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Abstract

In this paper, we propose a self-stabilizing protocol computing and preserving the knowledge of
neighbor clusters, called CNK protocol.
The cluster-heads maintain for each neighbor cluster: the identity of their head, the paths leading
to them, and the list of members.
The most interesting property of CNK is the service guarantee during the stabilization phase. CNK
protocol quickly provides the following minimal service: "each cluster-head knows the valid paths
leading to the heads of its neighbor clusters". This service is provided after 4 rounds.
CNK protocol preserves the minimal service in spite of changes in the clusters structure (creation of
new cluster, restructuring or crumbling of existing clusters). The knowledge of neighbor clusters is
thus highly available. This knowledge is enough to allow the continuity functioning of hierarchical
protocols as a hierarchical routing protocol.

Keywords: Self-Stabilization, Service guarantee, Clustering, Knowledge of neighbor clusters.

Résumé

Le partitionnement en clusters est proposé dans les réseaux mobiles sans infrastructure pour
améliorer leurs performances. Comme les protocoles de partitionnement sont adaptatifs aux change-
ments topologiques, la structure hiérarchique produite sera dynamique : des clusters peuvent appa-
raître et disparaître au cours du temps. Par conséquent, tous les protocoles hiérarchiques doivent
être également adaptatifs à ces changements.

Dans cet article, nous proposons un protocole de connaissance de voisinage des clusters, baptisé
CNK. CNK permet à chaque leader de cluster de connaître tous ses clusters voisins : l’identité de
leurs leaders, les chemins menant à eux, ainsi que la liste de leurs membres.
CNK est auto-stabilisant. De plus, il possède une propriété intéressante, à savoir la garantie de
service pendant la stabilisation. Un service minimum utile est rapidement offert : “un leader connaît
l’identité de tous les leaders des clusters voisins, ainsi que des chemins menant à eux ”. CNK préserve
ce service minimum malgré l’occurrence des changements de la structure hiérarchique, tel que : la
création et destruction de clusters, et changements de composition des clusters. La connaissance des
clusters voisins est donc hautement disponible, ce qui assure la continuité de fonctionnement des
protocoles de couches supérieures, comme le routage hiérarchique.

Mots-clés: Auto-stabilisation, Garantie de service, Partitionnement, Voisinage d’un cluster.



1 Introduction

A mobile Ad hoc or sensor network is a distributed multi-hop network which consists of mobile hosts
that move arbitrarily, and communicate between them via wireless technologies without any pre-
existing fixed infrastructure. The flat architecture on a large scale multi-hop network is not scalable,
because all nodes are considered equal and they take the same part in the network management, like
routing and forwarding tasks. The clustering was introduced for improving scalability by supporting
self-organization and enabling hierarchical routing.
The clustering consists of partitioning network nodes into non-overlapping groups called clusters.
Each cluster has a single head that acts as local coordinator of the cluster, and eventually a set
of ordinary nodes. So, clustering creates a first hierarchical level (level 1) of a flat topology (level
0). The problem of clustering is well studied in the literature, and several clustering protocols
have been proposed in the context of multi-hop wireless networks. The problem studied here is not
the clustering, but the knowledge of neighbour clusters assuming the existence of an under-layer
clustering protocol. A survey on clustering protocols can be found on [1].
Motivation. Multi-level hierarchies is obtained progressively: clusters of level i are regarded as
nodes of level i+1, and the construction is started again in this level. Hence, the creation of a level
i + 1 requires the knowledge of neighbor clusters of level i.
Furthermore, the hierarchical packet forwarding is achieved from a cluster to a neighbor cluster,
until reaching the destination cluster. Thus, routing packets between distant nodes requires also the
knowledge of neighbor clusters. This knowledge is computed by our protocol CNK.
In another hand, since clustering protocols need to be self-adaptive in order to deal with topology
changes like: links creation, links failure, nodes departure and nodes arrival. Thereby, the obtained
hierarchical structure will be itself dynamic, due to: creation of new clusters, disbanding of clusters,
and change on the composition of a cluster after ordinary nodes switching from a cluster to another
one. As consequence, all hierarchical protocols need to be self-adaptive to modifications in the
hierarchical structure.

For all these reasons, discovering and maintaining efficiently the neighbour of each cluster becomes
a necessity. Moreover, as changes in the hierarchical structure occurs frequently, it is vital to avoid
disruption of hierarchical protocols; thus the knowledge of a valid path to neighbor clusters should
be always available in spite of modifications in the clustering structure. Hence, CNK protocol is a
self-stabilizing protocol; moreover it guarantees a minimal service.

