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Abstract

This paper describes a parameterized distributed algorithm applicable to any di-
rected network. This algorithm tolerates transient faults that corrupt the processors
and communication links memory (it is self-stabilizing) as well as intermittent faults
(fair loss, reorder, finite duplication of messages) on communication media. A formal
proof establishes its correctness for the considered problem. The function parameter of
our algorithm can be instantiated to produce distributed algorithms for both fundamen-
tal and high level applications, such as shortest path calculus and depth-first-search tree
construction. Due to fault resilience properties of our algorithm, the resulting protocols
are self-stabilizing at no additional cost.

Keywords: r-operator, distributed systems, self-stabilization, message-passing com-
munications, unreliable communications

Résumé

Cet article décrit un algorithme paramétré applicable & n'importe quelle topologie
orientée. Cet algorithme tolére des défaillances transitoires qui corrompent les mémoires
des processeurs et des liens de communication (il est auto-stabilisant) ainsi que les
défaillances intermittentes (perte équitable, réordonnancement, duplication finie de mes-
sages) sur les media de communication. Une preuve formelle établit sa correction pour
le probléeme considéré. La fonction parameétre de notre algorithme peut étre instanciée
pour produire des algorithmes répartis pour plusieurs applications fondamentales et de
haut niveau, comme le calcul des plus courts chemins, et la construction d’un arbre en
profondeur. Grace aux propriétés de recouvrement de fautes de notre algorithme, les
protocoles résultants sont auto-stabilisants sans surcofit.

Mots-clef: r-opérateur, systemes distribués, auto-stabilisation, communications par
passage de messages, communications non fiables.
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Chapter 1

Introduction

Robustness is one of the most important requirements of modern distributed systems. Two
approaches are possible to achieve fault-tolerance: on the one hand, robust systems use redun-
dancy to mask the effect of faults, on the other hand, self-stabilizing systems may temporarily
exhibit an abnormal behavior, but must recover correct behavior within finite time.

At the contrary of fault-tolerance, self-stabilization does not make any restriction on the
subset of the system that is hit by the failure. Since its introduction by Dijkstra (see [13]), a
growing number of self-stabilizing algorithms solving different problems have been presented
(see [14]). In particular, several recent publications prove that being able to start from any
arbitrary configuration is desirable as a property of fault tolerance. For example, [26] shows
that processor crashed and restarted may lead a system to an arbitrary global state, from
which a self-stabilizing algorithm is able to recover.

1.1 Related Work

Historically, research in self-stabilization over general networks has mostly covered undirected
networks where bidirectional communication is feasible (the Update protocol of [16], or the
algorithms presented in [2, 17]). Recently, studying self-stabilizing solutions for directed net-
works received a lot of attention ([11, 19, 12, 20]), due to the two main following reasons:

1. If a bidirectional network is not available, then self-stabilizing data link protocols (that
are acknowledgment based, such as those presented in [1]) can not be used to transform
any of those works written for shared memory systems so that they perform in unreliable
message passing environments.

2. In directed networks, it is generally easy to maintain the set of input neighbors (by
checking who has "recently” sent a message), but it is very difficult (if not impossible)
to maintain the set of output neighbors (in a satellite or a sensor network, a transmitter
is generally not aware of who is listening to the information it communicates). As a
result, a large part of self-stabilizing algorithms, that use implicit neighborhood knowl-
edge (e.g. [5, 6]) to compare one node state with those of its neighbors and check for
consistency can not be used in directed networks.



Several algorithms are self-stabilizing and tolerate a limited amount of processor crash
failures (see [3, 21, 24, 9]). However, they are studied in a communication model that is
almost reliable (links are only subject to transient failures). In (8], the authors consider the
case of systems subject to crash failures for processors and intermittent failures for links (only
the loss case is considered). However, in their approach, bidirectional communication link
are assumed to provide a lower level communication protocol that is reliable enough for their
purpose. To some extent, topology changes can be considered as permanent failures on links.
In this context, Super-stabilizing and Snap-stabilizing protocols (introduced in [16] and [10],
respectively) are self-stabilizing protocols that also tolerate limited topology changes. In [1],
Afek and Brown consider self-stabilizing algorithms along with lossy communication links, but
they assume bidirectional communications in order to build an underlying self-stabilizing data-
link protocol. The construction of wait-free objects in a self-stabilizing setting is considered
in [22]. Finally, [12] solves the census problem and is self-stabilizing yet supporting fair loss,
finite duplication, and desequencing of messages.

1.2 QOur Contribution

In this paper, we concentrate on providing a generic solution to silent tasks (see [15]) in a
self-stabilizing way on a truly general directed network, where no hypothesis are made about
the strong connectivity or the presence of cycles. As in [4], our solution is by giving a condition
on the distributed algorithm. However, in [4], the condition is given in terms of global system
property, while our condition is independent of the task to be solved, and is only determined
by the algebraic properties of the function computed locally by the algorithm. As in [19, 20],
our solution does not require any knowledge about the network: no size, diameter, maximum
degree are needed. In addition, we support message passing communications with the same
communications hazards as in [12]: fair loss, finite duplication, and reordering of messages.

In more details, we provide a parametrized algorithm that can be instantiated with a
local function. Our parameterized algorithm enables a set of silent tasks to be solved self-
stabilizingly, provided that these tasks can be expressed through local calculus operations
called r-operators that operate over a set S. The r-operators are general enough to permit
applications such as shortest path calculus and depth-first-search tree construction, to be
solved on arbitrary graphs while remaining self-stabilizing.

