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As a generalization of connected domination in a graph G we consider domination by sets having at most & compo-
nents. The order Y5(G) of such a smallest set we relate to y(G), the order of a smallest connected dominating set.
For a tree 7' we give bounds on ¥5(T") in terms of minimum valency and diameter. For trees the inequality yﬁ(T) <
n—k—1 is known to hold, we determine the class of trees, for which equality holds.
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1 Introduction

We consider simple non-oriented graphs. The largest valency in G is denoted by A(G) = A, the smallest
by 8(G) = 8. P, is a path on n vertices and C, is a circuit on n vertices. In a graph a leaf or pendent
vertex is a vertex of valency one and a stem is a vertex adjacent to at least one leaf. In K7 a vertex is both
a leaf and a stem. The set of leaves in 7" is denoted by Q(T). By K;x we denote a star with one central
vertex joined to k other vertices. A subdivided star is a star with a subdivision vertex on each edge. A
graph G is called a corona graph if each vertex of G is a leaf or a stem adjacent to exactly one leaf. For
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a corona graph we write G = H o K|, where H is the subgraph in G spanned by all stems in G. If H is a

tree we obtain a corona tree T = H o K].
The eccentricity e(x) of a vertex x is the distance to a vertex at maximum distance from it, e(x) =

max{d(x,y)|y € V(G)}. The diameter of G is diam(G)=max{e(x)|x € V(G)}. Let D C V(G), then N(D)
is the set of vertices which have a neighbour in D and N[D] is the set of vertices which are in D or have a
neighbour in D, N[D] = DUN(D). A set D C V(G) dominates G if V(G) C N[D], i.e. each vertex not in
D is adjacent to a vertex in D. The domination number (G) is the cardinality of a smallest dominating

setin G.
Ore (1962) proved the inequality below and Payan and Xuong (1982), Fink et al. (1985) determined its

extremal graphs.
n
Theorem (Ore, Payan, Xuong). Let G be a connected graph with n vertices, n > 2. Theny(G) < 2 and

equality holds if and only if G is either a corona graph or a 4-circuit.
Ifatree T has y(T) = E, then n is even and this Theorem implies that T is a corona tree.

Definition For a positive integer k and a graph G with at most k components we define

¥(G) = min{|D||D C V(G),D has at most k components and D dominates G}.

A set D attaining the minimum above is called a v:-set for G.
Example

n—2k for n>3k
Ve(Pa) =¥:(Co) = 151 for 1Sn<3

For k = 1 we have thaty! is the usual connected domination number, 'yé(G) =v.(G).
For G connected and & > 1, obviously, Y(G) < ¥¥(G) < v.(G).

2 General graphs

Let G be a connected graph with n vertices and k a positive integer. Let ¢ (G) be the maximum number of
leaves among all spanning forests of G, let €7 (G) be the maximum number of leaves among all spanning
trees of G. Then Niemen (1974) proved statement (i) below about y and (Hedetniemi and Laskar (1984)

generalized it to statement (ii) about 7,.
@ Y(G) =n—er(G),
(i) v.(G) =n—er(G).

We extend these results to .,

Theorem 1 Let G be a connected graph with n vertices and k a positive integer. Let €, (G) be the
maximum number of leaves among all spanning forests of G with at most k trees. Then

Y(G) = n—eg,(G).
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Proof: In any spanning forest F' with at most k trees the leaves will be dominated by their stems, so
Y¥(G) < n—|Q(F)| and hence ¥ (G) < n— er,(G).

Conversely,letD=D,UDyU---UD,, 1 <t<k,bea Vé-set for G. Choose for each D; a spanning tree
T;,1 <i <t.For each vertex in V (G) — D choose one edge to D. We have constructed a spanning forest
with ¢ components and at least n — |D| = n —v£(G) leaves. Therefore €r, (G) > n—1(G) and Theorem 1
1S proven. O

Theorem 2 Let k be a positive integer and G a connected graph. Then

Y(G) = min { V¥ (Fy)|Fy is a spanning forest of G with at most k trees }
=min {¥¥(T)|T is a spanning tree of G }

Proof: Let F; be a spanning forest of G with at most & trees. Certainly ¥$(G) < ¥X(Fy) since a set which
dominates in F; also dominates in G. Conversely, we can in G find a spanning forest Fy with at most &
components such that ¥$(G) = +£(F;): As was also done in the proofs of (i) and (ii) above we construct F
from a'(c‘ -setD=D1UDyU-+-UDy, 1 £t <k, by choosing a spanning tree 7; in each connected subgraph
D; and joining each vertex in V (G) — D to precisely one vertex in D. Obviously, () < |D| = +(G).
This proves the first equality. For the second equality we observe that the first minimum is chosen among
a larger set, so that miny%(F;) < miny¥(T), and secondly that any F} by addition of edges renders a tree

T with Y5(T) < ¥ (Fe). 0

Hartnell and Vestergaard (2003a) proved the following result.
Theorem (Hartnell, Vestergaard). For k > 1 and G connected

e(G) —2(k—1) S%(G) £ %.(G).

