

GENERALIZED CONNECTED DOMINATION IN GRAPHS

KOUIDER M / VESTERGAARD P

Unité Mixte de Recherche 8623 CNRS-Université Paris Sud-LRI

11/2003

Rapport de Recherche N° 1377

CNRS – Université de Paris Sud
Centre d'Orsay
LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 650
91405 ORSAY Cedex (France)

K

Generalized connected domination in graphs

Mekkia Kouider¹ and Preben Dahl Vestergaard²

¹ Laboratoire de Recherche en Informatique, UMR 8623, Bât. 490, Université Paris Sud, 91405 Orsay, France.

E-mail: km@lri.fr

² Dept. of Mathematics, Aalborg University,

Fredrik Bajers Vej 7G, DK-9220 Aalborg Ø, Denmark.

E-mail: pdv@math.auc.dk

received 23 October 2003, revised 4 November 2003, accepted tomorrow.

As a generalization of connected domination in a graph G we consider domination by sets having at most k components. The order $\gamma_c^k(G)$ of such a smallest set we relate to $\gamma_c(G)$, the order of a smallest connected dominating set. For a tree T we give bounds on $\gamma_c^k(T)$ in terms of minimum valency and diameter. For trees the inequality $\gamma_c^k(T) \le n-k-1$ is known to hold, we determine the class of trees, for which equality holds.

please also repeat in the submission form

Keywords: connected domination, domination, tree Mathematics Subject Classification: 05C69

Contents

1	Introduction State of the American American State of the American	1
2	General graphs 2.1 Other bounds on γ_c^k	2
3	Trees	4

1 Introduction

We consider simple non-oriented graphs. The largest valency in G is denoted by $\Delta(G) = \Delta$, the smallest by $\delta(G) = \delta$. P_n is a path on n vertices and C_n is a circuit on n vertices. In a graph a leaf or pendent vertex is a vertex of valency one and a stem is a vertex adjacent to at least one leaf. In K_2 a vertex is both a leaf and a stem. The set of leaves in T is denoted by $\Omega(T)$. By $K_{1,k}$ we denote a star with one central vertex joined to k other vertices. A subdivided star is a star with a subdivision vertex on each edge. A graph G is called a **corona graph** if each vertex of G is a leaf or a stem adjacent to exactly one leaf. For

a corona graph we write $G = H \circ K_1$, where H is the subgraph in G spanned by all stems in G. If H is a tree we obtain a **corona tree** $T = H \circ K_1$.

The eccentricity e(x) of a vertex x is the distance to a vertex at maximum distance from it, $e(x) = \max\{d(x,y)|y \in V(G)\}$. The diameter of G is $\dim(G)=\max\{e(x)|x \in V(G)\}$. Let $D \subseteq V(G)$, then N(D) is the set of vertices which have a neighbour in D and N[D] is the set of vertices which are in D or have a neighbour in D, $N[D] = D \cup N(D)$. A set $D \subseteq V(G)$ dominates G if $V(G) \subseteq N[D]$, i.e. each vertex not in D is adjacent to a vertex in D. The domination number $\gamma(G)$ is the cardinality of a smallest dominating set in G.

Ore (1962) proved the inequality below and Payan and Xuong (1982), Fink et al. (1985) determined its extremal graphs.

Theorem (Ore, Payan, Xuong). Let G be a connected graph with n vertices, $n \ge 2$. Then $\gamma(G) \le \frac{n}{2}$ and equality holds if and only if G is either a corona graph or a 4-circuit.

If a tree T has $\gamma(T) = \frac{n}{2}$, then n is even and this Theorem implies that T is a corona tree.

<u>Definition</u> For a positive integer k and a graph G with at most k components we define

$$\gamma_c^k(G) = \min\{|D||D \subseteq V(G), D \text{ has at most } k \text{ components and } D \text{ dominates } G\}.$$

A set D attaining the minimum above is called a γ_c^k -set for G. Example

$$\gamma_c^k(P_n) = \gamma_c^k(C_n) = \begin{cases} n - 2k & \text{for } n \ge 3k \\ \lceil \frac{n}{3} \rceil & \text{for } 1 \le n \le 3k \end{cases}$$

For k = 1 we have that γ_c^1 is the usual connected domination number, $\gamma_c^1(G) = \gamma_c(G)$. For G connected and $k \ge 1$, obviously, $\gamma(G) \le \gamma_c(G) \le \gamma_c(G)$.

