Algorithms for long paths in graphs

*
Zhao ZHANG Hao LIT
College of Mathematics and System Sciences Laboratoire de Recherche en Informatique
Xingiang University UMR 8623, C.N.R.S.-Université de Paris-sud
Urumgqi, Xinjiang, 830046, CHINA 91405-Orsay cedex, FRANCE
e-mail: zhzhao@xju.edu.cn e-mail: li@lri.fr
Abstract

We obtain a polynomial algorithm in O(nm) time to find a long path in any graph
with n vertices and m edges. The length of the path is bounded by a parameter
defined on neighborhood condition of any three independent vertices of the path.
Example is given to show that this bound is better than several classic results.

1 Introduction and notation

It is a classic problem to find a long path or cycle in a graph. Since finding a hamiltonian
path/cycle in graphs is NP-hard, we are interested in finding a path with large length.

All graphs considered in this paper are undirected and simple. We follow the notation
and terminology in [4]. For a graph G = (V(G), E(G)) and a subgraph H of G, the
neighborhood of a vertex w in H is Ny(u) = {v € V(H) : uv € E(G)}. The degree of
win H is dg(u) = |Ng(u)|. In the case H = G, we use N(u) and d(u) instead of Ng(u)
and dg(u). For simplicity, the graph itself is used to denote its set of vertices.

For a path P = wjusy...u, and two indices ¢ < j, denote by Plu;, uj] = wjuit1...u4,
and Pluj,u;] = uju;_q...u;. Define P(u;,u;] = Pluiia,uj], Plui,u;) = Plug,uj_] and
P(u;,uj) = Plujy1,u;—1]. For any i, uj” = u;41 and u; = u;—1. For AC P, At = {v*|v e
A} A= ={v|v € A}.

*The work is partially supported by NSFC (10271101)
TCorresponding author. The work is partially supported by NNSF of China (60373012)

We use |P| to denote the number of vertices in a path P. Denote by 03(G) =
min{d(u) + d(v) : ww ¢ E(G)} and 5(G) = min{>_>_ d(u;) — | (Vo_y N (ug)|: {u1, uz, us}
is an independent set of G'}.

A Hamiltonian cycle (path, resp.) is a cycle (path, resp.) containing all vertices of
the graph. A graph G is Hamiltonian if it has a Hamiltonian cycle. For an integer k, a
graph is called k-connected if any two vertices can not be separated by deleting less than
k vertices in the graph.

We begin with the following basic results in Hamiltonian graph theory, which are due
to Dirac, Ore and Flandrin, Jung and Li, respectively.

Theorem 1. [5| Let G be a graph on n > 3 vertices. If the minimum degree 0 is at least
n/2, then G is Hamiltonian.

Theorem 2. [10] Let G be a graph on n > 3 vertices. If o9(G) > n, then G is Hamilto-
nian.

Theorem 3. [6] If G is a 2-connected graph of order n such that @3(G) > n, then G is
hamiltonian.

These results are generalized to circumferences of the graphs. The circumference ¢(G)
is the length of a longest cycle in G.

Theorem 4. [5] If G is a 2-connected graph on n > 3 vertices, then ¢(G) > min {n, 2J}.
Theorem 5. [1] Let G be a 2-connected graph onn > 3 vertices. Then ¢(G) > min{n, o2(G)}.

Theorem 6. [11] Let G be a 3-connected graph with n vertices. Then ¢(G) > min{n,a3(G)}.

As a consequence of Theorem 6, we have the following

Corollary 1. Let G be a 2-connected graph with n vertices. Then there exists a path of
at least min{n, a5(G) + 1} vertices.

Proof. Let D to be a graph obtained from G by adding a new vertex w which is adjacent
to every vertex of G. Then D is 3-connected. By Theorem 6, ¢(D) > min{n,a3(D)}.
Since a3(D) > 73(G)+2, we see that G has a path of at least ¢(D)—1 > min{n, 73(G)+1}
vertices. O

Since 73(G) > 09(G) > 20, we have the following two results:

Corollary 2. Let G be a 2-connected graph with n vertices. Then there exists a path of
at least min{n, o2(G) + 1} wvertices.

Corollary 3. Let G be a 2-connected graph with n vertices. Then there exists a path of
at least min{n, 26 + 1} vertices.