From this theorem we can easily derive the following classical result proven by Duchet and Meyniel
(1982).

Corollary (Duchet, Meyniel) For any connected graph G, v:(G) < 3y(G) — 2.
Proof: Let G be a connected graph with domination number y(G). Choose k =y(G), then 1¢(G) =¥(G).
Substituting into Hartnell’s and Vestergaard’s theorem above we obtain .(G) —2(k— 1) < ¥(G) and that
proves the corollary. o

2.1 Other bounds on ¥

Theorem 3 For a positive integer k and a connected graph G with maximum valency A we have
(A)v.(G) < n— A and for trees T equality holds if and only if T has at most one vertex of valency > 3.

(B)/\{g(G) Sn_w

3
at least 3.
(C) If G is a connected graph with two vertices of valency A at distance d apart, d > 3, then ¥5(G) <

— 2k if G has diameter D > 3k — 1 and the minimum valency 8 = 8(G) is



4 Mekkia Kouider and Preben Dahl Vestergaard

d-2

n—2(A- 1)~2min{k—1,-3—}.

(D) Let x € V(G) have valency d(x) and eccentricity e(x). Theny:(G) < n—d(x) —2min{k—1,

b

Proof: (A). Let T be a spanning tree of G with A(T) = A(G) = A. T has at least A leaves, and hence
Ye(G) £1e(T) <n—A.

If T has two vertices of valency > 3, the number of leaves in 7" wil be larger than A, and we get strict
inequality in (A). Clearly, a tree T with exactly one vertex of valency A > 3 has equality in (A) and for
A=2,v(P)=n—2.

(B). Let P =vivavs.. V34, k <1,0<u <2,beadiagonal path in G. P has length D =3¢+ u -1, For
i=1,...,t let v3;_1 have neighbours v3;_3,v3; and ajj, j=1,..., j=>8-2>1.InG—{vav3i41|l <
i < k— 1} consider the k — 1 disjoint stars with center v3;,—; and neighbours N(v3;—1), 1 <i<k-1,
and the tree consisting of the path va;_3vag_1vag... Va4, and leaves vy _1a3-1,;, j=1,... from vertices
vai-1, k<i<t.

Extend this forest of k trees to a spanning forest F with k trees in G — {v3v3i+1|1 <i<k—1}. The
e
number of leaves in F is at least #(8 — 2) -+ 2k and hence ¥£(G) < n—1(8 —2) — 2k. From t = B%J >

_(2-1)(-2)

e(x)—2
3

we obtain ¥(G) < n —2k.
(C). Letd(vy) =d(vs) =Aand let P = vivy...v, be a shortest vy vs-path, s =3t +1+u,t > 1,0 < u < 2.
t > k—1:In G—{v3i—1vy|l <i < k—2} we extend the k trees below to a spanning forest F of G,

1. The star consisting of v; joined to all its neighbours,
2. the k — 2 paths of length two v3;v3i 1 vai2, 1 <i<k-—2,
3. the path v3;_3v3;_7...v; together with all A — 1 neighbours of v, outside of P.

F will have at least 2(A — 1) +2(k — 1) leaves.

t<k—25s=3+1+ud=d(vi,vs) =s—1=3t+ut—1= d;u_ 1> E — 1. As before, we
d—2

can find a spanning forest F' of G whose number of leaves is at least 2A+2(r— 1) > 2(A —1) +2-§—
and consequently ¥£(G) <n—2(A—1) — 2d3;2. The proof of (D) is similar. o

3 Trees

For trees Hartnell and Vestergaard (2003a) found

Theorem (Hartnell, Vestergaard). Let k be a positive integer and T a tree with |V (T)| =n,n > 2k+1.
Then¥(T) <n—k—1.

This inequality is best possible. For k = 1 the extremal trees are paths P, and for k > 2 extremal trees
will be described in the following Theorem 4.

A tree is of type A if T contains a vertex xp such that T —xp is a forest of trees 71,73,..., Ty, o > 1,
such that each tree 7; is a corona tree and xp is joined to a stem in each of the trees 7;, 1 < i < o. We note
that a subdivision of a star is a tree of type A.
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A tree is of type B if T contains a path uvw such that T — {u,v,w} is a forestof corona trees T, T3, ... ., Ty,
Ti1,5- -9 T, @ > 2,1 < s < ot and u is joined to a stem in each of the trees 7,73, .. ., Ty, while w is joined
to a stem in each of the trees Ty1q,...,7q.

The t heorem below was proven by Randerath and Volkmann (1998) and Baogen et al. (2000).

Theorem (Randerath VYolkmann, Baogen, Cockayne, et al.). If T is a tree with n vertices, n odd,
and y(T) = L | then T is a tree of type A or B.

We shall now determine the trees extremal for Hartnell, Vestergaard’s Theorem.

Theorem 4 Letk >2 be a positive integer and T a tree with n vertices, n > 2k+1. Then{<(T) =n—k—1
if and only if one of cases (i)-(iii) below occur.