Self-stabilization with service guarantee. One of the most wanted properties of distributed
systems is the fault tolerance and adaptivity to topological changes, which consist of the system’s
ability to react to a fault or perturbation in a well-defined manner. Self-stabilization is an approach
to achieve the fault-tolerance against transient faults. A self-stabilizing protocol, regardless of its
initial state, converges in finite time to a legitimate state, where the intended behavior is exhibited.
Self-stabilizing protocols are attractive because they do not require any correct initialization; they
can recover from any transient failure, and they are insensitive to dynamic topology reconfiguration.
Nevertheless, during all the convergence period, self-stabilizing protocols do not guarantee any
property even if the perturbations could be handled in a safe manner. If some standard events occur
very often, the availability and reliability for a self-stabilizing protocol may be compromised, unlike
a self-stabilizing protocol with service guarantee.
A protocol is self-stabilizing with service guarantee if (1) an useful minimal service is quickly pro-
vided, and holds during progress of the protocol toward the optimum service (i.e., during convergence
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to a legitimate configuration), and (2) this useful minimal service is still provided after multiple
occurrences of some events, called admissible events. The minimal delay between occurrences of
admissible events may be tiny. Nevertheless, the useful service has to be always provided. In this
approach, events considered as admissible must be known, and taken into account during the design
of the protocol to ensure that the useful minimal service is still guaranteed in spite of occurrences
of admissible events. Whereas, the occurrence of inadmissible or unknown events, is handled by the
self-stabilization mechanism.
Contribution.We propose a protocol for Clusters Neighbor Knowledge (CNK) that is self-stabilizing
with guarantee of service.
CNK protocol needs a 1-hop clustering protocol, that provides to each node information about
the current organization (i.e., its hierarchical status and the identity of its cluster-head). On each
head, CNK protocol builds and maintains the knowledge of its neighbor clusters in a self-stabilizing
manner. The knowledge stored by a head v about a neighbor cluster C, once CNK protocol has
stabilized is the following: (i) the head identity of C, (ii) the path between v and the head of C,
and (iii) the members list of C.
The goal of CNK protocol is not to converge quickly to a safe configuration where a minimal service
is provided, because the convergence to a legitimate configuration is fast enough (it is done in
constant time). The main objective is to maintain a minimal service in spite of clustering structure
changes. The clustering protocol actions, i.e., changes in the hierarchical structure, are not transient
events. The minimal delay between the occurrences of these events is unbounded (it depend on the
clustering protocol and on the network topology dynamism). Therefore, the list of the admissible
events by CNK protocol is the follow: (1) selection of a new cluster-head, (2) resignation of a
cluster-head, and (3) switching of an ordinary node from a cluster to another one.
The admissible events are handled by CNK protocol, in such a way that the following useful service
is preserved: a head of cluster knows heads of all neighbor clusters and a valid path leading to
them. To ensure this useful service, CNK protocol requires of the clustering protocol two properties
described in section 4. Some clustering protocols provide these two properties [2,3]. In hierarchical
networks, the packet forwarding is achieved from a cluster to a neighbor cluster, until reaching the
destination cluster. Thus, the useful service highly available provided by CNK is sufficient for upper
layer hierarchical protocols, as routing protocols, to perform correctly their tasks. Nevertheless, this
service is not optimal, because a head may store some invalid paths.

Related Works. The self-stabilization with service guarantee is related to the fault-containment
[4], 1-strong self-stabilization [5], super-stabilization [6], robust self-stabilization [7,2,3] and the safe
convergence [8,9]. The fault-containment, confines the effect of a single fault to the constant-distance
neighborhood of the faulty nodes. So, the remaining part of the system behaves correctly. A 1-strong
self-stabilizing algorithm guarantees that a single memory corruption fault cannot be propagated,
and the next system transition leads to a legitimate configuration. A super-stabilizing algorithm
ensures a safety property after one perturbation from a legitimate configuration. A protocol robust
or having a "safe convergence” quickly reaches a safe configuration where a minimal service is
provided. The safety property is preserved during the convergence to a legitimate configuration.
Moreover, the safety property is also preserved after the occurrences of admissible events, in case
of a robust self-stabilizing protocol.
Many clustering algorithms have been proposed in the literature for ad-hoc networks. A large num-
ber of these algorithms are self-stabilizing [10,11,12,13,14,15,16]. Robust self-stabilizing clustering
algorithms [2,3], and self-stabilizing with safe convergence [8,9] are also proposed.
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Algorithms building neighborhood knowledge in flat architectures are presented in [17,18,19]. In [17],
algorithms computing 2-hops neighborhood in wireless networks are presented (they are based on
geographic position or distance). In [18], it is presented a self-stabilizing mechanism implementing an
algorithm requiring distance-two knowledge in a standard network where nodes only communicate
with their 1-hop neighbors. In [19], this mechanism is extended to distance-k knowledge. This
mechanism assumes centralized scheduler (during a computation step only one node does an action).
None of these algorithms guarantees any property after a topology change.