In this paper, we will generalize the above corollaries by giving a new lower bound for
the length of a longest path, using neighborhood condition of three independent vertices,
one of which is an end of the path!

Since the problem of deciding whether a graph has a Hamiltonian path is N P-
complete, it is interesting to find a long path in a network which can be realized by
a polynomial algorithm. Such an algorithm with time complexity O(nm) is given in this
paper, by which we can find a long path with a length related with an end vertex of the
path.

Some notation will be used in this paper. For a subgraph H and three vertices z, v, z,
denote by

Up(2,y,2) = du(x) + du(y) + du(2) — [Nu(z) 0 Ny (y) N Nu(z)].
For x € H, denote by
Is3(z, H) = min{l'y(z,y,2)| : y,z € H and z,y, z are independent}.
Clearly I's(z, H) > 73(G).
The main result is the following:

Theorem 7. Let G be a 2-connected graph of order n > 3. Then there exists a vertex x
and a path P such that x is one end vertex of P and P contains at least min{n, '3(x, P)+
1} wertices. Furthermore, P can be found in O(nm) time.

Theorem 7 is best possible in the following sense. Suppose d, f,r are three integers
with d > 8, 3 < f < d—5, and r > 2. Let G be the graph obtained from d disjoint
graphs G; (1 <i<d)withG, =2 K, (1<i< f)and G; 2 K; (f+1 <i <d), by adding
edges from G4_; and Gy to all the other vertices. It is easy to see that there is a path
P containing all the vertices in G; (i = 1,2,3,d — 1,d) with two end vertices z; € G
and xy € G respectively. Clearly, P is a longest path with 3r + 2 = d(x;) + d(x2) +
d(zs) — |N(x1) NN (zg) N N(z3)| + 1 vertices, where x5 is a vertex in G. So the bound in
Theorem 7 is sharp. Furthermore, the same example shows that our result is better than
the corollaries since 73(G) =4 < |P| + 1.

2 Proof of the main theorem

The idea of our proof of Theorem 7 is as follows. Let P, = wpu;...u, be a maximal path
(in the sense of inclusion of vertices), and P = vgvy...v, with

(a) PrnPy={v} = {uc},
(b) subject to (a), ¢ is as large as possible, and
(¢c) subject to (a) and (b), ¢ is as large as possible.

3

Then a cycle Py called vine of Py (which will be defined later) is found. Based on Py, P,
and Py, a path P is constructed such that
Vg, Up, U are three independent vertices on P with (
vg or uy being one end of P, and (
N(vg) U N(up) UN(up) C P, (3
Lp(vg, tup, ug) < |P|—1. (

With these properties, it is easy to see that P is a path with the desired length.

From algorithmic point of view, to find a maximal path P; needs a lot of work. How-
ever, to ensure that the path P we find has the desired length in Theorem 7, we do not
need all properties of a maximal path. In fact, properties (1) to (4) are essential for
our purpose, and to ensure that P satisfies properties (1) to (4), only nine operations to
extend P; are sufficient, which are introduced in the following.

Circumstance 1: There is a vertex v € V(G) \ V(P;) which is adjacent to one end of P;.
Operation 1: Extend P; by adding v.

U U, v U U, v

Figure 1

Circumstance 2: There is a vertex v € V(G) \ V(P;) such that u; € Np, (v) and u;4q is
connected to v by a path internally disjoint from P;.
Operation 2: Reset Pi = wpty...UV... Uj41... Up.

Uo U; Uit Uyp Uo U; Ui41 Up
O—Q—Ql—?—Q—Q —
¢y v
Figure 2

Circumstance 3: wug is adjacent to u,, and V(G) \ V(Py) # 0.
Operation 3: Let v be a vertex in V(G) \ V(P;) which is adjacent to some vertex
u; on P Reset Pi = vuti—1... ugUpUp—1...Uj+1-

Figure 3

4

Circumstance 4: u; € Np (ug) N Np,(u,)™ # 0 and V(G) \ V(Py) # 0.
Operation 4: Reset Py = u;_1Ui—a...UoUiUjit1...Up,
and then extend it further by Operation 3.

Ug. U Uy ug Ui Up U U U

Figure 4

Circumstance 5: There is a vertex u; € N(u,) with ;41 having some neighbor v outside
Of P1~
Operation 5: Reset Py = uouy...uuptp_1...Uis1 0.