In addition, since our approach is condition based, there is no additional layer used to
make an algorithm that satisfies this condition tolerant to transient failures. In fact, when no
transient faults appear in the system, the performance suffers no overhead. In the following
table, we capture the key differences between our protocol and the aforementioned related
solutions in general directed networks regarding the following criteria: communication (pro-
cessors communicate through shared registers, which is costly emulated in message passing
systems, or simply by exchanging messages), atomicity (composite atomicity is when a node
may read the shared memory of all of its neighbors in one atomic step, which is more expen-
sive than read/write atomicity where only a single read or write action is atomic, which is in
turn costly emulated in message passing systems), reliability (communication between nodes
can be assumed to be reliable, which involves more resources in a faulty environment), and
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algorithm nature (a specific algorithm solves one particular problem, while a generic one can
be instantiated for many purposes).

Reference | Communication Atomicity Reliability Algorithm
[11] message passing | send/receive atomicity | reliable specific (routing)
[12] message passing | send/receive atomicity | unreliable specific (census)
20] shared memory | composite atomicity reliable | generic (partial order on S)
(19] shared memory | read/write atomicity reliable generic (total order on S)
This paper | message passing | send/receive atomicity | unreliable | generic (total order on S)

1.3 Outline

Chapter 2 presents a model for distributed systems we consider, as well as convenient notations
used in the rest of the paper. Chapter 3 describes our self-stabilizing parameterized algorithm
general directed networks. Due to lack of space, the correctness is proved in Chapter 4.
Concluding remarks are proposed in Chapter 5.
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Chapter 2
Model

In this section, we give general definitions on message passing self-stabilizing distributed sys-
tems.

2.1 Distributed system

Processors. A processor is a sequential deterministic machine that uses a local memory, a
local algorithm and input/output capabilities. Such a processor executes its local algorithm,
that modifies the state of its memory, and sends/receives messages using the communication
ports.

Links. An unidirectional communication link transmits messages from an origin processor
o to a destination processor d. The link is interacting with one input port of d and one output
port of o.

Depending on the way messages are handled by a communication link, several properties
can be defined on a link. A complete formalization of these properties is proposed in [23]. We
only enumerate those that are related to our algorithm. There is a fair loss when, infinitely
many messages being emitted by o, infinitely many messages are received by d. There is finite
duplication when every message emitted by o may be received by d a finite (yet unbounded)
number of times. There is reordering when messages emitted by o may be received by d in a
different order than that they were emitted. There is eventual delivery if any message that is
not lost is eventually received.

Distributed system. A distributed system is a 2-tuple § = (P, L) where P is the set of
processors and L is the set of communication links. Such a system is modeled by a directed
graph (also called digraph) G = (V, E), defined by a set of vertices V' and a set E of edges
(v1,v2), which are ordered pairs of vertices of V' (v;, v € V). Each vertex u in V' represents
a processor P, of system S. Each edge (u,v) in E represents a communication link from P,
to P, in §. In the remaining of the paper, we use indifferently processors, nodes, and vertices
to denote processors, and links and edges to denote communication links.



Graph definitions. The in-degree of a vertex v of G, denoted by dv is equal to the number
of vertices u such that the edge (u,v) is in E. The incoming edges of each vertex v of G
are indexed from 1 to dv. A directed path P,,, in a digraph G(V,E) is an ordered list of
vertices vg, vy, ...,V € V such that, for any ¢ € {0,...,k — 1}, (v;,v;31) is an edge of E (i.e.,
(vi,vip1) € E). The length of this path is k. If each v; is unique in the path, the path is
elementary. The set of all elementary paths from a vertex u to another vertex v is denoted by
Xuw- A cycle is a directed path P, ,, where vy = v;. The distance between two vertices u, v
of a digraph G (denoted by dg(u,v), or by d(u,v) when G is not ambiguous) is the minimum
of the lengths of all directed paths from u to v (assuming there exists at least one such path).
The diameter of a digraph G is the maximum of the distances between all couples of vertices
in G between which a distance is defined. Finally, we denote as 'y (resp. T'J) the set of
ancestors (resp. successors) of a vertex v € V, that is the set of all vertices u € V such that
there exists a path starting at u (resp. v) and ending at v (resp. u). The ancestors (resp.
successors) u of v verifying dg(u,v) = 1 (resp. dg(v,u) = 1)) are called direct-ancestors (resp.
direct-successors) and their set is denoted I';! (resp. ['}1).

Configurations. The state of a processor can be reduced to the state of its local memory
while the state of a communication link can be reduced to its contents. So the global system
state, called a system configuration (or simply configuration) and generally denoted ¢, is the
union of (i) the states of memories of processors of P and (ii) the contents of communica-
tion links of £. The set of configurations is denoted by C. The part of informations in a
configuration ¢ € C related to the processors of P is denoted by c p.

2.2 Distributed algorithm

Distributed algorithm. A distributed algorithm Alg (or protocol) is a collection of local
algorithms. A distributed system S executes Alg if every processor of S executes a local
algorithm of Alg.

A distributed system that executes a protocol Alg is not fixed: it passes from a configu-
ration to another when a processor executes an instruction of its local algorithm or when a
communication link delivers a message to its destination. The set of all such actions that can
be performed in the distributed system & is denoted .A.

Executions. Starting from an initial configuration c,, an execution e, = ¢y, a1, g, ay, .. .
is a maximal alternating sequence of configurations of C and actions of A such that, for any
positive integer ¢, the transition from configuration ¢; to configuration ¢;;; is done through
execution of action a;. The notations &, £¢ and &€ denote respectively the set of all executions
starting (i) from the initial configuration ¢, (ii) from any configuration ¢ € C' C C, or (iii)
from any configuration of C (£¢ = £). The ordered list ¢;, ¢y, ... € C of the configurations of
an execution e = c1,a;,¢z,ay ... is denoted by e|c. In the rest of this paper, we adopt the
following convention: if ¢; € e|¢ appears before ¢; € e ¢, then i < j.



