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Abstract

In this paper we are interested in the b-chromatic coloring of a graph.

Some graphs have a b-chromatic p-coloring and a b-chromatic g-coloring with p < ¢,
but no r-coloring which is b-chromatic with p < r < ¢. Otherwise, the graph is called
b-continuous.

We prove that the hypercube H, (n # 3), trees and apart from some exceptions,
the 3-regular graphs are b-continuous.
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Résumé

Dans cet article, on s’interesse a la coloration b-chromatique d’un graphe.

Certains graphes possedent une p-coloration b-chromatique et une g-coloration h-chromatique
avec p < ¢, mais il n’existe pas de r-coloration b-chromatique avec p < r < ¢. Dans le cas
contraire on dira que le graphe est b-continu.

On prouve que ’hypercube H, (n # 3), les arbres, et a part quelques exceptions les
graphes cubiques sont b-continus.

Mot-clé : Algorithmes de graphes; Coloration b-chromatique; Arbres.
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1 Introduction

Let G = (V, F) be a simple graph with vertex set V' and edge set ££. A vertex coloring of &
consists in assigning to each vertex of G a color in such way that no two adjacent vertices
have the same color. If & colors are used, the result is called a k-coloring of 7. The chromatic
number x (') is the minimum integer & for which G has a k-coloring.

We call b-chromatic a k-coloring of G such that for every color ¢ there exists at least
one vertex of color ¢ adjacent to a vertex of every other color. Such a vertex is called a
b-chromatic vertex of ¢. The b-chromatic number ¢(G) is the maximum & for which G has
a b-chromatic k-coloring. This parameter was first studied by Irving and Manlove [1].

A k-coloring of a graph such that for each pair of different colors there are two adjacent
vertices with these colors is called a complete or achromatic coloring. The achromatic number
(@) of G is the maximum k for which G has an achromatic k-coloring. Harary, Hedetniemi
and Prins [3] proved that for each graph GG and each k with x(G) < k < ¢(G), there is an
achromatic k-coloring of G. Christen and Selkow [4] proved that similar property holds for
the Grundy coloring. A Grundy k-coloring of GG is a k-coloring of GG using colors ¢y,... , ¢k
such that every vertex colored ¢;, for each 0 < 7 < k, is adjacent to at least one vertex
colored ¢;, for each 1 < 7 <.

In contrast with the Grundy and achromatic colorings, some graphs have a b-chromatic
p-coloring and a b-chromatic g-coloring with p < ¢, but no r-coloring which is chromatic
with p < r < ¢g. A graph is said to be b-continuous if it has a b-chromatic k-coloring for any
k, with x(G) < k < ¢(G). The question of knowing which graphs are b-continuous remains
open for general graphs.

A graph is called ¢ x-perfect if for each induced subgraph H of the graph x(H) = ¢(H).
In [4] they characterize the class of ¥ x-perfect graphs. On the other hand, we have p(G) <
U(G), for any graph G. So, if a graph G is ¥ x-perfect then y(G) = ¢(G). Hence the
Yx-perfect graphs are b-continuous.

In [5], Kratochvil, Tuza and Voigt characterize the graphs having b-chromatic number 2,
such graphs are b-continuous, they proved also that that for every n, the complete bipartite
graph K,, removing a perfect matching has a b-chromatic coloring by k colors if and only
if k=2 or k=mn. This give us an infinite family of non b-continuous graphs.

In this paper we show that the hypercube H, with n # 3, the trees and apart some
exceptions the 3-regular graphs are b-continous.

2 The b-continuity of the hypercube

We denoted by H, the hypercube of dimension n. In [1, 5] they proved that Hs3 has b-
chromatic 2-coloring and b-chromatic 4-coloring,but there is no 3-coloring of Hj that is
b-chromatic. Apart from H; we will show that for every n # 3, the hypercube H, is b-
continuous. From the corollary 2.1 We can deduce that o(H,41) = o(H,) + 1.

Corollary 2.1 [2] We have o(H,) = p(Hz) =2 and p(H,) =n+1, for alln > 3.

Theorem 2.1 For every n, n # 3 the hypercube H, is b-continuous.



Proof. Obviously, H, and H, are b-continuous. For n > 4 we proof the required property
by induction on n.

We have x(H,) = 2 and ¢(H,) = n+1 for all n. In particular x(Hy) = 2 and p(Hy) = 5.
Figure 1 presents a b-chromatic 3-coloring and b-chromatic 4-coloring of Hy, so Hy is b-
continous. (In this figure the black nodes denote the b-chromatic vertices).

