
Algorithms for long paths in graphs

Zhao ZHANG∗

College of Mathematics and System Sciences

Xinjiang University

Urumqi, Xinjiang, 830046, CHINA

e-mail: zhzhao@xju.edu.cn

Hao LI†

Laboratoire de Recherche en Informatique

UMR 8623, C.N.R.S.-Université de Paris-sud

91405-Orsay cedex, FRANCE

e-mail: li@lri.fr

Abstract

We obtain a polynomial algorithm in O(nm) time to find a long path in any graph
with n vertices and m edges. The length of the path is bounded by a parameter
defined on neighborhood condition of any three independent vertices of the path.
Example is given to show that this bound is better than several classic results.

1 Introduction and notation

It is a classic problem to find a long path or cycle in a graph. Since finding a hamiltonian
path/cycle in graphs is NP-hard, we are interested in finding a path with large length.

All graphs considered in this paper are undirected and simple. We follow the notation
and terminology in [4]. For a graph G = (V (G), E(G)) and a subgraph H of G, the
neighborhood of a vertex u in H is NH(u) = {v ∈ V (H) : uv ∈ E(G)}. The degree of
u in H is dH(u) = |NH(u)|. In the case H = G, we use N(u) and d(u) instead of NG(u)
and dG(u). For simplicity, the graph itself is used to denote its set of vertices.

For a path P = u1u2...up and two indices i < j, denote by P [ui, uj] = uiui+1...uj,
and P [uj, ui] = ujuj−1...ui. Define P (ui, uj] = P [ui+1, uj], P [ui, uj) = P [ui, uj−1] and
P (ui, uj) = P [ui+1, uj−1]. For any i, u+

i = ui+1 and u−i = ui−1. For A ⊆ P , A+ = {v+|v ∈
A}, A− = {v−|v ∈ A}.

∗The work is partially supported by NSFC (10271101)
†Corresponding author. The work is partially supported by NNSF of China (60373012)

1



We use |P | to denote the number of vertices in a path P . Denote by σ2(G) =
min{d(u) + d(v) : uv /∈ E(G)} and σ3(G) = min{∑3

i=1 d(ui)− |
⋂3

i=1 N(ui)|: {u1, u2, u3}
is an independent set of G}.

A Hamiltonian cycle (path, resp.) is a cycle (path, resp.) containing all vertices of
the graph. A graph G is Hamiltonian if it has a Hamiltonian cycle. For an integer k, a
graph is called k-connected if any two vertices can not be separated by deleting less than
k vertices in the graph.

We begin with the following basic results in Hamiltonian graph theory, which are due
to Dirac, Ore and Flandrin, Jung and Li, respectively.

Theorem 1. [5] Let G be a graph on n ≥ 3 vertices. If the minimum degree δ is at least
n/2, then G is Hamiltonian.

Theorem 2. [10] Let G be a graph on n ≥ 3 vertices. If σ2(G) ≥ n, then G is Hamilto-
nian.

Theorem 3. [6] If G is a 2-connected graph of order n such that σ3(G) ≥ n, then G is
hamiltonian.

These results are generalized to circumferences of the graphs. The circumference c(G)
is the length of a longest cycle in G.

Theorem 4. [5] If G is a 2-connected graph on n ≥ 3 vertices, then c(G) ≥ min {n, 2δ}.
Theorem 5. [1] Let G be a 2-connected graph on n ≥ 3 vertices. Then c(G) ≥ min{n, σ2(G)}.
Theorem 6. [11] Let G be a 3-connected graph with n vertices. Then c(G) ≥ min{n, σ3(G)}.

As a consequence of Theorem 6, we have the following

Corollary 1. Let G be a 2-connected graph with n vertices. Then there exists a path of
at least min{n, σ3(G) + 1} vertices.

Proof. Let D to be a graph obtained from G by adding a new vertex w which is adjacent
to every vertex of G. Then D is 3-connected. By Theorem 6, c(D) ≥ min{n, σ3(D)}.
Since σ3(D) ≥ σ3(G)+2, we see that G has a path of at least c(D)−1 ≥ min{n, σ3(G)+1}
vertices.