Specification. Distributed algorithms resolve either static tasks (e.g., distance computa-
tion) or dynamic tasks (e.g., token circulation). The aim of static tasks is to compute a global
result, which means that after a running time, processors always produce the same output
(e.g., the distance from a source). This paper focus on static tasks.

By definition, a static task is characterized by some final processor’s outputs o, called
legitimate outputs. A legitimate configuration c for this task satisfies c;p = 0. A distributed
protocol designed for solving a given static task is correct if the distributed system & running
this protocol reaches in finite time a legitimate configuration for this task.

2.3 Self-stabilizing protocols

Robustness against transient failures. Self-stabilizing algorithms are designed for dis-
tributed systems where some transient failures could happen. A transient failure sponta-
neously changes a value in a processor memory or in a message in transit.

A self-stabilizing algorithm does not always satisfy its specification. However, it seeks to
reach a configuration from which any execution verifies its specification. For algorithms that
solve static tasks, this means that, starting from a configuration where processor’s outputs are
correct, the system may reach a configuration where processor’s output is no more correct (e.g.
assuming a transient failure occurs somewhere in the system). However, if the algorithm is
self-stabilizing, it eventually reaches again a correct configuration without human intervention.

Self-stabilization. We now define precisely a self-stabilizing distributed protocol. A set of
configurations C C C is closed if, for any ¢ € C, any possible execution e, € &, of system
S whose ¢ is initial configuration only contains configurations in C'. A set of configurations
Cy C C is an attractor for a set of configurations C C C if, for any ¢ € C; and any execution
e. € &, the execution e, contains a configuration of Cy. Let C' C C be a non-empty set of
configurations. A distributed system & is C'-stabilizing if and only if C' is a closed attractor
for C: any execution e of £ contains a configuration ¢ of C, and any further configurations in
e reached after ¢ remains in C.

Finally, let consider a static task for the distributed system &, and let L C C be the set
of its legitimate configurations. A distributed protocol designed for solving this static task is
self-stabilizing if the distributed system & running this protocol is L-stabilizing.






Chapter 3

Parametric message passing P.A.we
algorithm

In this section, we first describe the distributed system we consider before defining the P.A-MP
parametrized algorithm. We then introduce the r-operators, that are used as parameters.

3.1 System

Let S = (P, L) be the distributed system we consider in the following. The associated graph
composed of processors of P and communications links of £ is fixed, directed and unknown
to the processors of P.

Each processor v of P owns an incoming memory denoted as IN,, which is supposed to be
unalterable; this can be implemented by a ROM memory (e.g., EPROM), or a memory that
is regularly reloaded by any external process (human interface, captor, other independent al-
gorithm, etc.). The value of this memory (that will never change) is called initialization value.
Moreover, for each link starting at processor u € P and ending at processor v corresponds an
incoming memory INj in v, which is used by v to store incoming messages sent by u. In ad-
dition, processor v owns an output memory denoted by 0UT,. All these memories are private,
and can only be read or written by v (note that v only reads IN,, and only writes 0UT,). In
the following, we identify the name of a memory with the value it contains. In the same way,
a message is considered as equivalent to its value.

Processor v performs a calculation by applying an operator < (see § 3.3) on all its incoming
memories, and stores the result in its output memory 0UT,,.

3.2 Algorithm

In [19] is defined a Parameterized distributed Algorithm (denoted as P.A), and proved that it
is self-stabilizing when < is a strictly idempotent r-operator (see § 3.3). This algorithm uses
shared registers to permit communication between neighboring processors. In this paper, we
design a similar parametrized distributed protocol for Message Passing systems (denoted as



PA-MP). This protocol is composed of one local parametrized algorithm per processor v of
P, denoted by PA-MP|,,, where <, is an operator used as a parameter (parameters could be
slightly different on each processor, see Hypothesis 2). This local algorithm calls three helper
functions:

Store,(m, u): stores in the local register IN? the contents of the message m
Evaluate,(<,): stores in the local register OUT, the result of the local computation

gl TN THEL, sy THOE)
where uy, ..., u are direct ancestors of v (€ I';!)
Forward,: for each processor w € T'}!, send 0UT, to w.

The local algorithm P.A-MP|, on processor v is composed of two guarded actions, which are
sets of instructions (actions) executed when a pre-condition (guard) is fulfilled (see Figure 3.1).

Ri1 Upon receipt of a message m send by u:
if m # IN}, then
Store,(m, u)
Evaluate,(<,)
Forward,
end if
R, Upon timeout expired:
Evaluate,(<,)
Forward,
reset the timeout

Figure 3.1: Local algorithm P.A-MP

4, ON Processor v.

3.3 r-operators

Following work of Tel concerning wave algorithms (see [25]), the distributed protocol described
above terminates when each P.A-MP local parametric algorithm is instantiated by an infimum
over the set of inputs S. An infimum (hereby called an s-operator) @ over a set S is an
associative, commutative and idempotent binary operator. Such an operator defines a partial
order relation <g over the set S by

z<gy ifandonlyif z®y==2 (3.1)

and then a strict order relation <g by x <g v if and only if z <4 y and = # y. It is generally
assumed that there exists a greatest element on S, denoted by eg, and verifying z <4 eq for
every € S. If necessary, this element can be added to S. In the following, we assume that an
s-operator admits such an element in its definition of set S. Hence, the (S, ®) structure is an



Abelian idempotent semi-group' (see [7]) with eq as identity element. When parameterized by
such an s-operator @, the P.A-MP parametric local algorithm converges [18]. However, some
counter examples show that it is not self-stabilizing [19], that is, it cannot recover after some
transient failures. The following lemma will be used in the following.

