S-connectivity, cyclability results can be obtained. ‘
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