
L R I

CNRS – Université de Paris Sud
Centre d’Orsay

LABORATOIRE DE RECHERCHE EN INFORMATIQUE
Bâtiment 490

91405 ORSAY Cedex (France)

R
A
P
P
O
R
T

D
E

R
E
C
H
E
R
C
H
E

A CONSTRUCTION OF A DEFINITION
RECURSIVE WITH RESPECT TO THE SECOND

VARIABLE FOR THE ACKERMANN’S
FUNCTION

FRANOVA M

Unité Mixte de Recherche 8623

CNRS-Université Paris Sud – LRI

12/2008

Rapport de Recherche N° 1511

A construction of a definition
recursive with respect to the second variable

for the Ackermann’s function

Marta Fraňová
mf@lri.fr , http://www.lri.fr/~mf/index.html

UMR 8623 CNRS - Université Paris Sud
LRI, Bât. 490, 91405 Orsay Cedex, France

2

RI1511.doc 1

1. Introduction
Let N be the system of natural numbers defined by Peano’s axioms. Let us recall that
“multiple recursion” (or “simultaneous recursion on several variables”) is defined
schematically

f(0,n) = g1(n) (1)
f(m+1,0) = g2(m) (2)

f(m+1,n+1) = g3(m,n,f(m,h(m,n)),f(m+1,n)), (3)

where g1, g2, g3 and h are already defined functions. f(m,h(m,n)) and f(m+1,n) can be
considered as “previous” values of f, in m and n respectively.

Let us consider now the Ackermann-Péter’s function ack defined axiomatically as
follows.

ack(0,n) = n+1 (A1)
ack(m+1,0) = ack(m,1) (A2)

ack(m+1,n+1) = ack(m,ack(m+1,n)) (A3)
Even though the computation of ack(m+1,n+1) in (A3) calls the computation of
ack(m+1,n), this definition does not fall under the syntactic definition of the “multiple
recursion”. Actually, (2) shows that, in multiple recursion, computing f(m+1,0), i.e.,
when the second argument of f is 0, does not call recursively f, but depends on a
previously defined function g2 which is not defined in terms of f. (A2) shows that
computing the value of ack(m+1,0) makes a recursive call to ack. Therefore, (A2) and
(A3) should rather be considered as a conditional axiom

ack(m+1,y) =




ack(m,1), i f y = 0
ack(m,ack(m+1,n)), if y = n+1 . (4)

In other words, the above definition defines the function ack recursively with respect to
the first argument. Therefore, it is meaningful to formulate the problem of finding a
definition that defines the function ack recursively with respect to the second argument. In
the following part we are going to construct such a definition.

2. Theorem and its proof

Theorem 1

For the function ack defined by the system { (A1), (A2), (A3) }, there is a
definition recursive in the second argument.

In other words, the recursive case of this new definition is of the form
ack(x,y+1) = f(x,y,ack(x,y)). (5)

Proof

RI1511.doc 2

First, let us give an outline of our proof. We shall construct a definition for ack recursive
in the second argument. This construction is performed via inductive proofs of the
theorems

∀x ∃z ack(x,0) = z (6)
and

∀x ∀y ∃z ack(x,y+1) = ack(x,y) + z. (7)

Let sf be the Skolem function for (6) and sf3 the Skolem function for (7), i.e., let
∀x ack(x,0) = sf(x) (8)

and
∀x ∀y ack(x,y+1) = ack(x,y) + sf3(x,y). (9)

hold. We shall prove (6) and (7) by induction. This will provide definitions for sf and
sf3. Then, let us rename the function ack to ak in (8), (9) and in the definition of sf3. We
can write

ak(x,0) = sf(x) (A4)
ak(x,y+1) = ak(x,y) + sf3(x,y) (A5)

We thus obtain a definition for ak that does not depend on the definition for ack, while the
performed construction guarantees that

∀x ∀y ack(x,y) = ak(x,y). (10)

Note 1: On independence of ak on ack

Let us note that (A4) is a candidate for the base case of a definition for ak recursive
with respect to the second argument if and only if the definition for the function sf
does not depend on ak (i.e., nor on ack). Therefore, in our search for a definition
of sf we cannot put

sf(x) =




1, i f x = 0
ack(x-1,1), if x ≠ 0

even though this trivially is implied by (A1) and (A2).