Lemma 1 For all z,y,z €S, if z®y = z then z <g ¢ and z <g y.

In [18], a distorted algebra — the r-algebra — is proposed. This algebra generalizes the
Abelian idempotent semi-group, and still allows convergence of wave-like algorithms.

Definition 1 The binary operator < on S is an r-operator if there exists a surjective mapping r
called r-mapping, such that the following conditions are fulfilled: (1) r-associativity: Vz,y, z €
S,(zay)ar(z) = xza(y<z); (i) r-commutativity: Vz,y € S,r(z)<y = r(y)<z; (i) r-
idempotency: Yz € S,r(x) <z = r(z) and (iv) right identity element: e, € S,z e, = .

Given an r-operator <, one can show that the r-mapping r is unique, and is an homomor-
phism of (S,<). Moreover, the r-operator defines an s-operator on S by z<y = z®r(y), and
e = eq. We have: r(eg) = eg. It is straightforward that an r-operator with the identity
mapping as r-mapping is an s-operator. Since r is an homomorphism, we have the following
lemma.

Lemma 2 For all z,y €S, if x <g y, then r(z) <g r(y).

If no fault appears in the distributed system &, our PA-MP algorithm stabilizes when it is
parameterized by any idempotent r-operator <. Idempotent r-operators verify (i) r(egq) = €q,
and (ii) for any x € S, x <g r(x). This last property leads to the following definition.

Definition 2 An r-operator < is strictly idempotent if, for any z € S\ {eg}, we have z <4

r(z).

For example, the operator minc(z,y) = min(z,y + 1) is a strictly idempotent r-operator
on NU {400}, with +oo as its identity element. It is based on the s-operator min and on
the surjective r-mapping r(x) =  + 1. Such an operator can also be defined on the finite set
{0,1,...,255}. In that case, the r-mapping is defined by r(z) = z + 1 for z € {0,...,254}
and 7(255) = 255.

Finally, binary r-operators can be extended to accept any number of arguments. This
is useful for our algorithm because a processor computes a result with one value per di-
rect ancestor plus its own initialization value. An n-ary r-operafor < consists in n — 1
binary r-operators based on the same s-operator, an we have, for any x,...,2,_; in S,
Aoy .y Tpo1) = Te®T1(21)B -+ - Bry—1(xp—1). If all of these binary r-operators are (strictly)
idempotent, the resulting n-ary r-operator is said (strictly) idempotent.

IThe prefix semi means that the structure cannot be completed to obtain a group, since the law & is
idempotent.
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3.4 Hypotheses

In this section, we formalize some hypotheses, introduce some notations, and give basic lemma
that will be used for the proofs.

Hypothesis 1 In the distributed system S, links may (fairly) loose, (finitely) duplicate, and
(arbitrarily) reorder messages that are sent by neighboring processors. However, any message
sent by u on the link (u,v) that is not lost is eventually received by v.

The following lemma is immediate.

Lemma 3 Letl consider a communication link (u,v) € L. If the origin node u keeps sending
the same message infinitely often, then this message is eventually received by the destination
node v.

Hypothesis 2 In the distributed system S running the PA-MP algorithm, any processor v
runs the local algorithm defined in Figure 8.1 and parametrized by a strictly idempotent (v+1)-
ary r-operator. Moreover, all these r-operators are defined on the same set S, and are based
on the same s-operator @, with eq their common identity element.

The following lemma is a direct application of Hypothesis 2, Definition 1, and Evaluate
function:

Lemma 4 Let <, be the r-operator used by processorv. Then the computation of the Evaluate,(<,)
function can be rewritten as: <, (IN,, IN¥', ... IN) = IN @ri (INY) @ - - - @rik (INU).

Hence, there is one r-mapping per communication link. We now define the composition of
these mappings along a path.

Definition 3 Let Py, € Xyyu, be a path from processor uy to processor ug, composed of
the edges (u;,uiy1) (0 <4 < k). Letrl,, 0 <i <k, be the r-mapping associated to the link
(wi, wir1). The r-path-mapping of Pyyu,, denoted by TPy » 1S defined by the composition of
the r-mappings T§+1, forQ-< i< ke TPuguy = T;g_l 0 or?.

Hypothesis 3 The order relation <4 is a total order relation: Vx,y € S, either x =g y or
Y Se T

Hypothesis 4 The set S is either finite, or any strictly increasing infinite sequence of values
of S is unbounded (except by eg).

This hypothesis specifies that the values used in the distributed system & can be, for in-
stance, integers but not reals. Note that truncated reals (as in any computer implementation)
are also convenient. Hypotheses 2 and 4 give the following lemma:

Lemma 5 The set S is either finite or any r-mapping r in S verifies: Vo € S\ {eg}, r(z) <

Cp-
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Hypothesis 5 Each processor v admits at least one ancestor u € [, such that IN, # eg, u
s called a non-null processor.

In the following, we denote by 0UT, the legitimate output of processor v. Moreover, for
any processor v, any ancestor « of v and any configuration ¢, we denote by 0UT,(c) and IN}(c)
the value of the memories 0UT, and INY in the configuration c.