The knowledge of neighbour clusters is assumed in many distributed protocols for hierarchical
routing and multi-levels clustering, such as [20]. However, as far as we know, there is not protocol
computing and preserving in a distributed manner the knowledge of neighbor clusters.

The rest of the paper is organized as follows. In section 2, we describe the model. The specification
of knowledge of neighbor clusters problem is defined in section 3. In section 4, we present the
interaction required between the clustering protocol and CNK protocol in order to ensure the self-
stabilization with service guarantee of CNK. The two modules of CNK: computation of knowledge
tables, and service guarantee mechanism are presented respectively in sections 5 and 6. In section
7, we illustrates the functioning of the CNK protocol. The detailed proofs are provided in sections
8 and 9. Finally, we conclude in Section 10.

2 Model

A distributed system S is modeled by an undirected graph. A graph G is defined by (V, E) in which,
V is the set of (mobile) nodes and E is the set of edges. There is an edge (u, v) ∈ E, if and only if u
and v can communicate between them (links are bidirectional). If (u, v) ∈ E, we say that u and v are
neighbors. Nv is the set of neighbors (the neighborhood) of the node v: Nv = {u ∈ V | (u, v) ∈ E}.
The internal nodes among a path connecting two nodes u and v, are called gatways.

We use the state model of computation. Each node has an identifier ID. The content’s of a node’s
local variables determine its state, and the union of all local states determines the configuration of the
system. The program of each node is given as a set of rules of the form: Rulei : Guardi −→ Actioni.
A rule can be executed by a node v only if it is enabled, i.e., its guard is satisfied on v. A node
is said to be enabled if at least one of its rules is enabled. In a terminal configuration, no node is
enabled.
The evaluation of the rule guard and the action performing is done in an atomic step. During
the computation step ci → ci+1, one or several enabled nodes perform an atomic step from ci to
reach ci+1. A computation is a sequence of configurations e = c0, c1, ..., ci, ..., where ci+1 is reached
from ci by one computation step. A computation e is maximal if it is infinite, or if it reaches a
terminal configuration. A computation is fair, if for any node v that is continuously enabled along
this computation, eventually performs an action. In this paper, we study only fair computations.
We note by Conf the set of all configurations, and by E the set of all fair computations. The set of
fair computations starting from a particular configuration c ∈ Conf is denoted Ec. EA is the set of
fair computations whose the initial configuration belongs to A ⊂ Conf .
A node v is neutralized in the computation step cs, ci → ci+1, if v is enabled in ci and not enabled
in ci+1, but did not execute any action during cs.
We use the round notion to measure the time complexity. The first round of a computation e =
c1, ..., cj , ... is the minimal prefix e1 = c1, ..., cj , such that every node v enabled in c1, either executes
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a rule or becomes neutralized along e1. Let e2 be the suffix of e such that e = e1e2. The second
round of e is the first round of e2, and so one. The round complexity of a computation is the number
of disjoint rounds in the computation.

Definition 1 (Attractor). Let B1 and B2 be subsets of configurations of Conf . B2 is an attractor
from B1, if and only if the following conditions hold:
• Convergence:
∀e ∈ EB1(e = c1, c2, ...), ∃i > 1 : ci ∈ B2.
∀c ∈ B1, If (Ec = ∅) then c ∈ B2.

• Closure: ∀e ∈ EB2(e = c1, ...),∀i > 1 : ci ∈ B2.

Definition 2 (Self-stabilization). A system S is self-stabilizing if and only if there exists a set
of configurations denoted L, such that the following hold:
• L is an attractor from Conf .
• All configurations of L satisfy the specification problem. L is the set of legitimate configurations.