1 i
(i) k= -’L»-—,fc‘(T) =v(T) = n2 : and T is of type A or B.

{u)]c—

T =v(T) = ; and T is a corona tree.

Ty =" 1) =2

Proof: Letk > 2 and a tree T of order n be given such that n > 2k + 1 and ¥¥(T) = n — k — 1. We shall
prove that one of cases (i)-(iii) must occur.

We note that Y(T') < k as well as ¥£(T) < k implies ¥¥(T) =7(T). We also note that for k > 1 and a tree
T of order n > 2 we either have n > 2k + 1 and then ¥5(7') < n—k— 1 by Hartnell, Vestergaard's Theorem

or2 <n<2kand ¥ (T) =y(T) < ’—I by Ore, Payan, Xuong’s Theorem.

and T is a star K jy1 with a subdvision vertex on each edge.

(iz_'i)k= 5

If n=2k+1 we have ¥5(T) =n—k—1 = k. By the remark above y(T) = k = L J and from the
Theorem by Randerath et al. we see that T is a tree of type A or B, so (i) occurs. If n = 2k + 2 we have
Y(T)=n—k—1=k+1and YWT) =(T) = =, so T by Ore, Payan, Xuong’s Theorem is a corona tree

and (ii) occurs. We may now assume n > 2k + 3

Letvivy...vy be alongest pathin 7. Since yf_f(T) =n—k—12>k+2>4,T is neither a star nor a bistar,
0 @ > 5. We have dr(v;) = 2. Otherwise dr(v2) > 3 and we could from T delete three leaves adjacent to
vy if dr(v2) > 4 and in case dr(v2) = 3 we could delete v, and two leaves adjacent to it obtaining in both
cases a tree 7’ of order n —3 > 2(k — 1)+ 1 which by Harntell Vestergaard’s Theorem has V"— (T <
(n=3)—(k—1)—1 <n—k—3. Adding v; to a y*~'(7’)-set we would obtain ¥¥(T) < n—k—2, a
contradiction so dr(v;) = 2. No leaf is adjacent to v3 because, if ¢ were a leaf adjacent to v3 let d denote
either another leaf adjacent to v3 or let d = v3 if no other leaf exists. Cons1der Il = T dvsvaiosdh T
has order n— 4 > 2(k—1)+1 and by Hartnell, Vestergaard’s Theorem ¥~ (T") < (n—4) — (k—1) — 1
< n—k—4. Adding vy,v3 to a i1 (77)-set we obtain 4¥(T) < n — k-2, a contradiction, so v3 1s not a
stem. On the other hand dr(v3) > 3, for assume dr(v3) = 2, then 7' =T — {v{,v2,v3} has 7" (T") <
n—k—3 and addition of v, gives '}/‘ < n—k—2, a contradiction. Assume therefore that v3 besides
vz and v4 is adjacent to aj,az,...,a;, t 2 1, where each a; has valency two and is adjacent to the leaf
bi,1 <i<t. We have k—t > 1 because V(T) — {vi,b1,b2,...,b;,v3} is a connected subgraph with
n—t—2 vertices which dominate T, so that n —k — 1 =4*(T) < n—t—2 giving k— > 1. Consider the
tree 7' =T — {vi,v2,a1,a2,...,b1,b2,...,b;,v3} of order n — 2t —3. If n — 2t — 3 > 2(k—t)+ 1 we obtain
by Hartnell, Vestergaard’s Theorem that ¥ (7") < (n— 2tk —3) — (k—t) — 1 < n—k — t — 4, and adding
t+2 vertices {v2,v3,a1,az,...,4; }, forming one component, to a /¥~ (T")-set we obtain ¥(T) < n—k—2,
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—-2t-3
a contradiction. So we have n—2t —3 < 2(k—t) and by an earlier remark ¥ ~(7") < HT That

—2t— 1 :
implies n—k — 1 = ¥4(T) < E—-—E——% +t+2= % or n < 2k+3. Together with the assumption

n>2k+3 we get n = 2k+3. Then ¥5(T) = k+2 and we have ¥(T) < k+ 1 by Ore, Payan, Xuong’s change
n
Theorem. Thus y(T') = k+ 1 and any y(T)-set consists of k+ 1 isolated vertices. Asy(T) = [EJ the tree T’
is of type A or B. But T cannot be of type B, for assume T is of type B. Then T consists of a 3-path , uvw,
with each of its ends joined to stems of corona trees, and since we have just seen that v3,vy—7 are neither
stems nor leaves, they must play the role of u,w, so oo = 7 and T consists of two subdivided stars centered
at u = v3 and w = vs and a vertex v = v4 joined to 1 and w. This graph 7 has a y-set with two adjacent
vertices v; and v, a contradiction, so T is of type A . Using, in analogy to v3,vs, that dy(vg—1) =2 and
that vq—7 1s not a stem, we get that o. = 5 and T is a subdivided star so that (iii) occurs.
Conversely, it is easy to see that if (i), (ii) or (iii) holds then v(7) =y(T) = n—k+ 1. This proves

Theorem 4.
(]
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