3.5 Problem specification

Our protocol is dedicated to static tasks. Such tasks (e.g., the distance computation from a
processor u) are defined by one output per processor v (e.g., the distance from u to v), which
is the legitimate output of v. With our P A-MP algorithm, this means that, after finite time,
each processor v € P should contain this output (e.g., d(u,v)) in its outgoing memory 0UT,.
To solve static tasks with the PA-MP distributed algorithm, one must use an operator as
parameter (e.g., minc for distance computation) such that the distributed system & reaches
the legitimate configurations and do not leave them thereafter (i.e., any processor reaches
and then conserves its legitimate output). In this paper, we prove that if the operator used
to parameterize the P A-MP distributed algorithm, then it is self-stabilizing, according to the
hypotheses of § 3.4.

Let us define the legitimate outputs of the processors using the r-operators that param-
eterize the PA-MP algorithm. For instance, to solve the distance computation problem, we
state S = NU {400}, and each local algorithm is parametrized by the minc r-operator (see
§ 3.3). All processors v verify IN, = 400 except a non null processor u verifying IN, = 0 (0 is
absorbing while 400 is the identity element for minc). Each r-path-mapping adds its length
to its argument (i.e., rp(x) = x + length(P)), and we have:

d(u,v) = min (IN,U, min {rp. (INw)})

wel'y , Py v €EXw v

We now define the legitimate output of a processor v in the general case.

Definition 4 (Legitimate output) 7he legitimate output of processor v is:

0T, =,® P re, (I,)
u€ly \Pu,w€Xu,v
The following lemma is given by Lemma 5, Hypothesis 5 and Definition 4.

Lemma 6 The set S is either finite or any processor v € P verifies: OUT, <g €g-

As defined in Chapter 2, the set of legitimate configurations L C C of the protocol Alg is
given by: for any configuration ¢ € L, for any processor v € P, 0UT,(c) = OUT,.

Theorem 1 Algorithm PA-MP parametrized by any strictly idempotent r-operator self-stabilizes
to a legitimate output at every processor v € P despite fair loss, finite duplication and reorder-
ing of messages.
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Chapter 4

Correctness

This section is divided into five parts. First, we prove that eventually the output of each
processors is updated using its inputs. Second, we show that eventually each received message
was sent in the past. Third, we prove that each processor’s output is upper bounded. Fourth,
we prove that each processor eventually reaches its legitimate value. Finally, we present
complexity results regarding our distributed protocol.

4.1 Outputs eventually result from computations
We begin by defining some predicates on configurations.

Definition 5 Let Py,, Py, and Py, be predicates on configurations ¢ € C:

Pwulc) = YveP, 0UT,(c) =g IN,
Pup(c) = WYoeP,Vuel,!, ouT,(c) < r*(IN%(c))
Pe(c) = YoeP,Vuel,', 0oUT,(c)=1N, V OUT,(c) = r*(IN%(c))

Now, the set (g C &£ includes executions where processors eventually update their output.
Every execution e of Q) reaches a configuration ¢;, such that any subsequent configuration c;
satisfies Predicates Py,, Py, and Py,.

Definition 6 Let Qg C £ be the set of executions such that:
Ve € Qo, dci, € ec, Ve € e with ip < j, Poa(cj) A Poy(ej) N Poclcy)
We now prove that, thanks to weak fairness hypothesis, any execution of £ is in Q.
Lemma 7 FEvery ezecution of the PA-MP algorithm in the distributed system S is in Qy.
Proof: Let ¢ € £ be an execution. By weak fairness, every processor v € P eventually

executes a rule. By definition of PA-MP (see Figure 3.1), any execution of either rule at some
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node v processes Evaluate,(<,). Then, for any processor v € P, there exists a configuration
¢i, € e|c where processor v satisfies 0UT,(¢;,) = <, (IN,, IN*(c;,), . .., IN%(c;, ).

By Lemma 4, we have 0UT,(c;,) = IN,@®ri (IN¥ (c;,)) @ - - - @ri@ (IN% (¢;,)). Then, by
Lemma 1, we have 0UT,(c;,) =g IN, and 0UT,(¢;,) =g r*(IN%) for any direct-ancestor v of
v. Hence, both Py(c;,) and Pyy(e;,) hold. Now, since =< defines a total order relation
(Hypothesis 3), either 0UT,(c;,) = IN, or 0UT,(c;,) = r¥(IN*(c;,)) for at least one ancestor u
of v. This gives Pyc(c;,) with ip = max,ep iy.

Since any action of v executed upon receipt of a message or upon timeout expiration calls
Evaluate, any subsequent configuration satisfies Predicates Py, to P,. O

4.2 Eventually, received messages were previously sent

We define the set (); as the subset of executions £ for which any received value has actually be
sent in the past. All executions e of (); reach a configuration ¢;, such that, for any subsequent
configuration ¢; and any communication link (u,v), there exists a configuration ¢;,, in which
v sent the value contained in IN; in configuration c;.

Definition 7 Let ()1 C & be the set of executions that satisfy:

Ve; € e with 4y < j,Y(u,v) € L,

Ve Je: b .
€G, Jo Eepe { 3cj,, € ejc with juu, < J, OUTy(¢;) = INy(cy,,)

We now prove that, thanks to Hypothesis 1 related to the properties of the communications
links, any execution is in (};.

Lemma 8 FEvery execution of the PA-MP algorithm in the distributed system S s in Q.