End of the note.

Before presenting our proofs for (6) and (7), let us recall that we admit the possibility that
the reader may find proofs that are different from those we are going to present. The
proofs we are going to present here follow basically the algorithms of our Constructive
Matching methodology (CMM) [franova30]. In this sense, these proofs can be seen as a
wishful result of a user-independent inductive theorem prover. In other words, as soon as
our methodology is completely implemented, our system PRECOMAS [franova19],
[franova24], or another system built over our methodology, shall hopefully help the user
to to synthesize ak just from the above given axiomatic definition of the function ack,
specifying N as a constructible domain (see [franova38]) and the unusual (for CMM)
constraint that ak must not depend on ack. Some of the steps in the following shall be
familiar to many readers, some steps are more sophisticated and require a slight
acquaintance with some specific parts of our CMM or of our Theory of Constructible
Domains. Some of the steps are even a basis for suggesting new heuristics that have to be
further worked on to become a legal part of CMM. We shall try here to make accessible
the main idea of these specific parts. But let us insist on the user-dependency of this proof
with respect to the constraint that ak has not to be expressed in terms of ack.

RI1511.doc 3

Proof for (6) :

Let us denote by F(x) the formula ∃z ack(x,0) = z. We shall perform the proof of (6) by
induction on x. This means, that in the base step, when x = 0, we have to prove

∃z ack(0,0) = z (11)
and, in the induction step, when x = a+1, we have to prove

∃z ack(a+1,0) = z (12)
assuming the induction hypothesis

∃e ack(a,0) = e, (13)
as well as the induction hypothesis

∀t t<a+1 ⇒ ∃e ack(t,0) = e. (14)
Here, the relation < is the Peano’s well-founded relation (see [franova38]) induced by
constructors on Constructible Domain specified by the constructors 0 and the successor
function +1.
Note that, with respect to our notation, in (13)

e = sf(a) (15)
and, in (12), we look for

z = sf(a+1). (16)

Base step for (6)

By evaluation of the term ack(0,0) in (11) we trivially have
z = 1. (17)

With respect to our notation, we thus have
sf(0) = 1. (18)

Induction Step for (6)

Assuming (13) we have to prove (12). By evaluation of ack(a+1,0), (12) is replaced by
∃z ack(a,1) = z (19)

From inductive theorem proving view, it is obvious that z = ack(a,1) is a trivial solution
for (19). However, we have mentioned already that sf must not be defined in terms of the
function ack. In other words, (19) has to be attempted to be solved applying the induction
hypothesis (13) which, hopefully, might eliminate the occurrence of ack.
However, the CMM fails to apply the induction hypothesis (13) to (19) directly.
Therefore, to succeed the application of the induction hypothesis, CMM generates the
subproblem

∃z1 ack(a,1) = ack(a,0) + z1. (20)
In fact, (20) has to do with the fact that CMM is proving the given theorem in a
constructible domain, and for each constructible domain the so-called jump-constructor
function is determined (+ in N) as well as the so-called jump-constructor representation of
two simply comparable elements (in N: ∀x ∀y {x<y ⇒ ∃z x+z = y}).