Induction hypothesis : assume that H,, is b-continuous.

It is well known that H,,, = H,0K,, which means that H,;; can be viewed as two
copies H}, H? of the hypercube of dimension n such that : if 21,... 2}, are the vertices of
H! and %,... a2, are the vertices of H2, there is an edge between z! and 2.

By induction, for every p, 2 < p < ¢(H,), H, has a b-chromatic p-coloring. Let C be a
b-chromatic coloring of H, and denote by ¢i,... , ¢, the colors used by C. Let ¢},... ,¢, bea
derangement of the colors ¢y, ... ,¢,. Foreveryi, 1 <i <27, assign the color ¢} to the vertex
x? if the vertex af is colored ¢;. As ¢f,... , ¢ is a derangement of ¢y, ... , ¢, it is straigthfor-
ward to verify that the resulting coloring is a b-chromatic p-coloring of H,+,. Hence H,41
does have a b-chromatic p-coloring for every p, 2 < p < ¢(H,) and as @(H,11) = @(H,)+1,
H, 4+ 1s b-continuous. O

Fig. 1: A b-chromatic 3 and 4-coloring of H,

3 The b-continuity of trees

In this section, we prove that the trees are b-continuous, our method hinge on reducing a
b-chromatic k-coloring to a b-chromatic (k — 1)-coloring. We now define a special vertex
which we call an extreme vertex.

Definition 3.1 Let T = (V, E) be a tree, and let C' be a b-chromatic coloring of T. Assume
that v € V' is a b-chromatic vertex of C. Then v is an extreme vertex of C, if the forest T,
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induced by V' \ {v} contains exactly one subtree T® which we call the b-chromatic subtree of
C, such that T® contains all the other b-chromatic vertices of C.

The following lemma ensures the existence of an extreme vertex.

Lemma 3.1 Let C be a b-chromatic coloring of T' = (V, F). Then there exists at least two
extreme vertices of C'.

Proof. Let Be = {vy,vq,... ,vm} be the set of the b-chromatic vertices of T with respect
to C, and let D be the b-chromatic diameter of T' with respect to C, defined by

Dl = Uhrgzé)éc d(vi, v;).
Suppose that D2 = d(v,,v,), then v, and v, are extreme vertices. If not, suppose for example
that v, is not an extreme vertex, then the forest T, contains at least two trees Tjr and Tfr,
such that T, and T? contains b-chromatic vertices. Suppose that 7} contains the vertex
vy, then the path in T' from v, to any b-chromatic vertex belonging to T2 pass through v,
a contradiction with D& = d(v,,v,). O

Theorem 3.1 The trees are b-continuous.

Proof. Let C be a b-chromatic coloring of T' with k colors (k > 3). We will show that we
can reduce C' to a b-chromatic coloring C’ of T using only k& — 1 colors. For this, choose
an extreme vertex v of C' and suppose, without loss of generality, that ¢; is the color of the
vertex v, and that ¢; is the color of the vertex u of the b-chromatic subtree 77 which is
adjacent to v in T (see Figure 2).

Fig. 2: v is an extreme vertices of 7' and 7? is the b-chromatic subtree of 7'

As T, is a forest, we may easily recolor all the trees of T, \ 7% with ¢; and ¢; such that
all adjacent vertices to v in T' has the color ¢;. We consider two cases.

Case 1: Vertex v was the unique b-chromatic vertex for the color ¢;, then the color ¢
has lost his unique b-chromatic vertex. Hence for each vertex w colored ¢;, not all of colors
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€2,C3,... ,C appear on the neigbhors of w. So, it is possible to recolor each w of the color
c1 (including v) using the a missing color in the neighhood of w. Then, we would terminate
with the desired coloring C".

Case 2 : Vertex v wasn not the unique b-chromatic vertex for the color ¢;. In this
case we choose an extreme vertex of the new coloring and we iterate our recoloring process.
[t is straightforward to verify that we loose one and only one b-chromatic vertex each time
we apply our recoloring process. Hence, it turns out that after a finite number of steps, one
color must loose all its b-chromatic vertices, so this case reduces to the previous case.

Since we can reduce each b-chromatic coloring of size k to a b-chromatic coloring of size
k—1,forall k,3 <k < ¢(T), and since the chromatic coloring is a b-chromatic coloring, it
follows that for each k between the b-chromatic number and the chromatic number, T has
a. b-chromatic coloring of size k. a

Corollary 3.1 If T' is a tree, then for any k < o(T), a b-chromatic k-coloring of T is
polynomial-time computable.