Definition 3. (Stabilization with service guarantee). Let P be the predicate that stipulates the
minimal service. Let AE be a set of admissible events that can occur in the system. A self-stabilizing
protocol is said with service guarantee under AE if and only if the set of configurations satisfying P
is:
• closed under any computation step.
• closed under any admissible event of AE.

Definition 4. (Admissible events). The set of admissible events AE handled by CNK protocol
are the following actions of clustering protocol:
• Selection of a new cluster-head.
• Resignation of a cluster-head.
• Switching of a node from a cluster to another one.

3 Specification of “Knowledge of Neighbor Clusters” in 1-hop cluster structure

In this paper, we focus on the knowledge of neighbor clusters problem. Obviously, a clustering archi-
tecture should be built and maintained over the time. We assume the existence of a self-stabilizing
1-hop clustering protocol, which runs simultaneously with our protocol CNK. The clustering proto-
col gathers network nodes into 1-hop clusters. Each cluster has a single head, and a set of ordinary
nodes which are neighbor of their heads.
In 1-hop clustering structure, two clusters C1, C2 are neighbor, if there exist two nodes x ∈ C1 and
y ∈ C2 that are neighbors ((x, y) ∈ E). Thus, in this structure, two leaders u and v of neighbor
clusters are at most at distance 3. Furthermore, the path between the two leaders v and u should
not contain a leader.
Example. In Figure 1, although CH3 and CH2 are at distance 3, their clusters are not neighbor;
because, all paths between CH2 and CH3 contain a leader.
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Fig. 1. Clustered network example

Definition 5. The k−neighborhood of a node v ∈ V , denoted Nk
v , is defined as the set of nodes

that are at distance less or equal than k from v.

Definition 6. The kR-neighborhood of a node v (for k restricted neighborhood), denoted RNk
v ,

is the set of nodes in v’s k-neighborhood reachable by at least a path in which the gateway(s) is
(resp. are) not leader(s). Let Leader(v) be a predicate that stipulates whether the node v is leader
(see Definition 8 in section 4). RNk

v is defined by induction as follows:{
RN1

v = Nv

RNk+1
v = RNk

v ∪ {u ∈ V | ∃z ∈ RNk
v : ¬Leader(z) ∧ u ∈ Nz}

The knowledge built by CNK protocol, has to verify the completeness and correctness properties.
• Completeness: Each leader knows all paths leading to all leaders within its 3R-neighborhood.
• Correctness: Each leader knows only valid paths leading to leaders within its 3R-neighborhood.
Furthermore, each leader knows the exact member list of its neighbor clusters.

Definition 7 (Legitimate configurations). In a legitimate configuration, the completeness and
correctness properties are satisfied.

The interest of self-stabilization with service guarantee in the CNK protocol depends mainly on the
two factors:

1. The definition of minimum service: the minimum service is the completeness property.
2. The list of admissible events: all actions done by the clustering protocol, including selection and

resignation of a leader, and switching of an ordinary node from a cluster to another one.

Let us study the hierarchical structure presented in figure 1. We assume that the completeness
property is verified: CH1 stores the paths leading to CH2, CH3, and CH5, but not paths leading
to v2, u3, and CH4. The clustering protocol changes the clustering structure: u3 becomes leader and
CH3 becomes ordinary. Now, CH1 has two neighbor cluster-heads: u3 and CH4, but it does know
any paths leading to these nodes. The specification of the problem is violated: the completeness is no
more satisfied. To avoid this situation, the CNK protocol bridles the occurrences of the admissible
events to prevent the violation of the completeness property. Thus, proper interactions between
CNK and the clustering protocol are required to maintain the cluster neighborhood knowledge
during changes in the hierarchical organization.
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4 Requirements on the clustering protocol

As said previously, CNK assumes the existence of an under-layer 1-hop clustering protocol. CNK
is not based on a particular protocol. More precisely, CNK does not need to know the election,
resignation and affiliation criteria of clustering protocol. However, CNK requires cooperation from
the clustering protocol to ensure the service guarantee. For this reason, the clustering protocol must
meet two properties: robustness and proper interactions with CNK protocol. Some 1-hop clustering
protocols already follow the two properties [2,3]. For other self-stabilizing protocols, we believe that
is feasible to design a transformer building a robust self-stabilizing version of a 1-hop clustering
protocol compatible with CNK protocol.