CMM does not find a trivial solution for this problem. Therefore, the last formula is
generalized to the lemma

∀a1 ∃z1 ack(a1,1) = ack(a1,0) + z1. (21)

RI1511.doc 4

Note 2: On lemmas generation in CMM

In course of a proof by induction of a formula F, it is necessary to keep a trace of
problems met, solved, as well as the links between the given formula F and lemmas
generated in course of its proof. Taking into account the lemmas “dependence” on
the environment in which they are proved is a very important feature of CMM.
Thus, (20) is a sufficient condition for a success of proving the induction step for
(6). While a1 in (21) is universally quantified, for the success of (20) not the
validity of (21) in its generality is necessary, but, in the framework of the induction
step for (6) it is sufficient to consider the formula

∀a1 { a1 < a+1 ⇒ ∃z1 ack(a1,1) = ack(a1,0) + z1}. (22)
In general, proving formulae that are implications, such as it is the case of the last
formula, is complex. In consequence, for simplicity of our presentation, we shall
deal here with (21) instead of (22) and we shall take into account the condition a1 <
a+1 if and whenever necessary.

End of the note.

First, let us show, how solving (21) contributes to solving (20) , i.e., to (19).
Let us denote by sf1 the Skolem function of (21), i.e.,

∀a1 ack(a1,1) = ack(a1,0) + sf1(a1) (23)
holds. As soon as (21) is proved by induction, and thus a definition for sf1 obtained,
(19) is replaced by

∃z ack(a,0) + sf1(a) = z. (24)
Now, the induction hypothesis (13) is applied, which yields

∃z e + sf1(a) = z. (25)
Using (15) and (16), we thus have

sf(a) + sf1(a) = sf(a+1). (26)
Then, if the definition of sf1 does not make a reference to the function ack, (26)
completes the proof of (6) and the following formulae

sf(0) = 1 (A6)
sf(a1+1) = sf(a1) + sf1(a1) (A7)

shall define axiomatically the function sf.

We are going to prove (21).

Proof for (21)

In the base step, a1 = 0, it is necessary to prove
∃z1 ack(0,1) = ack(0,0) + z1. (27)

In the induction step, a1 = b+1, the formula
∃z1 ack(b+1,1) = ack(b+1,0) + z1 (28)

has to be proved assuming the induction hypothesis
∃e1 ack(b,1) = ack(b,0) + e1. (29)

Note that e1 is sf1(b). Since (21) is a lemma generated in the induction step of (6), CMM
generates (see [franova38]) also particular induction hypotheses corresponding to (6) in
the sense that b < b+1 = a1 < a1+1 < a+1, and thus, replacing b+1 for t in (14),

∃e2 ack(b+1,0) = e2, (30)
and, substituting b for t in (14),

∃e3 ack(b,0) = e3, (31)
are the assumptions that may be used while proving the induction step of (21). Note that

RI1511.doc 5

e2 = sf(b+1) (32)
and

e3 = sf(b). (33)

Base step for (21)

For base step, CMM finds trivially z1 = 1. In other words,
sf1(0) = 1. (34)

Induction step for (21)

By a repeated evaluation, (28) changes to
∃z1 ack(b,ack(b,1)) = ack(b,1) + z1. (35)

The induction hypothesis (29) can now be applied. This leads to
∃z1 ack(b,ack(b,0)+e1) = (ack(b,0)+e1) + z1. (36)

No axioms can be applied to this last formula. However, (31) can be applied, which,
with respect to (33) gives

∃z1 ack(b,sf(b)+e1) = (sf(b)+e1) + z1. (37)
This problem can be simplified no more. Therefore, CMM generates a new lemma to
solve the problem specified by (37). First of all, by the CMM-lemma-generation analysis
of (37) the obvious generalization (see [franova-kodratoff04]) is applied transforming
(37) to

∃z1 ack(b,y) = y + z1. (38)
The generalization substitution y = sf(b) + e1 is kept in the memory of the CMM-
environment. e1 = sf1(b), thus y = sf(b) + sf1(b).

The lemma generated from (38) is
∀x1 ∀y ∃z3 ack(x1,y) = y + z3. (39)

Let us denote by sf2 the Skolem function corresponding to (39). In other words,
∀x1 ∀y ack(x1,y) = y + sf2(x1,y) (40)

holds.