2 General graphs

Let G be a connected graph with n vertices and k a positive integer. Let $\varepsilon_F(G)$ be the maximum number of leaves among all spanning forests of G, let $\varepsilon_T(G)$ be the maximum number of leaves among all spanning trees of G. Then Niemen (1974) proved statement (i) below about γ and (Hedetniemi and Laskar (1984) generalized it to statement (ii) about γ_c .

(i)
$$\gamma(G) = n - \varepsilon_F(G)$$
,

(ii)
$$\gamma_c(G) = n - \varepsilon_T(G)$$
.

We extend these results to γ_c^k .

Theorem 1 Let G be a connected graph with n vertices and k a positive integer. Let $\varepsilon_{F_k}(G)$ be the maximum number of leaves among all spanning forests of G with at most k trees. Then $\gamma_c^k(G) = n - \varepsilon_{F_k}(G)$.

Proof: In any spanning forest F with at most k trees the leaves will be dominated by their stems, so $\gamma_c^k(G) \le n - |\Omega(F)|$ and hence $\gamma_c^k(G) \le n - \varepsilon_{F_k}(G)$.

Conversely, let $D = D_1 \cup D_2 \cup \cdots \cup D_t$, $1 \le t \le k$, be a γ_c^k -set for G. Choose for each D_i a spanning tree $T_i, 1 \le i \le t$. For each vertex in V(G) - D choose one edge to D. We have constructed a spanning forest F with t components and at least $n - |D| = n - \gamma_c^k(G)$ leaves. Therefore $\varepsilon_{F_k}(G) \ge n - \gamma_c^k(G)$ and Theorem 1 is proven.

Theorem 2 Let k be a positive integer and G a connected graph. Then

$$\begin{aligned} \gamma_c^k(G) &= \min \left\{ \gamma_c^k(F_k) | F_k \text{ is a spanning forest of } G \text{ with at most } k \text{ trees } \right\} \\ &= \min \left\{ \gamma_c^k(T) | T \text{ is a spanning tree of } G \right. \end{aligned}$$

Proof: Let F_k be a spanning forest of G with at most k trees. Certainly $\gamma_c^k(G) \leq \gamma_c^k(F_k)$ since a set which dominates in F_k also dominates in G. Conversely, we can in G find a spanning forest F_k with at most k components such that $\gamma_c^k(G) = \gamma_c^k(F_k)$: As was also done in the proofs of (i) and (ii) above we construct F_k from a γ_c^k -set $D = D_1 \cup D_2 \cup \cdots \cup D_t$, $1 \leq t \leq k$, by choosing a spanning tree T_i in each connected subgraph D_i and joining each vertex in V(G) - D to precisely one vertex in D. Obviously, $\gamma_c^k(F_k) \leq |D| = \gamma_c^k(G)$. This proves the first equality. For the second equality we observe that the first minimum is chosen among a larger set, so that $\min \gamma_c^k(F_k) \leq \min \gamma_c^k(T)$, and secondly that any F_k by addition of edges renders a tree T with $\gamma_c^k(T) \leq \gamma_c^k(F_k)$.

Hartnell and Vestergaard (2003a) proved the following result. Theorem (Hartnell, Vestergaard). For $k \ge 1$ and G connected

$$\gamma_c(G) - 2(k-1) \le \gamma_c^k(G) \le \gamma_c(G).$$

From this theorem we can easily derive the following classical result proven by Duchet and Meyniel (1982).

Corollary (Duchet, Meyniel) For any connected graph G, $\gamma_c(G) \leq 3\gamma(G) - 2$. **Proof:** Let G be a connected graph with domination number $\gamma(G)$. Choose $k = \gamma(G)$, then $\gamma_c^k(G) = \gamma(G)$. Substituting into Hartnell's and Vestergaard's theorem above we obtain $\gamma_c(G) - 2(k-1) \leq \gamma(G)$ and that proves the corollary.