Proof. A polynomial-time algorithm for constructing maximum b-chromatic coloring for
trees was given in [1]. On the other hand, the proof of Theorem 3.1 induces a polynomial-
time algorithm for reducing any b-chromatic p-coloring to a b-chromatic (p — 1)-coloring.
Hence we can obtain one b-chromatic k-coloring, for k < (7') in polynomial-time. O

4  The b-continuity of 3-regular graphs

Notation 4.1 We denote by Cyo (Figure 3 the cycle Cyo with all its chords of length 5.

[

Fig. 3: Cip graph

Proposition 4.1 The graph Cq is not b-conlinuous.



Proof. Cig is a bicubic graph, (bipartite 3-regular graph), so C'jq has a b-chromatic 2-
coloring. A b-chromatic 4-coloring of C'jg is given by coloring the vertices uy, uy, us by c1,
the vertices uz,uig by ¢y, the verices ug,us by c3 and us,ug,ug by ¢g. We will show that
there is no b-chromatic 3-coloring of C'jg. Assume the opposite and let show that it laeds to
a contradiction. We denote by ¢y, ¢z, c3 the colors used by C'.

Case 1 : Suppose that there exists a b-chromatic vertex of €', such that its neighbors
in Cyp are of the same color. By symmetry we can suppose that u; is this vertex. Suppose
that ¢; is the color of u; and ¢ the color of its two neighbors in Cyg. Since u; is b-chromatic,
ug must be colored ¢3. This forces us and w7 to be colored by ¢y.

Suppose that u, is b-chromatic for the color ¢z, then us should be colored by ¢z, which
implies that the vertices u4 and ug should be colored by ¢;. Neither uz nor ug is b-chromatic
for the color c3. All the adjacent vertices of the last uncolored vertex have the same color :
so it can’t be b-chromatic vertex for the color c¢5. Hence uy cannot be b-chromatic for the
color ¢;. By symmetry the vertex wu;g cannot be b-chromatic for ¢;. So the vertices uz and ug
should be colored by ¢;. This implies that all the adjacent vertices of the uncolored vertices
have the same color, so the uncolored vertices cannot be b-chromatic for the color ¢;. It
follows that the color ¢, hasn’t any b-chromatic vertex. So there is no 3-coloring which is
b-chromatic in this case.

Case 2 : There is no b-chromatic vertex of C, such that its neighbors in (o are of
the same color. Suppose that wu; is b-chromatic for the color ¢;, and let u;o be of color ¢,
and uy of color c3. By symmetry we can suppose that ug is colored by c;. This implies that
u7 must be colored by ¢;. Vertex uz is b-chromatic for the color ¢; and wg is colored by ¢,
so by hypothesis us must be colored by c3, which implies that ug must be colored by ¢;.
The vertices adjacent to ug in (' are of the same color, hence by hypothesis ug is not a
b-chromatic vertex, so us must be colored by ¢;. Similarly, w0 is not a b-chromatic vertex of
the color ¢; and us must be colored by ¢;. At this time no vertex colored ¢ 1s b-chromatic
for this color and the last vertex wy cannot be a b-chromatic for the color ¢, because uz
and wus are colored by ¢;. Hence the color ¢, has not any b-chromatic vertex. So there is no
3-coloring which is b-chromatic in this case either.

(1o does not have any 3-coloring which is b-chromatic, but it has a b-chromatic coloring
of size respectively 2 and 4. Therefore Co is not b-continuous. d

Proposition 4.2 Let G be a bicubic graph and C a b-chromatic 3-coloring of G. If H is «
connected component of G in which at most one color can have b-chromatic vertices, then H
is isomorphic to Ks3.

Proof. Suppose that H is a connected component of G such that H # K33. Let U,V be the
two classes of its bipartition. First assign color ¢; to U and ¢; to V. Since H is connected
there exists an edge [u1,v1] with uy € U, vy € V. Let ug,us be the other neighbors of v;
in U and vy, v the other neighbors of u; in V. Since H # K33 at least one of the edges
[uz, va), [ws, vs], [ua, va), [uas, va] is missing, for instance [us, vy]. In this case recoloring u; and
vy by ¢3 makes u; and v; b-chromatic.