Proper interactions. (illustrated in Figure 2)
The variable status indicates the hierarchical status of a node, is updated only by the clustering
protocol (this variable value is an input of the CNK protocol). conversely, the variable Ready is
updated only by the CNK protocol (this variable value is an input of the clustering protocol)
The usual hierarchical status of a node v are : cluster-head (Statusv = CH), and ordinary node
(Statusv = O).
Two intermediate hierarchical status are introduced: nearly ordinary (Statusv = NO), and nearly
cluster-head (Statusv = NCH).
A cluster-head wanting to resign its role, takes the nearly ordinary status (NO). Whereas, an
ordinary node wanting to become cluster-head, takes the nearly cluster-head status (NCH).

Fig. 2. Proper interactions between clustering and CNK protocol.

By taking an intermediate status (NCH or NO), the clustering protocol “sends a request” to CNK
protocol. Then, the clustering protocol waits the approval of the CNK protocol. This authorization
“is communicated” by CNK protocol through the variable Ready. The value RO of Readyv indicates
that v is ready to be ordinary, and the value RCH indicates that v is ready to be cluster-head. Only
the updating of the Ready variables allows CNK protocol to ensure the preservation of completeness
property.
For ordinary nodes the default value of Ready is RO, and for cluster-heads the default value is
RCH.
A nearly cluster-head v can become cluster-head, only if Readyv = RCH; but it may return to the
ordinary status at any moment (even if Readyv = RCH). Similarly, a nearly ordinary node v can
become ordinary only if Readyv = RO, but it may return to the cluster-head status at any moment
(even if Readyv = RO).

A nearly ordinary node v still behaves as a leader of cluster. Furthermore, v is regarded by CNK
protocol as a future ordinary node: it may be a gateway on a path between leaders.
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In the other hand, a nearly cluster-head u behaves both as an ordinary node and as a cluster-head.
In this status, u maintains a pseudo-cluster which is empty (u is the only node in its cluster).

Definition 8 (leader / pseudo-leader).
A leader v is a node having the status of cluster-head or nearly ordinary.

Leader(v) ≡ Statusv ∈ {CH, NO}.
A pseudo-leader v is a node having the nearly cluster-head status.

Pseudo-Leader(v) ≡ Statusv ∈ {NCH}.

5 CNK protocol : computation of the Knowledge Tables

5.1 Structure of Knowledge Table

Each node v builds and maintains a Knowledge Table KTv having the structure presented in Figure
3. This table contains the list of leaders and pseudo-leaders within v’s 3R-neighborhood, associated
with a path leading to them, as well as the composition of their cluster (or pseudo-cluster).
Each record of KTv is identified by the fields dest, g1 and g2; it is the primary key of KTv. In
follows, we specify by (x, y, z) a record where dest = x, g1 = y, g2 = z.

Name Destination G1 G2 List HS pif

Type ID ID or ⊥ ID or ⊥ {IDs} CH, NO or NCH B, C, or F

Field notation dest g1 g2 list hs pif

Fig. 3. Scheme of Knowledge Table

The destination field of KTv contains the identity of nodes whose the status is not ordinary. The
gateways used to reach the destination are stored in the first and second gateway fields (G1 and
G2). The value of g1 (resp. g2) in a record (u, g1, g2) of KTv is the first (resp. second) gateway
on the path from v to u if it exists; otherwise, the value is ⊥. The list (resp. status) field contains
the list of cluster members (resp. hierarchical status) of the destination. The utility of pif field is
discussed in section 6.
According to Figure 1, once the Knowledge Tables have being computed, the record (CH5, v1, v5)
belongs to KTCH1, and (CH1, v5, v1) belongs to KTCH5.

The CNK protocol’s variables, and macros are presented in Protocol 1. Notice that only the Clus-
tering protocol updates the variable Status; and only the CNK protocol updates the variable HS.

Each leader uses the Knowledge Table of its neighbors, to compute its cluster neighborhood. Every
table KTv is updated by 4 rules. Each rule Ri has 3 kinds of sub-rules: insertion of a new record
(Ri1), updating a record (Ri2, and Ri4), and deleting a record (Ri3, and Ri5 if it exists). Each
rule Ri(v) (i > 0) allows the node v to have a record about clusters whose the head (leader and
pseudo-leader) is at distance i from v.