Proof for (39)

We shall prove (39) by induction. In this way, we shall obtain a definition for sf2 as
well.

Note that, in this notation, z1 that is a solution for (37) is sf2(b,sf(b) + sf1(b)), i.e.,
sf1(b+1) = sf2(b,sf(b) + sf1(b)). (41)

Provided now the definition for sf2 does not refer to ack, both sf1 and sf shall not refer to
ack, and thus (A4) will be an acceptable base step definition for ak. Note also that sf(b) +
sf1(b) = sf(b+1), therefore, after a successful proof of (39), we shall have the following
axiomatic definition for sf1.

sf1(0) = 1 (A8)
sf1(b+1) = sf2(b,sf(b+1)) (A9)

Before starting the proof of (39), it is necessary to prepare all the assumptions that can be
taken into account during the proof of (39). (39) is a lemma generated in course of the
proof (21), and thus, in course of the proof of (6) as well. (39) is a generalization of

RI1511.doc 6

(38), x1 in (39) corresponds to b of (38), which, in turn comes from the representation
a1 = b+1. Thus, we have

x1 ≤ b < b+1 = a1 ≤ a < a+1 = x. (42)
In consequence, in the framework of (6), it is logically justified to generate the
assumption

∃e4 ack(t,0) = e4, (43)
and, in the framework of (21), it is logically justified to generate the assumption

∃e5 ack(t,1) = ack(t,0) + e5. (44)
(43) and (44) may be applied while proving (39) for each t verifying t ≤ x1. In this
environment, CMM starts to prove (39). This formula contains two universally quantified
variables, the function ack is defined recursively with respect to the first argument. This
is why the variable x1 is selected to be the induction variable. With respect to this choice,
CMM formulates the base and induction steps.

Base step for (39)

In base step, for x1 = 0, the formula
∀y ∃z3 ack(0,y) = y + z3 (45)

has to be proved. By evaluation and simple equation solving, it is found
z3 = 1, (46)

i.e.,
sf2(0,y) = 1. (47)

Induction step for (39)

In induction step, x1 = a2+1 and CMM generates the following induction hypotheses (see
[franova38])

∃e5 ack(a2,y) = y + e5, (48)
e5 is here sf2(a2,y));

∀u ∃e6 ack(a2,u) = u + e6, (49)
e6 is sf2(a2,u);

∀t ∀q q < a2+1 ⇒ ∃e7 ack(q,t) = t + e7, (50)
e7 is sf2(q,t), and finally

∀t t < y ⇒ ∃e8 ack(a2+1,t) = t + e8, (51)
e8 is sf2(a2+1,t).
For our presentation it is not important that (48) and (49) are particular cases of (50).
(51) corresponds to the recursive call of ack with respect to the second argument in the
axiom (A3). CMM keeps on mind that an application of (51) requires the corresponding
base step, namely proving

∃z3 ack(a2+1,0) = 0 + z3. (52)
Summarizing, we have

e5 = sf2(a2,y), e6 = sf2(a2,u), e7 = sf2(q,t), e8 = sf2(a2+1,t). (53)

Assuming now (43), (44), and the above mentioned induction hypotheses, the goal is to
prove

∃z3 ack(a2+1,y) = y + z3. (54)
The value of z3 found will correspond to sf2(a2+1,y).

In order to solve the problem specified by (54), axioms (A2) and (A3) indicate that two
cases specified by y = 0 and y = b2+1, respectively, have to be considered. Thus, (54) is
replaced by two subproblems, namely

RI1511.doc 7

∃z31 ack(a2+1,0) = 0 + z31 (55)
and

∃z32 ack(a2+1,b2+1) = (b2+1) + z32. (56)

We have here that z31 from (55) corresponds to sf2(a2+1,0); z32 from (56) corresponds
to sf2(a2+1,b2+1).