Therefore it remains to prove that K3 3 cannot contain b-chromatic vertices for more than
one color. Let U = {uy,us,us} and V = {v,v2,v3} be the two classes of bipartition. Sup-
pose that wuy is b-chromatic for ¢y, this implies that the vertices u; and ug are also adjacent to
the colors ¢; and ¢3, so u, and uz must be colored by ¢;, which means that the vertices vy, v,
and vz have only the color ¢; in their neighborhood, so they can’t be b-chromatic vertices. [J

Theorem 4.1 Apart from the cube Hs and the graph Co any 3-regular graph is b-continuous

Notation 4.2 In the following figures (¢; — v;) means that we assign the color ¢; to the
vertez vj, (¢; = U') means that we assign the color ¢; to the vertices of the set U', and the
black vertices denote the b-chromatic vertices.

Proof. Let GG be a 3-regular non bipartite graph. Clearly we have 3 < x(G) < ¢(G) <
A(G) 4+ 1 =4, hence G is b-continuous.

Let G be a bicubic graph. G is b-continuous if it has a b-chromatic 3-coloring or if
x(G) = ¢(G) = 2. Denote by ¢;, ¢y and ¢3 the colors used by a b-chromatic 3-coloring of ¢
if such a coloring exists.

cp —r Uy U1 — ¢ cp — Uy vl & Co
cp — U Vg ¢ Ca c] — Uy Vg £ C2
€3 —r ug v3 & €3 €3 — U3 vz  C3
€3 — U4
Cg—}U" V’-(—L‘] V’(—Cl
Ca — Us
Cy — U’O
(a) case l.a (b) case 1.b
Fig. 4: Case 1
e If (¢ contains at least 3 connected components Hy, Hy, Ha, ..., then a b-chromatic 3-

coloring of GG can be easily obtained by coloring the connected component I, for 1 <¢ <3
in such way that it contains a b-chromatic vertex for the color ¢;. As (G is bipartite each
other connected component can be colored by 2 colors. Hence G does have a b-chromatic
3-coloring, so (G is b-continuous.

e (7 has 2 connected components H, and H,.

1- If at least one connected component, for example H; is not the complete bicubic graph
K33, then by Proposition 4.2, we can give a coloring of ; such that each color ¢; and ¢,
has a b-chromatic vertex. And we color H; in order to obtain a b-chromatic vertex for cs.

This gives a b-chromatic 3-coloring of G. Hence G is b-continuous.
2-If Hy = Hy = K33 then x(G) = ¢(G) = 2. So G is b-continuous.



e [t remains to study the case of a connected bicubic graph ¢ = (UUV,E). If G =
K33 then x(G) = ¢(T) = 2. So G is b-continuous. Henceforth we consider that G #
I{S,caslaa.pscaslaa.psS-

Case 1 :  There exist two vertices, say u; and us, having the same neighborhood
{'Ul, Vg, ’Ug}.

Case l.a: Two vertices among vy, v, v3, say vy, v, have a common third neighbor wus.
As G # Kjg3, there is no edge between us and vs. Hence the sets U’ = U \ {u1,u2, uz} and
V' =V \ {v1,vs,v3} are not empty. Figure 4(a) illustrates a b-chromatic 3-coloring of G.

Case 1.b : The vertices vy, v, v3 have distinct third neighbors, us, u4, us respectively.
Then Figure 4(b) illustrates a b-chromatic 3-coloring of G.

Case 2 : Any two vertices have at most two neighbors in common, and there exist
two vertices wuy, u, having two common neighbors vy, ve. Let v3, vy be respectively the third
neighbors of wuy,us, and let uz, uy be respectively the third neighbors of vy,v;. We have
vs # vy, otherwise the vertices u; and uy will have three common neighbors. Similarly we
have ugz # wy. We have five subcases according to the structure of the graph induced by the

set us, 4, V3, V4.
] — Uy Y1 < C2 ] — Uy U & Co
C3 — Usg Uy € Ca Ca — U2 Vg £ Ca
C3 — Ug Vg ¢ C2 €] —r U3 U3z ¢ €3
C] —> Ugq vq £ C1 ¢z —» Uy Vg — Cq
Cog —> Us Us ¢ Ca
Coy —> U’ V' o 3
cg— U’ V! — c;

(a) case 2.b (b)

V] ¢ Ca c] — Uy 11 £ Co
Vg £ C2 €1 —> Uz 2 £ C3
U3 ¢ C3 C3 —r ug Uz & C2
v — 0 Co —> Uy Vg £ C3
U5 ¢ C3 ca = U’ V' ¢

(c) (d) case 2.c.2

¢ —r Uy

c3 —* Uz
c] —r Us

€3 —F Uq

Case 2.a : The graph induced by us, u4, v3, v4 is complete. In this case the graph G is
the cube Hjz, which is excluded.



c] —r Uj U £ €9 ] —r U U £ Co

cp — U2 Uy £ C3 ] — U2 Uy £ C2

c3 — U3 U3 £ €2 c3 — U3z Uz & C3

Cay —> Uy Vg & Co Ca — U4 vq £ C3

C3 —> U’ Vo (] Ccg — U’ V! — €
(e) cas 2.d (f) cas 2.e

Figure 5: Case 2

Case 2.b : The induced graph contains three edges, and by symmetry we can suppose
that the missing edge is [u4, v4]. In this case a b-chromatic 3-coloring is shown in Figure 5(a).