2.1 Other bounds on γ_c^k

Theorem 3 For a positive integer k and a connected graph G with maximum valency Δ we have (A) $\gamma_c(G) \leq n - \Delta$ and for trees T equality holds if and only if T has at most one vertex of valency ≥ 3 . (B) $\gamma_c^k(G) \leq n - \frac{(D-1)(\delta-2)}{3} - 2k$ if G has diameter $D \geq 3k-1$ and the minimum valency $\delta = \delta(G)$ is at least 3.

(C) If G is a connected graph with two vertices of valency Δ at distance d apart, $d \geq 3$, then $\gamma_c^k(G) \leq 1$

$$n-2(\Delta-1)-2\min\{k-1,\frac{d-2}{3}\}.$$

(D) Let $x \in V(G)$ have valency d(x) and eccentricity e(x). Then $\gamma_c^k(G) \le n - d(x) - 2\min\{k-1, \frac{e(x)-2}{3}\}$.

Proof: (A). Let T be a spanning tree of G with $\Delta(T) = \Delta(G) = \Delta$. T has at least Δ leaves, and hence $\gamma_c(G) \leq \gamma_c(T) \leq n - \Delta.$

If T has two vertices of valency ≥ 3 , the number of leaves in T will be larger than Δ , and we get strict inequality in (A). Clearly, a tree T with exactly one vertex of valency $\Delta \geq 3$ has equality in (A) and for $\Delta = 2$, $\gamma_c(P_n) = n - 2$.

(B). Let $P = v_1 v_2 v_3 \dots v_{3t+u}$, $k \le t, 0 \le u \le 2$, be a diagonal path in G. P has length D = 3t + u - 1. For i = 1, ..., t let v_{3i-1} have neighbours v_{3i-2}, v_{3i} and $a_{ij}, j = 1, ..., j \ge \delta - 2 \ge 1$. In $G - \{v_{3i}v_{3i+1} | 1 \le \delta - 2 \ge 1\}$ $i \le k-1$ consider the k-1 disjoint stars with center v_{3i-1} and neighbours $N(v_{3i-1}), 1 \le i \le k-1$, and the tree consisting of the path $v_{3k-2}v_{3k-1}v_{3k}\dots v_{3i+u}$ and leaves $v_{3i-1}a_{3i-1,j}, j=1,\dots$ from vertices $v_{3i-1}, k \leq i \leq t$.

Extend this forest of k trees to a spanning forest F with k trees in $G - \{v_{3i}v_{3i+1} | 1 \le i \le k-1\}$. The number of leaves in F is at least $t(\delta - 2) + 2k$ and hence $\gamma_c^k(G) \le n - t(\delta - 2) - 2k$. From $t = \frac{D + 1 - u}{2} \ge 1$ $\frac{D-1}{3} \text{ we obtain } \gamma_c^k(G) \le n - \frac{(D-1)(\delta-2)}{3} - 2k.$ (C). Let $d(v_1) = d(v_s) = \Delta$ and let $P = v_1 v_2 \dots v_s$ be a shortest $v_1 v_s$ -path, $s = 3t + 1 + u, t \ge 1, 0 \le u \le 2$.

 $t \ge k-1$: In $G - \{v_{3i-1}v_{3i} | 1 \le i \le k-2\}$ we extend the k trees below to a spanning forest F of G,

- 1. The star consisting of v_1 joined to all its neighbours,
- 2. the k-2 paths of length two $v_{3i}v_{3i+1}v_{3i+2}$, $1 \le i \le k-2$,
- 3. the path $v_{3k-3}v_{3k-2}...v_s$ together with all $\Delta 1$ neighbours of v_s outside of P.