Up Ui " U1 "Up
* 0 0 @ @ —@ SN
oy
Figure 5

Circumstance 6: There is a vertex u; € N (ug) with u;_; having some neighbor v outside
of Pl'
Operation 6: Reset P = vu;_1Ui—2... UgUiUit1...Up.

Ug- Ui—1"Uj Up
.—.—.:—.—.—. RN
¢y
Figure 6

Circumstance 7: There is a vertex u; € N(u,) with u;_; having some neighbor v outside
of Py, and there is an index j > i such that u; € N(uy).
Operation 7: Reset Py = vt _1Ui—2... U0U;Uj—1 ... Ui UpUp_1...Uj41.

L = PP e Up
o o6 oo —0—0—0 __
: U; Uj
®y
Figure 7

Circumstance 8: ;i € Npyjuyue)(Up) N Npyjuy u) (Vg) T # 0.
Operation 8: Reset P = ugUy...Uj—1VqUq—1...U1 Ut 1. UpUi Uit 1 .. Ue—1 -

5

Figure 8

Circumstance 9: u; € Npjuyue)(Up) N Npyjuy u) (up)t # 0.
Operation 9: Reset P = ugUy... Ui—1UpUiUijp1... Up_1.

ug R T U S 2 U '\up
O—O—O@— O — O —O@—O@—@ —

Uj—1 Uy Uj—1 U

Figure 9

Note that except for Operation 9, all operations extend P; by at least one vertex. And
Operation 9 increases ¢ by one.

Algorithm 1.

Input: A connected graph G.

Output: Either a hamiltonian path Py, or two paths P, and P, sharing only one common
vertex u., and P; can not be extended by Operations 1 to 9.

Step 1. Set P, = uy where ug is an arbitrary vertex in G.

Step 2. Extend P, repeatedly by Operation 1 untill such operation can no longer be
carried out.

Step 3. If V(G) \ V(P;) = 0, then output P; which is a hamiltonian path; stop. Else, if
one of circumstances 2 to 7 happens, then extend P; by the corresponding operation; go
to Step 2.

Step 4. If V(G) \ V(Py) = 0, then output P;; stop. Else, let u, be the last vertex on
P, which has a neighbor outside of P;; set vg = u,; find a maximal path P, in G — P;
starting at vy, i.e., as long as there is a vertex v € V(G) — V(P U P,) adjacent to the
other end of P,, then extend P, by adding v.

Step 5. If circumstance 8 or circumstance 9 happens, then extend P; by the corresponding
operation; go to Step 2. Else, output Py, P, and u.; stop. O

Given a path P = uguy...up, let Q := {Qlu;,,u;,] : 1 <€ <m} be a set of internally
disjoint paths such that Q, N P = {u;,,u;,} and
O:i1<i2<j1§z'3<j2§i4 §2m<]m71<]m:p

Denote by P the set of segments of P divided by w;,’s and w;,’s. A wvine of P is composed
of elements in Q U P alternatively (see Figure 10).

6

Figure 10 The vine is indicated by the bold lines.

For our purpose, we will find a vine Py of P in a 2-connected graph with Np(ug) U
Np(u,) € Py, which can be realized by the following algorithm.

Algorithm 2.

Input: A path P = upuy...u,.

Output: A vine Py with N(ug) U N(u,) C Py.

Step 1. Set i; = 0. Let j| be the largest index such that uy is adjacent to ug. Set £ = 2,
V= uy, W= Ug.

Step 2. Find a path @)y in G — v internally disjoint with P, connecting a vertex u;, €
Plw,v~] with a vertex u;j, € P[v*,u,], such that j, is as large as possible (such a path
always exists since G is 2-connected).

Step 3. If j, = p, then choose i, as large as possible, go to Step 4. Else, set w = v,
v=u;, {="0+1, go to Step 2.