Proof: Let e € £ be an execution, and consider two processors « and v such that (u,v) is
a communication link of £. By definition of PA-MP, processor v sends the value of its 0UT,
variable infinitely often to each of its direct successors. By Hypothesis 1, every message that
is not lost is eventually delivered. Moreover, every message may be duplicated only a finite
number of times. It follows that, after a finite amount of time, only messages that were sent
by v are received by every of its direct successors. Hence, there exists a configuration c; € e ¢
where the incoming value in IN} has actually been sent by u in a previous configuration ¢;,, :

After all initial erroneous messages between u and v have been received (including duplicates),
and after a configuration where the above property holds, this property remains thereafter
on this link. Since all links conform to the same hypotheses, there exists a configuration
ci; € e|c where the property holds (and remains so thereafter) for any communication link.
We conclude that e € @)4. O

Note that this lemma does not indicate that any sent value is eventually received. Indeed,
it may happen that a message is lost while traversing a link, and the variable it was built with
is erased by a new value. Then, any re-sending would not provide the original value, that
would not be received again. We now generalize the notation we introduced in the previous
proof.
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Definition 8 Let us consider an incoming value INY(c;) on processor v in the configuration
¢j. Then we denote by c;,, the configuration in which the value INY(c;) has been sent by u,
provided that this configuration exists.

The previous lemma indicates that, for any execution e € £, there exists a configuration
¢;, from which ¢;,, exists for any subsequent configuration ¢; (i, < j), and any communication
link (u,v). However, as captured in Figure 4.1, the definition of @; gives no guarantees about
¢;.. appearing after configuration ¢;, (that is i, < j,,).

part of the configuration where Cjyy ©an be found

Figure 4.1: According to @1, configuration ¢;,, exists but could appear before c;,.

We now introduce additional sets of executions. The following definition, illustrated in
Figure 4.2, indicates that, for any execution in @y, from a given configuration ¢; ,, any given
configuration ¢; admits a configuration ¢y such that any configuration ¢;,, (with i < j)
appeared after ¢; (i.e., i < Juy)-

Definition 9 Let Q1 C & be the set of executions that satisfy:

Vo To. CEel T8E o with iy 4, Sy Sep with 05 %,
o Fin €Y Ve € e with ¥ < V() €L, G €ee A i<jw <]

Cq C @] Cy Cy

L

part of the configuration where O,y Can be found

Figure 4.2: According to @1, from a configuration ¢;,,, configurations c;,, can be found later
than any given configuration c;.

We show now that, thanks to weak fairness, every execution is in Gyp.
Lemma 9 FEvery ezecution of the PA-MP algorithm in the distributed system S is in Q.

Proof: Let e € £ be an execution that is not in @)15. From Lemma 8, e is in ¢); and, from a
configuration ¢;, € ec, for every configuration ¢; and every link (u,v), the configuration c;,,
exists. Now, let us consider configurations ¢;, ¢y and ¢; in e ¢ such that 4, <i <4 < j. If
e & Qup, then configuration ¢;,, always appears before ¢;, even if ¢y (and then ¢;) is as far as
possible from ¢; (see Figure 4.3). This means that the values produced by processor u after

¢j,, were never received, that contradicts Lemma 3.

uv
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Ci
Figure 4.3: If e € @3, the configuration c;,, always appears before c;.

4.3 Outputs are eventually smaller than legitimate val-
ues

Let us begin by defining two predicates P, and Py, on configurations. If P,(c) holds, then, in
configuration ¢, each processor is smaller than all initial values of its ancestors increased by
some r-mappings (more precisely, for any processor v and any of its direct-ancestors u, the
output of v is smaller than the initial value of u transformed by the r-path-mapping 7p, , of
the path P,, from u to v). If Py(c) holds, then, in the configuration ¢, the output of each
processor v is smaller (in the sense of @) than its legitimate output.

Definition 10 Let P, and Py, be predicates on configurations ¢ € C:

Ps(c) = Voe P,Yuel, VP, € X,y OUT,(c)=prp,,(IN,)
Py(c) = YveP, 0UT,(c) <q OUT,

We now define two sets of executions Q3 and (g. If an execution e is in Qo (resp Qg),
then there exists a configuration in e from which every configuration satisfies Py (resp. Pay).

Definition 11 Let Q)» and Qs be two subsets of E:

Ve € )y, 361'2 €Ee [ VCj cep with 19 < 7, Pg(cj)
Ve € Qop, Elci% € e, VCj cep with 195 < 7, sz((}j)

We now prove that, first every execution of £ is in )y, and then that every execution of
£ is in Q9. This means that, while the processor’s outputs can be larger than the legitimate
values in the beginning of an execution, each processor eventually produces some outputs that
are smaller than or equal to its legitimate value. In other terms, any erroneous values that
are larger than legitimate values eventually disappear from S.

Lemma 10 Every execution of the PA-MP algorithm in the distributed system S is in (.

Proof: Let e € £ be an execution, and let us consider a processor vy € P, and one of its
direct-ancestor v, € Fv‘ol. By Lemma 7, e is in Q9. Then, there exists a configuration ¢;, € ec
such that, for any subsequent configuration ¢;, € ec (io < jy,), Predicate Foy(c;,, ) is satisfied:
0UT,y (C5,) S T2 (TN (c4,,))-

Since e € @1, the above configuration c;, can be chosen after ¢;; in e (i.e., ip < Jjy
and i; < jy,) so that there exists a configuration ¢;, ,, € e that appears before c;, (i.e.,
oo < Jup) satisfying: 0UTy, (cj,,,,) = IN3L(cj,, ). This gives:

0UTy, (Cj,,) < 7o (OUTy, (€5,,0,)) (4.2)
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Since e € @y, it is possible to choose configuration Ciug in e|¢c in order to ensure that
Cj,.v, APPEArs after c;,. Hence, without loss of generality, we can state 4p < jy,,, and thus
Foa(€,,,,) holds. This means that 0UTy, (¢j,,.,) Se IN,,, and, from Lemma 2, we have:
Tg(l) (UI‘JTUI (cjvlvg)) j@? T’tl)}é (IN‘Ul)'

Finally, we obtain the following relation, that remains true for configurations that appear
after c;, :

OUT'UO(CJ;UQ) j@ T’lij; (IN’Ul) (4'3)

and this result remains true hereafter.