F will have at least $2(\Delta - 1) + 2(k - 1)$ leaves.

$$\underline{t \leq k-2} : s = 3t+1+u, d = d(v_1, v_s) = s-1 = 3t+u, t-1 = \frac{d-u}{3}-1 \geq \frac{d-2}{3}-1.$$
 As before, we can find a spanning forest F of G whose number of leaves is at least $2\Delta + 2(t-1) \geq 2(\Delta - 1) + 2\frac{d-2}{3}$ and consequently $\gamma_c^k(G) \leq n-2(\Delta - 1)-2\frac{d-2}{3}$. The proof of (D) is similar.

3 **Trees**

For trees Hartnell and Vestergaard (2003a) found

Theorem (Hartnell, Vestergaard). Let k be a positive integer and T a tree with $|V(T)| = n, n \ge 2k + 1$. Then $\gamma_c^k(T) \leq n-k-1$.

This inequality is best possible. For k=1 the extremal trees are paths P_n and for $k\geq 2$ extremal trees will be described in the following Theorem 4.

A tree is of type A if T contains a vertex x_0 such that $T - x_0$ is a forest of trees $T_1, T_2, \dots, T_{\alpha}, \alpha \ge 1$, such that each tree T_i is a corona tree and x_0 is joined to a stem in each of the trees T_i , $1 \le i \le \alpha$. We note that a subdivision of a star is a tree of type A.

A tree is of type B if T contains a path uvw such that $T - \{u, v, w\}$ is a forest of corona trees $T_1, T_2, \ldots, T_s, T_{s+1}, \ldots, T_{\alpha}, \alpha \ge 2, 1 \le s < \alpha$ and u is joined to a stem in each of the trees T_1, T_2, \ldots, T_s , while w is joined to a stem in each of the trees $T_{s+1}, \ldots, T_{\alpha}$.

The t heorem below was proven by Randerath and Volkmann (1998) and Baogen et al. (2000).

Theorem (Randerath, Volkmann, Baogen, Cockayne, et al.). If T is a tree with n vertices, n odd, and $\gamma(T) = \lfloor \frac{n}{2} \rfloor$ then T is a tree of type A or B.

We shall now determine the trees extremal for Hartnell, Vestergaard's Theorem.

Theorem 4 Let $k \ge 2$ be a positive integer and T a tree with n vertices, $n \ge 2k+1$. Then $\gamma_c^k(T) = n-k-1$ if and only if one of cases (i)-(iii) below occur.

if and only if one of cases (i)-(iii) below occur.
(i)
$$k = \frac{n-1}{2}$$
, $\gamma_c^k(T) = \gamma(T) = \frac{n-1}{2}$ and T is of type A or B.

(ii)
$$k = \frac{n-2}{2}$$
, $\gamma_c^k(T) = \gamma(T) = \frac{n}{2}$ and T is a corona tree.

(iii)
$$k = \frac{n-3}{2}$$
, $\gamma_c^k(T) = \frac{n+1}{2}$, $\gamma(T) = \frac{n-1}{2}$ and T is a star $K_{1,k+1}$ with a subdivision vertex on each edge.

Proof: Let $k \ge 2$ and a tree T of order n be given such that $n \ge 2k+1$ and $\gamma_c^k(T) = n-k-1$. We shall prove that one of cases (i)-(iii) must occur.

We note that $\gamma(T) \leq k$ as well as $\gamma_c^k(T) \leq k$ implies $\gamma_c^k(T) = \gamma(T)$. We also note that for $k \geq 1$ and a tree T of order $n \geq 2$ we either have $n \geq 2k+1$ and then $\gamma_c^k(T) \leq n-k-1$ by Hartnell, Vestergaard's Theorem or $2 \leq n \leq 2k$ and $\gamma_c^k(T) = \gamma(T) \leq \frac{n}{2}$ by Ore, Payan, Xuong's Theorem.

If n=2k+1 we have $\gamma_c^k(T)=n-k-1=k$. By the remark above $\gamma(T)=k=\lfloor \frac{n}{2} \rfloor$ and from the Theorem by Randerath et al. we see that T is a tree of type A or B, so (i) occurs. If n=2k+2 we have $\gamma_c^k(T)=n-k-1=k+1$ and $\gamma(T)=\gamma_c^k(T)=\frac{n}{2}$, so T by Ore, Payan, Xuong's Theorem is a corona tree and (ii) occurs. We may now assume $n \geq 2k+3$.