Since σ3(G) ≥ σ2(G) ≥ 2δ, we have the following two results:

Corollary 2. Let G be a 2-connected graph with n vertices. Then there exists a path of
at least min{n, σ2(G) + 1} vertices.

Corollary 3. Let G be a 2-connected graph with n vertices. Then there exists a path of
at least min{n, 2δ + 1} vertices.

2



In this paper, we will generalize the above corollaries by giving a new lower bound for
the length of a longest path, using neighborhood condition of three independent vertices,
one of which is an end of the path!

Since the problem of deciding whether a graph has a Hamiltonian path is NP -
complete, it is interesting to find a long path in a network which can be realized by
a polynomial algorithm. Such an algorithm with time complexity O(nm) is given in this
paper, by which we can find a long path with a length related with an end vertex of the
path.

Some notation will be used in this paper. For a subgraph H and three vertices x, y, z,
denote by

ΓH(x, y, z) = dH(x) + dH(y) + dH(z)− |NH(x) ∩NH(y) ∩NH(z)|.
For x ∈ H, denote by

Γ3(x,H) = min{ΓH(x, y, z)| : y, z ∈ H and x, y, z are independent}.
Clearly Γ3(x,H) ≥ σ3(G).

The main result is the following:

Theorem 7. Let G be a 2-connected graph of order n ≥ 3. Then there exists a vertex x
and a path P such that x is one end vertex of P and P contains at least min{n, Γ3(x, P )+
1} vertices. Furthermore, P can be found in O(nm) time.

Theorem 7 is best possible in the following sense. Suppose d, f, r are three integers
with d ≥ 8, 3 ≤ f ≤ d − 5, and r ≥ 2. Let G be the graph obtained from d disjoint
graphs Gi (1 ≤ i ≤ d) with Gi

∼= Kr (1 ≤ i ≤ f) and Gj
∼= K1 (f + 1 ≤ i ≤ d), by adding

edges from Gd−1 and Gd to all the other vertices. It is easy to see that there is a path
P containing all the vertices in Gi (i = 1, 2, 3, d − 1, d) with two end vertices x1 ∈ G1

and x2 ∈ G2 respectively. Clearly, P is a longest path with 3r + 2 = d(x1) + d(x2) +
d(x3)− |N(x1)∩N(x2)∩N(x3)|+ 1 vertices, where x3 is a vertex in G3. So the bound in
Theorem 7 is sharp. Furthermore, the same example shows that our result is better than
the corollaries since σ3(G) = 4 < |P |+ 1.

2 Proof of the main theorem

The idea of our proof of Theorem 7 is as follows. Let P1 = u0u1...up be a maximal path
(in the sense of inclusion of vertices), and P2 = v0v1...vq with

(a) P1 ∩ P2 = {v0} = {uc},
(b) subject to (a), c is as large as possible, and
(c) subject to (a) and (b), q is as large as possible.

3



Then a cycle PV called vine of P1 (which will be defined later) is found. Based on P1, P2

and PV , a path P is constructed such that

vq, up, u0 are three independent vertices on P with (1)

vq or u0 being one end of P , and (2)

N(vq) ∪N(up) ∪N(u0) ⊆ P, (3)

ΓP (vq, up, u0) ≤ |P | − 1. (4)

With these properties, it is easy to see that P is a path with the desired length.

From algorithmic point of view, to find a maximal path P1 needs a lot of work. How-
ever, to ensure that the path P we find has the desired length in Theorem 7, we do not
need all properties of a maximal path. In fact, properties (1) to (4) are essential for
our purpose, and to ensure that P satisfies properties (1) to (4), only nine operations to
extend P1 are sufficient, which are introduced in the following.