Let us treat the subproblem specified by (55). By evaluation, (55) is replaced by
∃z31 ack(a2,1) = z31. (57)

In terms of the given definition for the function ack, ack(a2,1) is an evaluable expression
for each concrete value of a2. However, with respect to the constraint of defining sf2
independently of ack, (57) cannot be considered as an equation that suggests itself the
value for z31. Nevertheless, since (57) has to be solved in the framework of the induction
step for (39), we can check whether an induction hypothesis can be applied. This search
is successful. Let us consider (49) with the instantiation u = 1, i.e.,

∃e61 ack(a2,1) = 1 + e61. (58)
Obviously,

e61 = sf2(a2,1). (59)
In consequence, the application of (58) to Erreur! Source du renvoi introuvable.
yields

∃z31 1+ e61 = z31, (60)
i.e.,

∃z31 1+ sf2(a2,1) = z31. (61)
As noted above, z31 from (55) corresponds to sf2(a2+1,0). Thus, we obtain

sf2(a2+1,0) = 1+ sf2(a2,1). (62)

Let us consider now the formula (56). By evaluation, we have
∃z32 ack(a2,ack(a2+1,b2)) = (b2+1) + z32. (63)

No axioms are applicable, however it is possible to apply induction hypotheses. First of
all, the application of (49) with u = ack(a2+1,b2), i.e.,

∃e62 ack(a2,ack(a2+1,b2)) = ack(a2+1,b2) + e62, (64)
is performed, (here, e62 = sf2(a2,ack(a2+1,b2))), and by the application of this instance,

ack(a2,ack(a2+1,b2)) (65)
in (63) is replaced by

ack(a2+1,b2) + e62, (66)
i.e.,

ack(a2+1,b2) + sf2(a2,ack(a2+1,b2)) = (b2+1) + z32. (67)

To eliminate the occurrence of ack in the last terms, to ack(a2+1,b2), (51) is applied with t
= b2, which trivially verifies t < b2+1 = y, i.e., we shall apply the induction hypothesis

b2 < b2+1 ⇒ ∃e81 ack(a2+1,b2) = b2 + e81. (68)
Here, e81 = sf2(a2+1,b2).
Thus (66) changes to

(b2 + e81) + e62, (69)
i.e.,

(b2 + sf2(a2+1,b2)) + sf2(a2,b2 + sf2(a2+1,b2)). (70)
In consequence, (63) changes to

RI1511.doc 8

∃z32 (b2 + e81) + e62 = (b2+1) + z32, (71)
i.e.,

∃z32 (b2 + sf2(a2+1,b2)) + sf2(a2,b2 + sf2(a2+1,b2)) = (b2+1) + z32. (72)
In thus expressed problem, the function ack is occurs no more, and the problem is
expressed only in terms of the functional symbols + and sf2. Namely, since z32 is sf2(a2
+1,b2+1), by eliminating b2 on both sides of the equation, we have

sf2(a2+1,b2) + sf2(a2,b2 + sf2(a2+1,b2)) = 1 + sf2(a2+1,b2+1). (73)
In order to obtain the final line of the definition for sf2, we would need to subtract 1 from
the both sides of the last equation in order to obtain

sf2(a2+1,b2+1) = (sf2(a2+1,b2) + sf2(a2,b2 + sf2(a2+1,b2))) - 1. (74)

 A sufficient condition to do so would be that sf2(m,n) ≠ 0 for all m and n. Since sf2 is a
function in course of construction, we shall apply the heuristics of the introduction of a
hypothetical program. This means that we introduce a new hypothetical program, say f,
which is a simple rewriting of sf2 for which we do the subtraction in the last equation and
we try to prove that f(m,n) ≠ 0 for all m and n. So, let us introduce f

f(0,y) = 1 (R1)
f(a2+1,0) = 1+ f(a2,1) (R2)

f(a2+1,b2+1) = (f(a2+1,b2) + f(a2,b2 + f(a2+1,b2))) - 1. (R3)

Our goal is to prove that
∀m ∀n f(m,n) ≠ 0. (75)

It is not difficult to prove it it via an inductive proof of
∀m ∀n ∃z f(m,n) = z+1. (76)

An inductive proof for this formula does not represent many technical challenges and so
we omit it here.