Case 2.c : The induced graph by ua, u4,va, v4 contains two edges.

Case 2.c.1: These two edges compose a matching, by symmetry we may suppose that
the matching is {[us, va], [ta, v4]}.

+ If |G| = 10, then G is the graph C1o (we have to add edges [ug, vs), [ug, 5], [us, vs] in
order to saturate the graph). By Proposition 4.1, G is not b-continuous.

« If |G| > 12 and [u4, vs), [us, v4] € E, then we must have [us, vs] ¢ E. Figure 5(b) shows
a b-chromatic 3-coloring of G. Hence the graph G is b-continuous.

|G| > 12 and at least one edge between [ug, vs5] and [us, v4] is missing, by symmetry we
may suppose that the missing edge is [u4,vs]. Figure 5(c) give a b-chromatic 3-coloring in
this case. Hence (G is b-continuous.

Case 2.c.2 : The induced graph by wus, u4, v3 and vy contains two adjacent edges, say
[t, v3] and [us, v4]. Figure 5(d) gives a b-chromatic 3-coloring.

Case 2.d : There is just one edge in the induced graph by us, uy, vs, v4, say [us,va). In
this case a b-chromatic 3-coloring of G is shown in Figure 5(e).

Case 2.e : There is no edge in the graph induced by ug,u4,v3,v4. In this case a
b-chromatic 3-coloring of (7 is shown in Figure 5(f).

Case 3 : Any two vertices have at most one neighbor in common. Let u; be a vertex of
U and vy, vq, vg its neighbors, let uz, u3 be the other neighbors of vy in U, uy, us be the other
neighbors of vy in U and wg, w7 be the other neighbors of w3 in U. Vertices vy, vq, v3 have u,
as a common neighbor, so for each 7, j, 2 <1 < j <7, u; # uj. A b-chromatic 3-coloring of
G is the following one : assign the color ¢; to wuy, c; to us,uy,us, us, ur and vy, c3 to ve,vs
and us, uz, assign ¢; to all uncoloured vertices in V' and ¢, to all uncolored vertices in U. G
has a b-chromatic 3-coloring so (7 is b-continuous. O

References

[1] R. W. Irving and D. F, Manlove. The b-chromatic number of a graph. Discrete Applied
Mathematics, 91 : 127-141,1999.



[2] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of graph. Discrete
Mathematics, 256 : 267-277, 2002.

[3] F. Harary, S. Hedetniemi, G. Prins, An iterpolation theorem for graphical homomor-
phisms, Portugal. Math 26 (1967) 453-462.

[4] C.A. Christen, S.M. Selkow, Some perfect coloring properties of graphs, J. Combin.
Theory, Ser. B 27 (1979)49-59.

[5] J. Kratochvil, , Z. Tuza, M. Voigt, On the b-chromatic number of a graphs, WG 2002,
LNCS 2573, 2002 310-320.

10



1345

1346

1347

1348

1349

RAPPORTS INTERNES AU LRI - ANNEE 2003

Nom

FLANDRIN E
LI H
WEI B

BARTH D
BERTHOME P
LAFOREST C

VIAL S

FLANDRIN E
LI H
MARCZYK A
WOZNIAK M

AMAR D
FLANDRIN E
GANCARZEWICZ G
WOJDA A P

FRAIGNIAUD P
GAURON P

Titre

A SUFFICIENT CONDITION FOR
PANCYCLABILITY OF GRAPHS

SOME EULERIAN PARAMETERS ABOUT

PERFORMANCES OF A CONVERGENCE
ROUTING IN A 2D-MESH NETWORK

A CHVATAL-ERDOS TYPE CONDITION FOR
PANCYCLABILITY

BIPARTITE GRAPHS WITH EVERY MATCHING

INACYCLE

THE CONTENT-ADDRESSABLE NETWORK D2B

Nbre de
pages

16 PAGES

30 PAGES

12 PAGES

26 PAGES

26 PAGES

Date parution

01/2003

01/2003

01/2003

01/2003

01/2003



P

I