To iterate the above reasoning from vertex v, (instead of vg) at configuration ¢;, , - (instead
of ¢;,, ), we must ensure that c;, . appears after ¢;, (to use Qo) and after ¢;, (to use Q). Yet
using the fact that e € @y, the configuration ¢j,, can be chosen as far as necessary in e
in order to ensure that the related configuration c;, , happens after the configurations ¢,
and ¢;, (see Figure 4.2). Hence, for any path vy,...,v, there exists some configurations
Clup_y - - Ciuy g » Cin SUCH that the following relations (obtained from Equations 4.2 and 4.3)
remain true for the rest of the execution:

DUTUD (cjt'o ) j@ T'gé (UUT'UI (Cj""l v )) A UUT'UO (ijg ) j@ Tz[l) (INvl )
DUT'UI (ij]vg) j@ T’gf (UUT'U] (ijgul )) A DUT'UI (cjvlvg) j@ TE]Z(IN’UQ)
; <o E A E ey E
0UTy, (Cop,_,) Do Tox  (O0Tu(Cjuny)) A 0Ty (G, ) e o '(IN, )

(4.4)

Then, for any ancestor vy of vy and any path P, ,, € A, 4 from vy to vy, there exists

a configuration ¢;, such that the following remains true in any subsequent configuration:
Q0UTy, (Cj,,) = TP, ., (IN,, ). Hence there exists a configuration ¢;, reached after all configurations

vV
¢;,, (for any processor vy € P) and such that, for any further configuration ¢; (i.e., igy < j),

we have Py(c;). This gives the lemma. O
Lemma 11 Fvery exzecution of the PA-MP algorithm in the distributed system S is in Q.

Proof: Let us consider an execution e € £. Since e € (J, there exists a configuration ¢;, € ec
such that, for any subsequent configuration ¢; € e ¢ (i.e., iz < j), Pa(c;) holds:

Vv e P,Vuel, ,VP,, € Xyy, O0OUTy(c;) 2 Tp,,(IN,)

Then, we have:
YoeP, 0T(c)Ze EP  rr.(I,)

u€l'y Py, v €y v

Since e € (J;, some of these configurations ¢; also satisfy predicate Fy,. Without loss of
generality, we assume that Py,(c;) holds: 0UT,(c;) <g IN,. Hence, we have:

YoeP, OUT,(c)ZeN,® B  rp.(N)
’U,EI‘;,PU,VEXU,U

This ends the proof, by Definition 4. O

L



4.4 Legitimate values are eventually reached

Let us begin by defining a predicate on system configurations.

Definition 12 Let P3 be a predicate on configurations ¢ € C:
Pi(c) = YweP, 0OUT,(c)= 00T,

We now define the set of executions 3, that corresponds to executions of £ for which every
processor eventually reach its legitimate value: all executions of ()3 reach a configuration ¢;,
such that, for any subsequent configuration ¢;, the outputs of every processor v in ¢; are equal
to their legitimate values.

Definition 13 Let ()3 C £ be the set of executions that satisfy:
Ve € Q3, 3ci, €ee,Ve; € ey, withiz <j, Pi(c)
We now prove that any execution is in Q3.
Lemma 12 Every execution of the PA-MP algorithm in the distributed system S is in Q3.

Proof: Let e € £ be an execution, and suppose that e ¢ (3. Since = defines a total order
(Hypothesis 3), we have:

Ve, €ee, Jej€epe, withizg <j, FweP, U e QUT,(c;) VvV  OUTy(c;) <o ouT,
(4.5)
By Lemma 11, e is in ()9, and there exists some configurations ¢; that satisfy both 75 < j and
iop < 7, so that 0UT,(¢;) <e OUT,. Hence, Equation 4.5 becomes:

Ve, €eic, 3cj€epe, withizg <j, FweP, 0UT,(c;) <o QuT, (4.6)

By Definition 4 and Lemma 1, we have OUT, <¢ IN,. This gives 0UT,(c;) < IN,. Since
e € Q, there exists some configurations ¢; € e satisfying both Equation 4.6 and Py.(c;),
that is ip < j. Without loss of generality, we suppose that Py.(c;) holds: Ju € T';t, 0UT,(¢;) =
Ty (TN (c5))- .

As 0UT,(cj) <g OUT,, we have r%(INY(c;)) # eq. Since ri(eqg) = eq (see § 3.3), we have
INY(c;) # eg. Then, by Definition 2, we have IN¥(c;) <e 75 (INy(c;)) and finally INj(c;) <o
OUT,(c;). Hence, the following holds: Ju € I';!, IN(¢;) <g 0UT,(c;).