By performing a rule R0, a leader or pseudo-leader v (1) updates, deletes or inserts the record in
KTv about its own cluster, i.e. the record (v,⊥,⊥), (2) it modifies the value of its variable Ready,
and/or (3) it corrects the value of its variable HSv if necessary. - the value of HSv should be similar

8



Protocol 1 : Variables and macros on node v.
Input variables (from the clustering layer)

Statusv ∈ {CH, O, NO, NCH}; The status of v.

Headv ∈ {IDs}; The cluster-head’s identity of v.

Output variables (towards the clustering layer)

Readyv ∈ {RO, RCH}; (defined in section 4)

Shared variables

HSv ∈ {CH, O, NO, NCH}; The status of v, local copy of Statusv.

KTv; The Knowledge Table. Its scheme is presented in Figure 3.

Macros

Clusterv :: if HSv ∈ {CH, NO} then {z ∈ Nv : Headz = v} ∪ {v};
if HSv = NCH then {v};

Insert(dest, g1, g2, List, status), adds a record to KTv, such that the pif field is set to C.

Delete(x, y, z), removes from KTv the record identified by dest = x, g1 = y and g2 = z.

Update(x, y, z, ls, st) :: Update KTv Set list = ls; hs = st; within the record identified by dest = x, g1 = y, g2 = z

UpdatePIF (x, y, z, t) :: Update KTv Set pif = t where dest = x, g1 = y, g2 = z

UpdateReady :: if HSv = CH then Readyv := RCH;
if HSv = O then Readyv := RO;

R01(v) :: (Statusv 6= O) ∧ (v,⊥,⊥) /∈ KTv −→ HSv := Statusv; UpdateReady; Insert(v,⊥,⊥, Clusterv, HSv);

R02(v) :: (Statusv 6= O) ∧ (v,⊥,⊥) ∈ KTv ∧ (HSv 6= Statusv)
−→ HSv := Statusv; UpdateReady; Update(v,⊥,⊥, Clusterv, HSv); UpdatePIF (v,⊥,⊥, C);

R03(v) :: (Statusv = O)∧
`
HSv 6= Statusv∨(v,⊥,⊥) ∈ KTv

´
−→ HSv := Statusv; UpdateReady; Delete(v,⊥,⊥);

R04(v) :: (Statusv 6= O) ∧ ∃(v,⊥,⊥, List, hs) ∈ KTv ∧ (HSv = Statusv) ∧
`
List 6= Clusterv ∨ hs 6= HSv

´
−→ Update(v,⊥,⊥, Clusterv, HSv);

to the value of Statusv -. If necessary, the execution of R0 updates the pif , list and hs fields of
(v,⊥,⊥) ∈ KTv.

The rule R01(v) adds the record (v,⊥,⊥) to KTv if it does not exist although v is a leader or
a pseudo-leader. R03 is enabled for ordinary nodes (Statusv = O), till KTv contains the record
(v,⊥,⊥). A leader or a pseudo-leader v whose the HSv value is incorrect, is enabled (rule R02 if
(v,⊥,⊥) ∈ KTv otherwise rule R01). The rule R04(v) updates the fields list and hs of the record
associated to v’s cluster in KTv.

The rule R1 ensures that each node v (whatever its status) has an accurate record about clusters
whose the head is at distance 1 from v.

Similarly, the rule R2(v) maintains the validity of records whose the destination is at distance 2 of
v according to the content of the Knowledge Tables of v’s neighbors. v keeps (or adds) the record
(u, z,⊥) to KTv only if z (a v’s neighbor) is not a cluster-head and if KTz contains a record about
the u’s cluster.
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R11(v) : ∃u ∈ Nv ∧ ∃(u,⊥,⊥, list, hs) ∈ KTu ∧ (u,⊥,⊥) /∈ KTv −→ Insert(u,⊥,⊥, list, hs);

R12(v) : ∃(u,⊥,⊥, list′, hs′) ∈ KTv ∧ (u ∈ Nv) ∧ ∃(u,⊥,⊥, list, hs) ∈ KTu ∧ (hs′ 6= hs)
−→ Update(u,⊥,⊥, list, hs); UpdatePIF (u,⊥,⊥, C);

R13(v) : ∃(u,⊥,⊥) ∈ KTv ∧ (u 6= v) ∧
`
u /∈ Nv ∨ (u,⊥,⊥) /∈ KTu

´
−→ Delete(u,⊥,⊥);