Step 4. Set j; to be the first index in the segment [u;,u;] such that w;, € Np(ug).
Step 5. If 7 is even, then let

Py = %[uh » Ugy)f[uju uis)Q3 [ui37 uj3>P[uj37 %5)"'Qf—1 [uizﬂ ﬂeﬂ)P[ujef_u uje)
Qé [ujw uie)P[uiw ujzfz)Qé—z[ujzfzv ui/zfz)P[uiuz? Uj[,4)-uQ2 [uj27 uiQ)P[uiw uil]v

and if ¢ is odd, then let

PV = Ql[uil) ujl)P[uj17 Ui3)Q3 [ui37 uj3>P[uj3v ui5>"'Qf—2[ui272= ujzfz)P[ujéfzv uiz)

QZ [uieﬂ gy)?[ujw U’jé—l)Qf—l [ujé—ﬂ uizza)ﬁ[uisz ujzfg)'”@[ujw uiQ)?[u’Q? ui1]'

O

Suppose m is the (-value at the end of the algorithm. Then u;,, = wu,. By the choice
of j, in Step 2, we see that Np(u,) C Plu,,, ,,uy—1]. By the choice of i,, in Step 3, we
have Np(u,) N Plu; ,u;] =10. So

Np(y) € Pl s tp] = Plui, u;,]S Py (5)

im? jmfl
Similarly, by the choice of jj in Step 1 and the choice of j; in Step 4, we have

NP(UO) g P[U17Ui3] - P[UZ—Z,UJ_J Q Pv. (6)

The next algorithm finds a path P satisfying conditions (1) to (4). For simplicity,
we abuse the notation a little by, for example, using Py (u;,,u.] to denote Py (u;,,u;,_,]
Pi(uj,_,,uc) when u. € (u;,,uj, ,). The same denotation is used in the remaining of this
paper when there is no danger of confusion.

Algorithm 3.

Input: A 2-connected graph G.

Output: A vertex x and a path P with length at least min{|G|,I's(x, P) + 1} such that
x is one end vertex of P.

Step 1. Use Algorithm 1 to find P, P, and u.. If P; is hamiltonian, then set P = Pi;
stop.

Step 2. Use Algorithm 2 to find Py.

Step 3. Let ¢ be the largest integer such that u. € (u;,,uj,). If (u;,,u.) N N(vy) = 0,
then set u, = u,, tag = 0. Else, let u, be the first vertex in (u;,, u.) N N(v,), set tag = 1.
Step 4. If £ = 1, then set x = v, and P = P [u_1, uo] Py (ug, uc) P2(vo, v,] (see Figure 11
(a)), stop.

Step 5. If (uj, ,,uy) NN (ug) # 0, then set x = v, and P = Pi[u._1,u;, | Pi[uo, wi,] Py (ui,,
ue] Pa(vo, vy] (see Figure 11 (b)), stop.

Step 6. Set x = ug. If [uj,_,,uy) N N(u,) = 0, then set P = Pi[ug, u;,| Py (ui,, u.]
(see Figure 11 (c) or (d)). Else, let uy be the last vertex in [u;,_,,u,) N N(u,) and set
P = Piug, us] Pi[uy, u] (see Figure 11 (e)).

Step 7. If tag = 0, then set P = PPy(vg,v,]. Else, set P = PP (u,, uy]Palvg, v1].

" O,

uC 1 u]m 2

Figure 11. Path P is indicated by bold lines.

We will show that the path P found by Algorithm 3 indeed satisfies conditions (1) to
(4). For this purpose, we need the following lemmas.

Lemma 1. Let P = uguy....u, be a path in G and y,z € V(G) — P such that Np(z) N
Np(y)™ =0. Then
dp(y) +dp(z) < |P[+ 1. (7)

The equality holds only if u, € Np(y). Furthermore, if Np(y) N Np(y)t =0, then equality
holds only when u, € Np(y) N Np(z).

Proof. Since (Np(z) U (Np(y) — {u,})™) C V(P) and Np(z) N Np(y)* = 0, we have
|P| > [Np(2)] + [(Ne(y) — {up}) T = dp(z) + dp(y) — 1. Equality holds only if

V(P) = Np(2) U(Np(y) — {up})" (8)
and u, € Np(y). Furthermore, if Np(y) N Np(y)™ = 0 and equality holds, then it follows
from w, € Np(y) that u, ¢ Np(y)*. By (8), we have u, € Np(z). O

Lemma 2. Let P = uguy....u, be a path in G and z,y,z € V(G) — P such that Np(z) N
Noz)* = (Np(y) U Np(2) 1 Np(2)* = Np(y) N No(y)* = Ne(2) (1 Np(g)* = 0. Then

Lp(x,y,z) <|P|+ 1. (9)

Furthermore, if equality holds and u, ¢ Np(x), then u, € Np(y) N Np(2).