By Lemma 8, e € @), and there exists some configuration ¢; that satisfy i, < j (as
well as iq4 < 7, iy < j and 49 < j) and for which configuration ¢;,, exists in e and verifies
0UT,(c;,,) = IN%(c;). Then 0UT,(cj,,) < OUT,(c;) <@ OUT,. This means that at least one
of the direct-ancestors u of v verifies 0UT,(c;,,) <@ OUT, V OUT, =g 0UT,(c;,,) (indeed, if all
ancestors of v reached and hold their legitimate value, then v would reach its legitimate value
too). Hence, Equation 4.6 becomes:

Ve € ey Bey € ele, with i3 < j, du,v e/\?D with w € T, 3¢, € €c, with ju)ig V)
(0UTu(c),,) <o OUT,  V OUT4(cj,,) <e OUT,) A OUT,(cj,,) <e 0UT,(c;) <g OUT,
(4.7)
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To iterate the above argument from processor v instead of v, and from configuration ¢;,,
instead of ¢;, we argue that iy < Juu, i1 < Jup, and igp < jup.- By Lemma 9, e is in Q5. This
means that configurations ¢;, in the above equation can be chosen so that every configurations
Cj.. appear after configurations c;y, ¢;, and ¢;,, (see Figure 4.2). This allows to re-use the above
reasoning with configuration ¢;,, instead of c;.

By iterating the above arguments, and since the network is finite, we exhibit a cycle of
nodes and a set of configurations c¢;,,c;, ... appearing after ¢;, in e such that, for a node w in
the cycle, we have:

OUTy(¢5,) <@ OUTy(c;,) <a ;- <@ OUTy, (4.8)

Using the fact that e € @)y, this can be found after any configuration ¢;, in the execution
e. This means that, regardless of configuration ¢;,, there exists subsequent configurations
Cioy -+ Cjy, Such that OUT,, increases strictly without reaching its legitimate value. We then
exhibit a strictly increasing sequence of values of S that never reach 0UT,. This is impossible
if S is finite. If § is infinite, then Lemma 6 gives 0UT,, <g eq. The sequence of values is then
upper bounded, that contradicts Hypothesis 4. Hence, e € Q3. a

4.5 Complexity

In the convergence part of the proof, we only assumed that computations were maximal,
and that message loss, duplication and desequencing could occur. In order to provide an
upper bound on the stabilization time for our algorithm, we assume strong synchrony between
processors and a reliable communication medium between nodes. Note that these assumptions
are used for complexity results only, since our algorithm was proved correct even in the case of
asynchronous unfair computations with link intermittent failures. In the following, D denotes
the network diameter.

In order to give an upper bound on the space and time requirements, we assume that the
set S is finite, and that |S| denotes its number of elements. Note that this assumption is used
for complexity results only, since our algorithm was proved to be correct even in the case when
S is infinite.

The space complexity result is immediately given by the assumptions made when writing
Algorithm P.A-MP.

Lemma 13 (Space Complexity) Fach processor v € S holds (& + 1) x logy(|S|) bits.

Proof: Each processor v has dv local variables that hold the value of the last message sent
by the corresponding direct ancestor, and one register used to communicate with its direct
descendants. Each of these local variables may hold a value in a finite set S, then need log,(|S|)
bits. Note that the constant stored in ROM is not taken into account in this result. O

Lemma 14 (Time Complexity) Assuming a synchronous system S, the stabilization time
is O(D + |S]).
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Proof: We define ¢ as the function that returns the index of a given element of S. This index
always exists since S is ordered by a total order relation. The signature of ¢ is as follows:
¢: S —- N and s1 <@ S2 =  P(s1) < P(s2)
s = ls)

After O(D) steps, every node in the network has received values from all of their ancestors.
If those values were badly initialized, then the received values are also possibly badly valued.

For each node u, we consider the difference between the index of its final value (since the
algorithm converges to a legitimate configuration where 0UT, = 0UT,) and the index of the
smallest received value which is badly initialized. The biggest possible difference is M — m,
where M is the maximum index value of S and m the minimum index value of S. This
difference is called d and is O([S]).

For each node u, we also consider the smallest and the greatest (in the sense of increasing)
r-path mapping from u to u. Let | be the length of the smallest such r-path mapping. It
increases a value index by at least [. The greatest such r-path mapping increases a value index
by at most d, and is of length at most d.

In the worst case, there exists a node that has an incorrect input value indexed with m, a
correct input value indexed with M, so it has to wait that the incorrect value index is increased
by M —m before the incorrect value effect is canceled. Each [ times units at least, this incorrect
value index is increased by [. Again, in the worst case, if [4] < ¢, another incorrect value
may still be lower than the correct value, and the greatest cycle may be followed, inducing an
extra d time delay. Overall, after the first O(D) times units, (|$] x {) +d = O(d) time units
are needed. O
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Chapter 5

Concluding remarks

Summary. We presented a parameterized distributed algorithm applicable to any directed
graph topology. This algorithm tolerates transient faults that corrupt the processors and
communication links memory (it is self-stabilizing) as well as intermittent faults (fair loss,
reorder, finite duplication of messages) on communication media.

Applications. The function parameter of our algorithm can be instantiated [19, 20] to
produce distributed algorithms for both fundamental and high level applications. We quickly
sketch two possible applications of the generic algorithm. First, to solve the shortest path
problem with r-operators, it is sufficient to consider NU {+o0} as S, +oo as eg, min as @,
and z — z + ¢, , as 7. Second, in a telecommunication network where some terminals must
chose their “best” transmitter, distance is not always the relevant criterium, and it can be
interesting to know the transmitter from where there exists a least failure rate path, and to
know the path itself. If we consider [0,1] "R as S, 0 as eg, max as @, and © — z X 7
as 77 (where 7V is the reliability rate of the edge between u and v, with 0 < 7, < 1) our
parameterized algorithm ensures that a best transmitter tree is maintained despite transient
failures (in a self-stabilizing way).

Future works. We are now investigating the possibility of maintaining invariants (e.g. a
route toward a destination if the r-operator used calculates a shortest path toward this destina-
tion) while the inputs of the system are changing (i.e. the r-mappings are evolving during the
execution of the system), and still preserve the self-stabilizing and unreliable communications

tolerance of our algorithm.
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