Circumstance 1: There is a vertex v ∈ V (G) \V (P1) which is adjacent to one end of P1.
Operation 1: Extend P1 by adding v.

t t t t t t t t t t t tu0 up v u0 up v−→

Figure 1

Circumstance 2: There is a vertex v ∈ V (G) \ V (P1) such that ui ∈ NP1(v) and ui+1 is
connected to v by a path internally disjoint from P1.
Operation 2: Reset P1 = u0u1...uiv...ui+1...up.

t t t t t t

t

t t t t t t

t
t t

u0 ui ui+1 up u0 ui ui+1 up−→

v v

Figure 2

Circumstance 3: u0 is adjacent to up, and V (G) \ V (P1) 6= ∅.
Operation 3: Let v be a vertex in V (G) \ V (P1) which is adjacent to some vertex
ui on P1. Reset P1 = vuiui−1...u0upup−1...ui+1.

t t t t t t

t

t t t t t t

t

u0 ui up u0 ui up−→

v v

Figure 3

4



Circumstance 4: ui ∈ NP1(u0) ∩NP1(up)
+ 6= ∅ and V (G) \ V (P1) 6= ∅.

Operation 4: Reset P1 = ui−1ui−2...u0uiui+1...up,
and then extend it further by Operation 3.

t t t t t t t t t t t t

t

t t t t t t

t

u0 ui up u0 ui up u0 ui up−→ −→

Figure 4

Circumstance 5: There is a vertex ui ∈ N(up) with ui+1 having some neighbor v outside
of P1.
Operation 5: Reset P1 = u0u1...uiupup−1...ui+1v.

t t t t t t

t

t t t t t t

t

u0 ui+1 upui uiu0 ui+1 up−→

v v

Figure 5

Circumstance 6: There is a vertex ui ∈ N(u0) with ui−1 having some neighbor v outside
of P1.
Operation 6: Reset P1 = vui−1ui−2...u0uiui+1...up.

t t t t t t

t

t t t t t t

t

u0 ui upui−1 ui−1u0 ui up−→

v v

Figure 6

Circumstance 7: There is a vertex ui ∈ N(up) with ui−1 having some neighbor v outside
of P1, and there is an index j > i such that uj ∈ N(u0).
Operation 7: Reset P1 = vui−1ui−2...u0ujuj−1...uiupup−1...uj+1.

t t t t t t t t

t

t t t t t t t t

t

u0

ui uj

up u0

ui uj

up−→

v v

ui−1 ui−1

uj+1

Figure 7

Circumstance 8: ui ∈ NP1[u1,uc)(up) ∩NP1[u1,uc)(vq)
+ 6= ∅.

Operation 8: Reset P1 = u0u1...ui−1vqvq−1...v1ucuc+1...upuiui+1...uc−1.

5



t t t t t t t t

t
t

t t t t t t t t

t
t

u0 ui uc up u0 ui uc up−→

Figure 8

Circumstance 9: ui ∈ NP1[u1,uc)(up) ∩NP1[u1,uc)(up)
+ 6= ∅.

Operation 9: Reset P1 = u0u1...ui−1upuiui+1...up−1.

t t t t t t t t t t t t t t t tu0

ui

uc up

ui−1

u0

ui

uc up

ui−1
−→

Figure 9

Note that except for Operation 9, all operations extend P1 by at least one vertex. And
Operation 9 increases c by one.

Algorithm 1.
Input: A connected graph G.
Output: Either a hamiltonian path P1, or two paths P1 and P2 sharing only one common
vertex uc, and P1 can not be extended by Operations 1 to 9.
Step 1. Set P1 = u0 where u0 is an arbitrary vertex in G.
Step 2. Extend P1 repeatedly by Operation 1 untill such operation can no longer be
carried out.
Step 3. If V (G) \ V (P1) = ∅, then output P1 which is a hamiltonian path; stop. Else, if
one of circumstances 2 to 7 happens, then extend P1 by the corresponding operation; go
to Step 2.
Step 4. If V (G) \ V (P1) = ∅, then output P1; stop. Else, let uc be the last vertex on
P1 which has a neighbor outside of P1; set v0 = uc; find a maximal path P2 in G − P1

starting at v0, i.e., as long as there is a vertex v ∈ V (G) − V (P1 ∪ P2) adjacent to the
other end of P2, then extend P2 by adding v.
Step 5. If circumstance 8 or circumstance 9 happens, then extend P1 by the corresponding
operation; go to Step 2. Else, output P1, P2 and uc; stop. ¤

Given a path P = u0u1...up, let Q := {Q`[ui` , uj`
] : 1 ≤ ` ≤ m} be a set of internally

disjoint paths such that Q` ∩ P = {ui` , uj`
} and

0 = i1 < i2 < j1 ≤ i3 < j2 ≤ i4 ... ≤ im < jm−1 < jm = p.