R14(v) : ∃(u,⊥,⊥, list′, hs′) ∈ KTv ∧ (u ∈ Nv) ∧ ∃(u,⊥,⊥, list, hs) ∈ KTu ∧ (hs′ = hs) ∧ (list′ 6= list)
−→ Update(u,⊥,⊥, list, hs);

R21(v) : ∃z ∈ Nv ∧ (HSz 6= CH) ∧ ∃(u,⊥,⊥, list, hs) ∈ KTz ∧ (u 6= z) ∧ (u 6= v) ∧ (u, z,⊥) /∈ KTv

−→ Insert(u, z,⊥, list, hs);

R22(v) : ∃(u, z,⊥, list′, hs′) ∈ KTv ∧ (z ∈ Nv) ∧ (u 6= z) ∧ (u 6= v) ∧ (HSz 6= CH) ∧ ∃(u,⊥,⊥, list, hs) ∈ KTz ∧
(hs′ 6= hs) −→ Update(u, z,⊥, list, hs); UpdatePIF (u, z,⊥, C);

R23(v) : ∃(u, z,⊥) ∈ KTv ∧ (z 6=⊥) ∧
“
(z /∈ Nv) ∨ (z = u) ∨ (z = v) ∨ (u = v) ∨ (HSz = CH) ∨ (u,⊥,⊥) /∈ KTz

”
−→ Delete(u, z,⊥);

R24(v) : ∃(u, z,⊥, list′, hs′) ∈ KTv ∧ (z ∈ Nv) ∧ (u 6= z) ∧ (u 6= v) ∧ (HSz 6= CH) ∧ ∃(u,⊥,⊥, list, hs) ∈ KTz ∧
(hs′ = hs) ∧ (list′ 6= list) −→ Update(u, z,⊥, list, hs);

R31(v) : (HSv 6= O) ∧ ∃w ∈ Nv ∧ (HSw 6= CH) ∧ ∃(u, z,⊥, list, hs) ∈ KTw ∧ (u 6= v) ∧ (z 6= v) ∧
(z 6=⊥) ∧ (u, w, z) /∈ KTv −→ Insert(u, w, z, list, hs);

R32(v) : (HSv 6= O) ∧ ∃(u, w, z, list′, hs′) ∈ KTv ∧ (w ∈ Nv) ∧ (u 6= v) ∧ (z 6= v) ∧ (z 6=⊥) ∧ (HSw 6= CH) ∧
∃(u, z,⊥, list, hs) ∈ KTw ∧ (hs′ 6= hs) −→ Update(u, w, z, list, hs); UpdatePIF (u, w, z, C);

R33(v) : (HSv 6= O) ∧ ∃(u, w, z) ∈ KTv ∧ (w 6=⊥) ∧ (z 6=⊥) ∧
“
(w /∈ Nv) ∨ (u = v) ∨ (z = v) ∨

(w = v) ∨ (HSw = CH) ∨ (u, z,⊥) /∈ KTw

”
−→ Delete(u, w, z);

R34(v) : (HSv 6= O) ∧ ∃(u, w, z, list′, hs′) ∈ KTv ∧ (w ∈ Nv) ∧ (u 6= v) ∧ (z 6= v) ∧ (z 6=⊥) ∧ (HSw 6= CH) ∧
∃(u, z,⊥, list, hs) ∈ KTw ∧ (hs′ = hs) ∧ (list′ 6= list) −→ Update(u, w, z, list, hs);

R35(v) : (HSv = O) ∧ ∃(u, w, z) ∈ KTv ∧ (w 6=⊥) ∧ (z 6=⊥) −→ Delete(u, w, z);
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The rule R3 ensures that a leader or a pseudo-leader v maintains correct knowledge about clusters
whose the head u, is at distance 3 from v. v keeps (or adds) the record (u, w, z) to KTv only if w
(a v’s neighbor) is not a cluster-head and if KTw contains a record about the u’s cluster (u is at
distance 2 of w). An ordinary node removes record about clusters whose the head is at distance 3
(rule R35).

By considering nearly ordinary nodes as gateways, and nearly cluster-heads as pseudo-leaders, the
algorithm builds larger tables than the table required to have the completeness property. This
feature is important in order to preserve the completeness property during the resignation and
election processes of the clustering protocol (i.e. during the move from NO status to O, and the
move from NCH to CH status).

6 CNK protocol : Service Guarantee Mechanism

In this section, we present the mechanism used to preserve the completeness property by CNK
protocol in spite of reorganization of the clusters.