This completes the proof of (39), thus the proof of (21), and, finally, the proof of (6).
(47), (62) and (74) give the following axiomatic definition of sf2

sf2(0,y) = 1 (A10)
sf2(a2+1,0) = 1+ sf2(a2,1). (A11)

sf2(a2+1,b2+1) = sf2(a2+1,b2)+ sf2(a2,b2+sf2(a2+1,b2)) - 1 (A12)

Proof for (7)

We shall now present the CMM-proof for (7), i.e., the formula
∀x ∀y ∃z ack(x,y+1) = ack(x,y) + z.

Recall that sf3 is our notation for the Skolem function of (7). The proof is by induction
on x.

Base step for (7)

In the base step, x = 0. The goal is to prove
∃z ack(0,y+1) = ack(0,y) + z. (77)

By evaluation this transforms to
∃z (y+1) + 1 = (y+1) + z. (78)

This gives z = 1, i.e.,

RI1511.doc 9

sf3(0,y) = 1. (79)

Induction step for (7)

In the induction step, x = a3+1, the induction hypotheses are

∀u ∃e9 ack(a3,u+1) = ack(a3,u) + e9, (80)
its more general version

∀u ∀v v < a3+1 ∃e10 ack(v,u+1) = ack(v,u) + e10, (81)
and

∀t t<y ⇒ ∃e11 ack(a3+1,t+1) = ack(a3+1,t) + e11. (82)
The goal is to prove

∃z ack(a3+1,y+1) = ack(a3+1,y) + z. (83)
By evaluation, this gives

∃z ack(a3,ack(a3+1,y)) = ack(a3+1,y) + z. (84)
No induction hypothesis can be applied. Instead of forcing the application of an induction
hypotheses, a new lemma is generated. The lemma-generation analysis recognizes that the
obvious generalization [franova-kodratoff04] can be applied. This leads to

∀a3 ∀m ∃z ack(a3,m) = m + z (85)
with m = ack(a3+1,y). But this lemma is recognized as identical to (39). In consequence,
for z from (85), we have

z = sf2(a3,m). (86)
In consequence, for z from (84), i.e., for sf3(a3+1,y) we have

sf3(a3+1,y) = sf2(a3,ack(a3+1,y)). (87)
By this, the proof of (7) is completed. (79) and (87) give the following axiomatic
definition for sf3

sf3(0,y) = 1 (A13)
sf3(a3+1,y) = sf2(a3,ack(a3+1,y)). (A*)

Summarizing, as a by-product of the above proofs for (6) and (7) we have synthesized
the functions sf, sf1, sf2 and sf3. Let us consider now the definition of the function ak
given by the axioms (A4) and (A5) given above. These axioms correspond to the
theorems (6) and (7), respectively. In other words, the symbol ak in (A4) and (A5)
describes the same function as the symbol ack in (6) and (7). Therefore, it is possible to
render the definition of ak independent of the definition for ack. To do this, it is sufficient
to replace the symbol ack in (87), i.e., in the definition of sf3, by the symbol ak. In other
words, we shall define sf3 by the axioms

sf3(0,y) = 1 (A13)
sf3(a3+1,y) = sf2(a3,ak(a3+1,y)) (A14)

RI1511.doc 10

3. 3. Corollary
Let ack be the function defined axiomatically by

ack(0,n) = n+1 (A1)
ack(m+1,0) = ack(m,1) (A2)

ack(m+1,n+1) = ack(m,ack(m+1,n)) (A3)