Denote by P the set of segments of P divided by ui` ’s and uj`
’s. A vine of P is composed

of elements in Q∪ P alternatively (see Figure 10).

6



t t t t t t t t t t tQ1

Q2

Q3

Q4

Q5i1
i2 i3

j2 = i4
i5

i′5j1 j′1
j3 j4 j5

Figure 10 The vine is indicated by the bold lines.

For our purpose, we will find a vine PV of P in a 2-connected graph with NP (u0) ∪
NP (up) ⊆ PV , which can be realized by the following algorithm.

Algorithm 2.
Input: A path P = u0u1...up.
Output: A vine PV with N(u0) ∪N(up) ⊆ PV .
Step 1. Set i1 = 0. Let j′1 be the largest index such that uj′1 is adjacent to u0. Set ` = 2,
v = uj′1 , w = u0.
Step 2. Find a path Q` in G − v internally disjoint with P , connecting a vertex ui` ∈
P [w, v−] with a vertex uj`

∈ P [v+, up], such that j` is as large as possible (such a path
always exists since G is 2-connected).
Step 3. If j` = p, then choose i` as large as possible, go to Step 4. Else, set w = v,
v = uj`

, ` = ` + 1, go to Step 2.
Step 4. Set j1 to be the first index in the segment [u+

i2
, uj′1 ] such that uj1 ∈ NP (u0).

Step 5. If ` is even, then let

PV := Q1[ui1 , uj1)P [uj1 , ui3)Q3[ui3 , uj3)P [uj3 , ui5)...Q`−1[ui`−1
, uj`−1

)P [uj`−1
, uj`

)
Q`[uj`

, ui`)P [ui` , uj`−2
)Q`−2[uj`−2

, ui`−2
)P [ui`−2

, uj`−4
)...Q2[uj2 , ui2)P [ui2 , ui1 ],

and if ` is odd, then let

PV := Q1[ui1 , uj1)P [uj1 , ui3)Q3[ui3 , uj3)P [uj3 , ui5)...Q`−2[ui`−2
, uj`−2

)P [uj`−2
, ui`)

Q`[ui` , uj`
)P [uj`

, uj`−1
)Q`−1[uj`−1

, ui`−1
)P [ui`−1

, uj`−3
)...Q2[uj2 , ui2)P [ui2 , ui1 ].

¤
Suppose m is the `-value at the end of the algorithm. Then ujm = up. By the choice

of j` in Step 2, we see that NP (up) ⊆ P [ujm−2 , up−1]. By the choice of im in Step 3, we
have NP (up) ∩ P [u+

im
, u−jm−1

] = ∅. So

NP (up) ⊆ P [ujm−2 , up−1]− P [u+
im

, u−jm−1
] ⊆ PV . (5)

Similarly, by the choice of j′1 in Step 1 and the choice of j1 in Step 4, we have

NP (u0) ⊆ P [u1, ui3 ]− P [u+
i2
, u−j1 ] ⊆ PV . (6)

The next algorithm finds a path P satisfying conditions (1) to (4). For simplicity,
we abuse the notation a little by, for example, using PV (ui` , uc] to denote PV (ui` , uj`−1

]

P 1(uj`−1
, uc] when uc ∈ (ui` , uj`−1

). The same denotation is used in the remaining of this
paper when there is no danger of confusion.

7



Algorithm 3.
Input: A 2-connected graph G.
Output: A vertex x and a path P with length at least min{|G|, Γ3(x, P ) + 1} such that
x is one end vertex of P .
Step 1. Use Algorithm 1 to find P1, P2 and uc. If P1 is hamiltonian, then set P = P1;
stop.
Step 2. Use Algorithm 2 to find PV .
Step 3. Let ` be the largest integer such that uc ∈ (ui` , uj`