Let $v_1v_2\ldots v_\alpha$ be a longest path in T. Since $\gamma_c^k(T)=n-k-1\geq k+2\geq 4$, T is neither a star nor a bistar, so $\alpha\geq 5$. We have $d_T(v_2)=2$. Otherwise $d_T(v_2)\geq 3$ and we could from T delete three leaves adjacent to v_2 if $d_T(v_2)\geq 4$ and in case $d_T(v_2)=3$ we could delete v_2 and two leaves adjacent to it obtaining in both cases a tree T' of order $n-3\geq 2(k-1)+1$ which by Harntell, Vestergaard's Theorem has $\gamma_c^{k-1}(T')\leq (n-3)-(k-1)-1\leq n-k-3$. Adding v_2 to a $\gamma_c^{k-1}(T')$ -set we would obtain $\gamma_c^k(T)\leq n-k-2$, a contradiction so $d_T(v_2)=2$. No leaf is adjacent to v_3 because, if c were a leaf adjacent to v_3 let d denote either another leaf adjacent to v_3 or let $d=v_3$ if no other leaf exists. Consider $T'=T-\{v_1,v_2,c,d\}$. T' has order $n-4\geq 2(k-1)+1$ and by Hartnell, Vestergaard's Theorem $\gamma_c^{k-1}(T')\leq (n-4)-(k-1)-1\leq n-k-4$. Adding v_2,v_3 to a $\gamma_c^{k-1}(T')$ -set we obtain $\gamma_c^k(T)\leq n-k-2$, a contradiction, so v_3 is not a stem. On the other hand $d_T(v_3)\geq 3$, for assume $d_T(v_3)=2$, then $T'=T-\{v_1,v_2,v_3\}$ has $\gamma_c^{k-1}(T')\leq n-k-3$ and addition of v_2 gives $\gamma_c^k(T)\leq n-k-2$, a contradiction. Assume therefore that v_3 besides v_2 and v_4 is adjacent to a_1,a_2,\ldots,a_t , $t\geq 1$, where each a_i has valency two and is adjacent to the leaf $b_i,1\leq i\leq t$. We have $k-t\geq 1$ because $V(T)-\{v_1,b_1,b_2,\ldots,b_t,v_3\}$ is a connected subgraph with n-t-2 vertices which dominate T, so that $n-k-1=\gamma_c^k(T)\leq n-t-2$ giving $k-t\geq 1$. Consider the tree $T'=T-\{v_1,v_2,a_1,a_2,\ldots,b_1,b_2,\ldots,b_t,v_3\}$ of order n-2t-3. If $n-2t-3\geq 2(k-t)+1$ we obtain by Hartnell, Vestergaard's Theorem that $\gamma_c^{k-1}(T')\leq (n-2tk-3)-(k-t)-1\leq n-k-t-4$, and adding t+2 vertices $\{v_2,v_3,a_1,a_2,\ldots,a_t\}$, forming one component, to a $\gamma_c^{k-1}(T')$ -set we obtain $\gamma_c^k(T)\leq n-k-2$,

a contradiction. So we have $n-2t-3 \le 2(k-t)$ and by an earlier remark $\gamma_c^{k-t}(T') \le \frac{n-2t-3}{2}$. That implies $n-k-1 = \gamma_c^k(T) \le \frac{n-2t-3}{2} + t + 2 = \frac{n+1}{2}$ or $n \le 2k+3$. Together with the assumption $n \ge 2k+3$ we get n=2k+3. Then $\gamma_c^k(T)=k+2$ and we have $\gamma(T) \le k+1$ by Ore, Payan, Xuong's Theorem. Thus $\gamma(T)=k+1$ and any $\gamma(T)$ -set consists of k+1 isolated vertices. As $\gamma(T)=\lfloor \frac{n}{2} \rfloor$ the tree T is of type A or B. But T cannot be of type B, for assume T is of type B. Then T consists of a 3-path, uvw, with each of its ends joined to stems of corona trees, and since we have just seen that $v_3, v_{\alpha-2}$ are neither stems nor leaves, they must play the role of u, w, so $\alpha=7$ and T consists of two subdivided stars centered at $u=v_3$ and $w=v_5$ and a vertex $v=v_4$ joined to u and w. This graph T has a γ -set with two adjacent vertices v_2 and v_3 , a contradiction, so T is of type A. Using, in analogy to v_2, v_3 , that $d_T(v_{\alpha-1})=2$ and that $v_{\alpha-2}$ is not a stem, we get that $\alpha=5$ and T is a subdivided star so that (iii) occurs.