Proof. If Np(x) = (), then it follows from Lemma 1 that
Up(z,y,2) = dp(y) +dp(z) < |P[+ 1, (10)

with equality only when u, € Np(y) N Np(z).

So, suppose Np(x) = {us,, Uiy, ..., us, } # 0. Consider a segment P(u;,,u;,,], 1 < j <t.
By Lemma 1, noting that u;, 41 ¢ Np(y) U Np(z), we see that

dP(uij,uin](y) + dP(uz'j,ul'jH}(Z)) < |P(uij7uij+1]|’ (11)
with equality only when u,,,, € N(y) N N(z). Therefore

L+ dP (wiy,ui 1](y) + dP(uijMijJrl](Z) - ’{uij+1} A N(y) N N(Z)|

PP(uij ’uij+1](x’ y:2) = J+
S ‘P(ul]) ul]+1]|

(12)

For the first segment Pug,u;,| and the last segment P(u;,,u,], similar to the above we
may get
FP[U(),uil](xv Y, Z) < |P[u0>ui1]| +1 (13)

and
L p(usy) (€, 95 2) < [P (i,). (14)

Then (9) follows by adding (12), (13), (14) together. If equality holds for (9), then equality
also holds for (14). If furthermore u, ¢ Np(z), then similar to the deduction of (11), we
have

1—‘P(uit,up] (z,y,2) = dP(uit,up](y) + dP(uit,up](Z) < [P (wiy s up)|,
with equality only when w, € Np(y) N Np(2). O

Next, we will prove the main theorem.

Proof of Theorem 7 Since each of the nine operations either extends P; by at least one
vertex or increases ¢ by one, at most O(n) extensions are needed. Furthermore, each
extension can be completed in O(m) time by graph searching (see for example [9]). For
the same reason, the time complexity of Algorithm 2 and Algorithm 3 is also O(m). So,
P can be found in O(nm) time. Next, we will prove that P satisfies conditions (1) to (4),
and thus has the desired length.

Without loss of generality, we assume that G has no hamiltonian path. Let P, =
UoUy....up and Py = vyv;...v, be the paths found by Algorithm 1, Py the vine found by
Algorithm 2, and m the f-value at the end of Algorithm 2. By Operations 1 and 3,
Ug, Up, v, are independent (Condition (1)). Condition (2) is obviously satisfied by the
definition of the path P in Algorithm 3. Furthermore,

Np, (vy) N Np,(vy)t =0 (by Operation 2), (15)
NPy fur) (Up) N Npyfurue) (V)" =0 (by Operation 8), (16)
Npyfun) (W0) N Npyjuyu) ()T =0 (by Operation 6), (17)
Npyfus) (Up) N Npyfuyu) (up) T =0 (by Operation 9), (18)
Np, (ug) N Np, (u,)* =0 (by Operation 4). (19)

By (5) and (6),

N(uo) € Py(uo, ui,] U Pilugy, us,], (20)
N(up) C Pilug,, o, ui,) U Pilug, ., up). (21)

By the definition in Algorithm 1,
N(’Uq) QPl[ul,uc]UPQ. (22)

Recall that ¢ is such that u. € P(u;,,u;,). It follows from (22) that the only possible
neighbors of v, which may be missed lie in the segment (u;,,u.). However, this can be

10

compensated by the choice of u, (Step 3 and Step 7 of Algorithm 3). So, N(v,) C P. If
¢ > 3, then N(ug) C P by (20). If £ < 2, then by noting that [u,, u.] € P (Step 7), we
also have N(ug) C P by the definition of P in Step 4 and Step 5. Similarly, uy is taken
to ensure that N(u,) C P (Step 6). So, Condition (3) is satisfied. In the following, we
will show Condition (4). To this end, we first prove the following three claims.

Claim 1. Suppose Q = wjtj+1...uc—1 (i > 0). Then T'g(vy, up, uo) < Q).