). If (ui` , uc) ∩ N(vq) = ∅,
then set ug = uc, tag = 0. Else, let ug be the first vertex in (ui` , uc) ∩N(vq), set tag = 1.
Step 4. If ` = 1, then set x = vq and P = P1[uc−1, u0]PV (u0, uc]P2(v0, vq] (see Figure 11
(a)), stop.
Step 5. If (uj`−1

, ug)∩N(u0) 6= ∅, then set x = vq and P = P1[uc−1, uj`−1
]P1[u0, ui` ]PV (ui` ,

uc]P2(v0, vq] (see Figure 11 (b)), stop.
Step 6. Set x = u0. If [uj`−1

, ug) ∩ N(up) = ∅, then set P = P1[u0, ui` ]PV (ui` , uc]
(see Figure 11 (c) or (d)). Else, let uf be the last vertex in [uj`−1

, ug) ∩ N(up) and set

P = P1[u0, uf ]P1[up, uc] (see Figure 11 (e)).
Step 7. If tag = 0, then set P = PP2(v0, vq]. Else, set P = PP1(uc, ug]P2[vq, v1].

t t t t t t t t t t t

t

u0
uc−1

uc

vq

up
ui2

uj1 ui3 ujm−2

(a)

t t t t t t t t t

t

u0
ui2

uj1 ug uc

uc−1

vq

(b)

t t t t t t t t t t t t t t t t t

t

u0

vq

up
uc = v0

ui3 ui` uj`

ujm−2 (c)

t t t t t t t t t t t t t t t t tt
t
t

u0 up
ug uc

v1

vq

ui3

ujm−2

uj`
ui`

(d)

8



t t t t t t t t t t t tt
t
t

u0
uf

ug

v1

vq

uc

up

ujm−2 (e)

Figure 11. Path P is indicated by bold lines.

We will show that the path P found by Algorithm 3 indeed satisfies conditions (1) to
(4). For this purpose, we need the following lemmas.

Lemma 1. Let P = u0u1....up be a path in G and y, z ∈ V (G) − P such that NP (z) ∩
NP (y)+ = ∅. Then

dP (y) + dP (z) ≤ |P |+ 1. (7)

The equality holds only if up ∈ NP (y). Furthermore, if NP (y)∩NP (y)+ = ∅, then equality
holds only when up ∈ NP (y) ∩NP (z).

Proof. Since (NP (z) ∪ (NP (y) − {up})+) ⊆ V (P ) and NP (z) ∩ NP (y)+ = ∅, we have
|P | ≥ |NP (z)|+ |(NP (y)− {up})+| ≥ dP (z) + dP (y)− 1. Equality holds only if

V (P ) = NP (z) ∪ (NP (y)− {up})+ (8)

and up ∈ NP (y). Furthermore, if NP (y) ∩NP (y)+ = ∅ and equality holds, then it follows
from up ∈ NP (y) that up /∈ NP (y)+. By (8), we have up ∈ NP (z).

Lemma 2. Let P = u0u1....up be a path in G and x, y, z ∈ V (G)− P such that NP (x) ∩
NP (x)+ = (NP (y) ∪NP (z)) ∩NP (x)+ = NP (y) ∩NP (y)+ = NP (z) ∩NP (y)+ = ∅. Then

ΓP (x, y, z) ≤ |P |+ 1. (9)

Furthermore, if equality holds and up 6∈ NP (x), then up ∈ NP (y) ∩NP (z).

Proof. If NP (x) = ∅, then it follows from Lemma 1 that

ΓP (x, y, z) = dP (y) + dP (z) ≤ |P |+ 1, (10)

with equality only when up ∈ NP (y) ∩NP (z).

So, suppose NP (x) = {ui1 , ui2 , ..., uit} 6= ∅. Consider a segment P (uij , uij+1
], 1 ≤ j < t.

By Lemma 1, noting that uij+1 /∈ NP (y) ∪NP (z), we see that

dP (uij
,uij+1

](y) + dP (uij
,uij+1

](z)) ≤ |P (uij , uij+1
]|, (11)

with equality only when uij+1
∈ N(y) ∩N(z). Therefore

ΓP (uij
,uij+1

](x, y, z) = 1 + dP (uij
,uij+1

](y) + dP (uij
,uij+1

](z)− |{uij+1
} ∩N(y) ∩N(z)|

≤ |P (uij , uij+1
]|.