Conversely, it is easy to see that if (i), (ii) or (iii) holds then $\gamma_c^k(T) = \gamma(T) = n - k + 1$. This proves Theorem 4.

References

- X. Baogen, E. Cockayne, T. Haynes, S. Hedetniemi, and Z. Shangchao. Extremal graphs for inequalities involving domination parameters. *Discrete Math.*, 216(1-3):1–10, 2000.
- P. Duchet and H. Meyniel. On hadwiger's number and stability number. *Ann. Discr. Math.*, 13:71–74, 1982.
- J. F. Fink, M. S. Jacobsen, L. F. Kinch, and J. Roberts:. On graphs having domination number half their order. *Period. Math. Hungar.*, pages 287–293, 1985.
- B. Hartnell and P. Vestergaard. Dominating sets with at most *k* components. *Ars Combinatoria*, 2003a. Accepted for publication.
- B. Hartnell and P. Vestergaard. Partitions and domination in a graph. J. of Combin. Math and Combin. Comput. JCMCC, 46:113–128, 2003b.
- S. Hedetniemi and R. Laskar. Connected domination in graphs. B. Bollabas, ed.: Graph theory and Combinatorics. Academic Press, London, 1984.
- J. Niemen. Two bounds for the domination number of a graph. J. Inst. Math. Applics., 13:183-187, 1974.
- O. Ore. Theory of Graphs, volume 38 of Amer. Soc. Colloq. Publ. Amer. Math. Soc., Providence, RI, 1962.
- C. Payan and N. H. Xuong. Domination-balanced graphs. Journal of Graph Theory, 6:23-32, 1982.
- B. Randerath and L. Volkmann. Characterization of graphs with equal domination and covering number. *Discrete Math.*, 191(1-3):159–169, 1998.

- Z. Tuza and P. Vestergaard. Domination in partitioned graphs. *Discussiones Mathematicae Graph Theory*, 22:199–210, 2002.
- T.W.Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, 1998.