By taking * = vy, y = up, 2 = up in Lemma 2, and by (1) and (15) to (19), we see that
Lo(vg, up, uo) < |Q[+ 1. (23)

Note that u.—1 & N(v,) since otherwise P, can be extended by Operation 2. If equality
holds in (23), then u._y € N(up) N N(u,) by Lemma 2, and thus P; can be extended by
Operation 5, a contradiction.

Claim 2. T pyfu;, u.] (Vgs Ups o) < [Py [ug,, ucl| when € > 2 and U'pyu; 0, (vg, Up, o) <
| Py [uj,, ue]| +1 when £ = 1.

If
dP1(uc,uz~g+1](u0) + dP1(uc,u¢H1]<up) = [P (ue, wi, || + 1,

then by Lemma 1, u..1 € N(ug), which contradicts Operation 6. So,
APy ueusy) (W0) + Ay (ugus,) (Up) < | Prlue, ui,]|

Combining this with Lemma 1 and (20), we see that when ¢ = 1,

APy fu;, ue) (W0) + Ay fu,) (Up)

dP1(uc,uz‘2](u0) + dPl(uc,uiQ}(up) + dPl [ujl,u¢3](u0) + dP1 [Ujl,ui:,,}(up) + dPl [wjq,up)NPy (up)
‘Pl(ucvuh” + |P1[uj1>ui3” +1+ ’Pl[ujwup) n PV‘

| Py (te, up) N Py| + 1 =|Pifuc,up] N Py —1=|Pyluj,ul| —1,

IA

and when ¢ > 2,

dpy [, ue) (U0) + APy fuj, uc) (Up)

dP1(uc,ui£+1](U0) + dP1(uc,u@-£+1]<up) +dp, [uj, sup) NPy (up)

| P (e, wiy | + [Pr[ug,, up) O Pyl

| Py (te, up) N Py| = |Prluc, up) N Py| — 2 = |Pylu,,, ucl| — 2.

A

Then the claim follows from
FPv[uje,uc] (qu Up, ug) = de[uj-Z,uc)(u()) + de[uu,uc)<up) + F{uc} (Uq> Up, {ny

and the fact I'g, 3 (vg, up, uo) < 2.

Claim 3. Suppose) = upuy...u;. Then I'g(vy, up, up) < |Q|. If furthermore i = ¢ — 1,
then I'g(vy, up, uo) < Q| — 1.

11

In fact, by Lemma 2,

FQ(UmuP?uO) = FQ\U()(U(NUP?UO) < |Q \ u0| +1= ’Q|

If furthermore @ = ¢ — 1, then the above inequality becomes strict by Claim 1.

Clearly,
FPz(voﬂ)q} (Utﬁ Up, uU) = sz(vo,Uq)(Uq) < |P2(U07 Uq” -1 (24>
By Claim 1, Claim 2, Claim 3 and inequality (24), the theorem is proved. 0
References
[1] J-C. Bermond, On Hamiltonian Walks, in “Proc. Fifth British Combinatorial Con-

2]

[10]
[11]

ference, Aberdeen, 1975,” Utilitas Math. (1975) 41-51.

B. Bollobés, Extremal Graph Theory, in “Handbook of combinatorics Volume II,
pages 1231-1292, Elsevier, Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo,
19957.

J.A. Bondy, Basic Graph Theory: Paths and Circuits, in “Handbook of combinatorics
Volume I, pages 3-110, Elsevier, Amsterdam-Lausanne-New York-Ozxford-Shannon-
Tokyo, 19957.

J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press,
1976.

G.A. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc. (3) 2
(1952) 69-81.

E. Flandrin, H. A. Jung and H. Li, Degree Sum, Neighbourhood Intersections and
Hamiltonism, Discrete Math. 90 (1991) 41-52.

R.J. Gould, Updating the Hamiltonian Problem - A Survey, Journal of Graph Theory,
Vol.15, No.2 (1991) 121-157.

Jan Van den Heuvel, Degree and Toughness Conditions for Cycles in Graphs, ‘ Ph.D.
Thesis, Faculty of Applied Math., University of Twente, 7500 AE Enschede, The
netherland, 19935.

B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms,
Springer- Verlag- Berlin-Heidelberg-New York, 2000.

O. Ore, Note on Hamilton Circuits, Amer. Math. Monthly 67 (1960) 55.

B. Wei, Longest Cycles in 3-connected Graphs, Discrete Math. 170 No. 1-8 (1997)
195-201.

12