(12)

9



For the first segment P [u0, ui1 ] and the last segment P (uit , up], similar to the above we
may get

ΓP [u0,ui1
](x, y, z) ≤ |P [u0, ui1 ]|+ 1 (13)

and
ΓP (uit ,up](x, y, z) ≤ |P (uit , up]|. (14)

Then (9) follows by adding (12), (13), (14) together. If equality holds for (9), then equality
also holds for (14). If furthermore up 6∈ NP (x), then similar to the deduction of (11), we
have

ΓP (uit ,up](x, y, z) = dP (uit ,up](y) + dP (uit ,up](z) ≤ |P (uit , up]|,
with equality only when up ∈ NP (y) ∩NP (z).

Next, we will prove the main theorem.

Proof of Theorem 7 Since each of the nine operations either extends P1 by at least one
vertex or increases c by one, at most O(n) extensions are needed. Furthermore, each
extension can be completed in O(m) time by graph searching (see for example [9]). For
the same reason, the time complexity of Algorithm 2 and Algorithm 3 is also O(m). So,
P can be found in O(nm) time. Next, we will prove that P satisfies conditions (1) to (4),
and thus has the desired length.

Without loss of generality, we assume that G has no hamiltonian path. Let P1 =
u0u1....up and P2 = v0v1...vq be the paths found by Algorithm 1, PV the vine found by
Algorithm 2, and m the `-value at the end of Algorithm 2. By Operations 1 and 3,
u0, up, vq are independent (Condition (1)). Condition (2) is obviously satisfied by the
definition of the path P in Algorithm 3. Furthermore,

NP1(vq) ∩NP1(vq)
+ = ∅ (by Operation 2), (15)

NP1[u1,uc)(up) ∩NP1[u1,uc)(vq)
+ = ∅ (by Operation 8), (16)

NP1[u1,uc)(u0) ∩NP1[u1,uc)(vq)
+ = ∅ (by Operation 6), (17)

NP1[u1,uc)(up) ∩NP1[u1,uc)(up)
+ = ∅ (by Operation 9), (18)

NP1(u0) ∩NP1(up)
+ = ∅ (by Operation 4). (19)

By (5) and (6),

N(u0) ⊆ P1(u0, ui2 ] ∪ P1[uj1 , ui3 ], (20)

N(up) ⊆ P1[ujm−2 , uim ] ∪ P1[ujm−1 , up). (21)

By the definition in Algorithm 1,

N(vq) ⊆ P1[u1, uc] ∪ P2. (22)

Recall that ` is such that uc ∈ P1(ui` , uj`
). It follows from (22) that the only possible

neighbors of vq which may be missed lie in the segment (ui` , uc). However, this can be

10



compensated by the choice of ug (Step 3 and Step 7 of Algorithm 3). So, N(vq) ⊆ P . If
` ≥ 3, then N(u0) ⊆ P by (20). If ` ≤ 2, then by noting that [ug, uc] ⊆ P (Step 7), we
also have N(u0) ⊆ P by the definition of P in Step 4 and Step 5. Similarly, uf is taken
to ensure that N(up) ⊆ P (Step 6). So, Condition (3) is satisfied. In the following, we
will show Condition (4). To this end, we first prove the following three claims.

Claim 1. Suppose Q = uiui+1...uc−1 (i > 0). Then ΓQ(vq, up, u0) ≤ |Q|.
By taking x = vq, y = up, z = u0 in Lemma 2, and by (1) and (15) to (19), we see that

ΓQ(vq, up, u0) ≤ |Q|+ 1. (23)

Note that uc−1 6∈ N(vq) since otherwise P1 can be extended by Operation 2. If equality
holds in (23), then uc−1 ∈ N(u0) ∩N(up) by Lemma 2, and thus P1 can be extended by
Operation 5, a contradiction.

Claim 2. ΓPV [uj`
,uc](vq, up, u0) ≤ |PV [uj`

, uc]| when ` ≥ 2 and ΓPV [uj1
,uc](vq, up, u0) ≤

|PV [uj1 , uc]|+ 1 when ` = 1.