RAPPORTS INTERNES AU LRI - ANNEE 2003

N°	Nom	Titre	Nbre de pages	Date parution
1345	FLANDRIN E LI H WEI B	A SUFFICIENT CONDITION FOR PANCYCLABILITY OF GRAPHS	16 PAGES	01/2003
1346	BARTH D BERTHOME P LAFOREST C VIAL S	SOME EULERIAN PARAMETERS ABOUT PERFORMANCES OF A CONVERGENCE ROUTING IN A 2D-MESH NETWORK	30 PAGES	01/2003
1347	FLANDRIN E- LI H MARCZYK A WOZNIAK M	A CHVATAL-ERDOS TYPE CONDITION FOR PANCYCLABILITY	12 PAGES	01/2003
1348	AMAR D FLANDRIN E GANCARZEWICZ G WOJDA A P	BIPARTITE GRAPHS WITH EVERY MATCHING IN A CYCLE	26 PAGES	01/2003
1349	FRAIGNIAUD P GAURON P	THE CONTENT-ADDRESSABLE NETWORK D2B	26 PAGES	01/2003
1350	FAIK T SACLE J F	SOME b-CONTINUOUS CLASSES OF GRAPH	14 PAGES	01/2003
1351	FAVARON O HENNING M A	TOTAL DOMINATION IN CLAW-FREE GRAPHS WITH MINIMUM DEGREE TWO	14 PAGES	01/2003
1352	HU Z LI H	WEAK CYCLE PARTITION INVOLVING DEGREE SUM CONDITIONS	14 PAGES	02/2003
1353	JOHNEN C TIXEUIL S	ROUTE PRESERVING STABILIZATION	28 PAGES	03/2003
1354	PETITJEAN E	DESIGNING TIMED TEST CASES FROM REGION GRAPHS	14 PAGES	03/2003
1355	BERTHOME P DIALLO M FERREIRA A	GENERALIZED PARAMETRIC MULTI-TERMINAL FLOW PROBLEM	18 PAGES	03/2003
1356	FAVARON O HENNING M A	PAIRED DOMINATION IN CLAW-FREE CUBIC GRAPHS	16 PAGES	03/2003
1357	JOHNEN C PETIT F TIXEUIL S	AUTO-STABILISATION ET PROTOCOLES RESEAU	26 PAGES	03/2003
1358	FRANOVA M	LA "FOLIE" DE BRUNELLESCHI ET LA CONCEPTION DES SYSTEMES COMPLEXES	26 PAGES	04/2003
1359	HERAULT T LASSAIGNE R MAGNIETTE F PEYRONNET S	APPROXIMATE PROBABILISTIC MODEL CHECKING	18 PAGES	01/2003
1360	HU Z LI H	A NOTE ON ORE CONDITION AND CYCLE STRUCTURE	10 PAGES	04/2003
1361	DELAET S DUCOURTHIAL B TIXEUIL S	SELF-STABILIZATION WITH r-OPERATORS IN UNRELIABLE DIRECTED NETWORKS	24 PAGES	04/2003
1362	YAO J Y	RAPPORT SCIENTIFIQUE PRESENTE POUR L'OBTENTION D'UNE HABILITATION A DIRIGER DES RECHERCHES	72 PAGES	07/2003
1363	ROUSSEL N EVANS H HANSEN H	MIRRORSPACE: USING PROXIMITY AS AN INTERFACE TO VIDEO-MEDIATED COMMUNICATION	10 PAGES	07/2003

RAPPORTS INTERNES AU LRI - ANNEE 2003

N°	Nom	Titre	Nbre de pages	Date parution
1364	GOURAUD S D	GENERATION DE TESTS A L'AIDE D'OUTILS COMBINATOIRES : PREMIERS RESULTATS EXPERIMENTAUX	24 PAGES	07/2003
1365	BADIS H AL AGHA K	DISTRIBUTED ALGORITHMS FOR SINGLE AND MULTIPLE-METRIC LINK STATE QoS ROUTING	22 PAGES	07/2003
1366	FILLIATRE J C	WHY: A MULTI-LANGUAGE MULTI-PROVER VERIFICATION TOOL	20 PAGES	09/2003
1367	FILLIATRE J C	A THEORY OF MONADS PARAMETERIZED BY EFFECTS	18 PAGES	09/2003
1368	FILLIATRE J C	HASH CONSING IN AN ML FRAMEWORK	14 PAGES	09/2003
1369	FILLIATRE J C	DESIGN OF A PROOF ASSISTANT : COQ VERSION 7	16 PAGES	09/2003
1370	HERMAN T TIXEUIL S	A DISTRIBUTED TDMA SLOT ASSIGNMENT ALGORITHM FOR WIRELESS SENSOR NETWORKS	32 PAGES	09/2003
1371	RIGAUX P SPYRATOS N	GENERATION AND SYNDICATION OF LEARNING OBJECT METADATA	32 PAGES	10/2003
1372	APPERT C BEAUDOUIN-LAFON M MACKAY W E	CONTEXT MATTERS : EVALUATING INTERACTION TECHNIQUES WITH THE CIS MODEL	14 PAGES	10/2003
1373	BLANCH R GUIARD Y BEAUDOUIN-LAFON M	SEMANTIC POINTING : IMPROVING TARGET ACQUISITION WITH CONTROL-DISPLAY RATIO ADAPTATION	12 PAGES	10/2003
1374	FORGE D KOUIDER M	COVERING OF THE VERTICES OF A GRAPH BY SMALL CYCLES	16 PAGES	10/2003