Let the function ak be defined axiomatically by
ak(x,0) = sf(x) (A4)

ak(x,y+1) = ak(x,y) + sf3(x,y) (A5)
where
sf is defined by

sf(0) = 1 (A6)
sf(a1+1) = sf(a1) + sf1(a1) (A7)

sf1 is defined by
sf1(0) = 1 (A8)

sf1(b+1) = sf2(b,sf(b+1)) (A9)
sf2 is defined by

sf2(0,y) = 1 (A10)
sf2(a2+1,0) = 1+ sf2(a2,1). (A11)

sf2(a2+1,b2+1) = sf2(a2+1,b2) + sf2(a2,b2+sf2(a2+1,b2)) - 1 (A12)
and
sf3 is defined by

sf3(0,y) = 1 (A13)
sf3(a3+1,y) = sf2(a3,ak(a3+1,y)) (A14)

Then,
∀x ∀y ack(x,y) = ak(x,y)

holds.

Finally, let us note that (A5) can be written in the form of the following two conditional
axioms, eliminating sf3 from the definition of ak. We then have

ak(x,y+1) = ak(0,y) + 1, if x = 0
ak(x,y+1) = ak(x,y) + sf2(x-1,ak(x,y)), if x ≠ 0

The recursion of ak with respect to the second argument becomes in this way more
transparent.

RI1511.doc 11

4. a LISP program
Just for the reader’s convenience, let us give the corresponding LISP program.

(defun sf (x)
(if (= x 0)

1
(+ (sf (sub1 x)) (sf1 (sub1 x)))))

(defun sf1 (x)
(if (= x 0)

1
(sf2 (sub1 x) (sf x))))

(defun sf2 (x y)
(if (= x 0)

1
(if (= y 0)

(+ 1 (sf2 (sub1 x) 1))
(sub1 (+ (sf2 x (sub1 y)) (sf2 (sub1 x) (+ (sub1 y) (sf2 x (sub1 y)))))))))

(defun sf3 (x y)
(if (= x 0)

1
(sf2 (sub1 x) (ak x y))))

(defun ak (x y)
(if (= y 0)

(sf x)
(+ (ak x (sub1 y)) (sf3 x (sub1 y)))))

RI1511.doc 12

References

[franova-kodratoff04]M. Franova, Y. Kodratoff: Practical Problems in the
Automatization of Inductive Theorem Proving; Rapport de Recherche
No.752, L.R.I., Université de Paris-Sud, Orsay, France, Mai, 1992.

[franova-kodratoff07]M. Franova, Y. Kodratoff: Predicate Synthesis from Formal
Specifications: Using Mathematical Induction for Finding the
Preconditions of Theorems; Rapport de Recherche No.781, L.R.I.,
Université de Paris-Sud, Orsay, France, October, 1992.

[franova08] M. Franova: PRECOMAS Challenge; Rapport de Recherche No.376,
L.R.I., Université de Paris-Sud, Orsay, France, September, 1987.

[franova19] M. Franova: PRECOMAS 0.3 User Guide; Rapport de Recherche
No.524, L.R.I., Université de Paris-Sud, Orsay, France, October, 1989.

[franova24] M. Franova: PRECOMAS - An Implementation of Constructive Matching
Methodology; Proceedings of ISSAC’90 (Tokyo, Japan, August 20-24,
1990), ACM, New York, 1990, 16-23.

[franova30] M. Franova: Constructive Matching methodology: a standard way of
proving user-independently theorems by induction; Rapport de Recherche
No.973, L.R.I., Université de Paris-Sud, Orsay, France, Mai, 1995.

[franova36] M. Franova: A standard proof by Constructive Matching methodology for
a theorem formulated by Skolem; Rapport de Recherche No.972, L.R.I.,
Université de Paris-Sud, Orsay, France, Mai, 1995.

[franova38] M. Franova: A Theory of Constructible Domains - a formalization of
inductively defined systems of objects for a user-independent automation
of inductive theorem proving, Part I; Rapport de Recherche No.970,
L.R.I., Université de Paris-Sud, Orsay, France, Mai, 1995.

	RR1511entete
	RR1511rapp