If
dP1(uc,ui`+1

](u0) + dP1(uc,ui`+1
](up) = |P1(uc, ui`+1

]|+ 1,

then by Lemma 1, uc+1 ∈ N(u0), which contradicts Operation 6. So,

dP1(uc,ui`+1
](u0) + dP1(uc,ui`+1

](up) ≤ |P1(uc, ui`+1
]|.

Combining this with Lemma 1 and (20), we see that when ` = 1,

dPV [uj1
,uc)(u0) + dPV [uj1

,uc)(up)

= dP1(uc,ui2
](u0) + dP1(uc,ui2

](up) + dP1[uj1
,ui3

](u0) + dP1[uj1
,ui3

](up) + dP1[uj2
,up)∩PV

(up)

≤ |P1(uc, ui2 ]|+ |P1[uj1 , ui3 ]|+ 1 + |P1[uj2 , up) ∩ PV |
= |P1(uc, up) ∩ PV |+ 1 = |P1[uc, up] ∩ PV | − 1 = |PV [uj1 , uc]| − 1,

and when ` ≥ 2,

dPV [uj`
,uc)(u0) + dPV [uj`

,uc)(up)

= dP1(uc,ui`+1
](u0) + dP1(uc,ui`+1

](up) + dP1[uj`
,up)∩PV

(up)

≤ |P1(uc, ui`+1
]|+ |P1[uj`

, up) ∩ PV |
= |P1(uc, up) ∩ PV | = |P1[uc, up] ∩ PV | − 2 = |PV [uj`

, uc]| − 2.

Then the claim follows from

ΓPV [uj`
,uc](vq, up, u0) = dPV [uj`

,uc)(u0) + dPV [uj`
,uc)(up) + Γ{uc}(vq, up, u0)

and the fact Γ{uc}(vq, up, u0) ≤ 2.

Claim 3. Suppose Q = u0u1...ui. Then ΓQ(vq, up, u0) ≤ |Q|. If furthermore i = c− 1,
then ΓQ(vq, up, u0) ≤ |Q| − 1.

11



In fact, by Lemma 2,

ΓQ(vq, up, u0) = ΓQ\u0(vq, up, u0) ≤ |Q \ u0|+ 1 = |Q|.
If furthermore i = c− 1, then the above inequality becomes strict by Claim 1.

Clearly,
ΓP2(v0,vq ](vq, up, u0) = dP2(v0,vq)(vq) ≤ |P2(v0, vq]| − 1. (24)

By Claim 1, Claim 2, Claim 3 and inequality (24), the theorem is proved. ¤

References

[1] J-C. Bermond, On Hamiltonian Walks, in “Proc. Fifth British Combinatorial Con-
ference, Aberdeen, 1975,” Utilitas Math. (1975) 41-51.

[2] B. Bollobás, Extremal Graph Theory, in “Handbook of combinatorics Volume II,
pages 1231-1292, Elsevier, Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo,
1995”.

[3] J.A. Bondy, Basic Graph Theory: Paths and Circuits, in “Handbook of combinatorics
Volume I, pages 3-110, Elsevier, Amsterdam-Lausanne-New York-Oxford-Shannon-
Tokyo, 1995”.

[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press,
1976.

[5] G.A. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc. (3) 2
(1952) 69-81.

[6] E. Flandrin, H. A. Jung and H. Li, Degree Sum, Neighbourhood Intersections and
Hamiltonism, Discrete Math. 90 (1991) 41-52.

[7] R.J. Gould, Updating the Hamiltonian Problem - A Survey, Journal of Graph Theory,
Vol.15, No.2 (1991) 121-157.

[8] Jan Van den Heuvel, Degree and Toughness Conditions for Cycles in Graphs, ‘ Ph.D.
Thesis, Faculty of Applied Math., University of Twente, 7500 AE Enschede, The
netherland, 1993.

[9] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms,
Springer-Verlag-Berlin-Heidelberg-New York, 2000.

[10] O. Ore, Note on Hamilton Circuits, Amer. Math. Monthly 67 (1960) 55.

[11] B. Wei, Longest Cycles in 3-connected Graphs, Discrete Math. 170 No. 1-3 (1997)
195-201.

12