6.1 How the variable Ready is updated ?

Due to an incorrect initial configuration, a node v may need to correct the value of Readyv. If v is
an ordinary node then Readyv value has to be RO (the rule RCO(v) does the correction). Idem, if
v is cluster-head then Readyv value has to be RCH (the rule RCCH(v) does the correction).

RCO(v) : (HSv = O) ∧ (HSv = Statusv) ∧ (Readyv = RCH) −→ Readyv := RO;

RCCH(v) : (HSv = CH) ∧ (HSv = Statusv) ∧ (Readyv = RO) −→ Readyv := RCH;

The two following updating of Ready variable require a careful study: (1) a nearly cluster-head sets
its variable Ready to RCH, or (2) a nearly ordinary node sets its variable Ready to RO.

According to the specification of completeness property, a nearly cluster-head v does not know
leaders of its 3R-neighborhood, and it is not known by these leaders. However, once it sets Readyv

to RCH, v may become leader at any moment by an action of the clustering protocol. In this
new status, the node v must know and be known by all leaders of its 3R-neighborhood, otherwise
the completeness property will be falsified. Therefore, before setting its variable Readyv to RCH,
v should know the paths to leaders of its 3R-neighborhood, and these leaders should know the
reverse paths leading to v. CNK allows v to update its variable Readyv only if this knowledge
is established. This can be achieved only by a Propagation of Information with Feedback (PIF)
within the v’s 3-neighborhood. v initiates a wave (called the propagation wave): every node in
v’s 2-neighborhood receiving this wave forwards the wave to its neighbors. The termination of the
propagation is detected by v via the feedback process. After the PIF initialization, at least 5 rounds
are needed to terminate a PIF process in v’s 3-neighborhood. During the propagation phase, leaders
learn the paths toward v, whereas the feedback phase allows v to get the reverse paths.

A nearly ordinary node u requires also a propagation of information with feedback before setting
its variable Readyu to RO. Let us illustrate this feature by an example. In Figure 1, the clustering
protocol sets the status of the cluster-head CH4 to NO (ReadyCH4 = RCH). In a configuration
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satisfying the completeness property, CH4 knows a path to CH2 and to CH3. Whereas, CH2 may
not know a path to CH3 and vice versa. Once CH4’s Ready variable has the value RO - CH4 may
become ordinary at any time -, CH2 and CH3 should know each other. Otherwise, the completeness
property will be falsified after clustering protocol changing of the status of CH4 to ordinary. Thus,
the update of Ready variable by a nearly cluster-head or a nearly ordinary node is associated to
the end of a Propagation of Information with Feedback (PIF).

The PIF mechanism was introduced in [21]. To implement the service guarantee mechanism, we
adapt the PFC snap-stabilizing PIF algorithm for oriented trees, presented in [22]. The PFC
protocol is snap-stabilizing, i.e., starting from any configuration, it always behaves according to its
specifications. More precisely, from any configuration, at the end of a PIF process, all nodes have
received the propagated information.
The PFC algorithm is non-uniform. Each tree node behaves according to whether it is the root,
an internal or a leaf of the tree. The root is a distinguished node, responsible to initiate the PIF
process. Every tree node v maintains a PIF-state variable Sv, having three possible values {B, F,C}.
B value indicates that the node is in the broadcast phase, F value feedback is associated to the
feedback phase, and the C value to the cleaning phase. At least, 3 states per node are needed to
achieve a PIF (it is proved in [22]). Any initiated PIF, terminates in 2h + 1 rounds (h is the height
of the tree).

6.2 Adapted PFC algorithm

The key idea of our solution is to consider the set of knowledge tables as a forest of PIF-trees. A
PIF-tree is a tree where each node is a record of a knowledge table. Each record of KT is a node of
one and only one PIF-tree. The PIF-state of each record is stored in the pif field of this record.

Definition 9 (records of a PIF tree).
• The record (u,⊥,⊥) of KTu is the root of a tree.
• The parent of (u,⊥,⊥) of KTz is the root record (u,⊥,⊥) of KTu.
• The parent of the record (u, z,⊥) of KTw is the record (u,⊥,⊥) of KTz.
• the parent of the record (u, w, z) in KTv is the record (u, z,⊥) of KTw.

Notice that, the root of the record (u, w, z) of KTv is (u,⊥,⊥) of KTu. Each node v may have at
most one root record. The height of any PIF-tree is less or equal than 3; thus any PIF requires at
most 7 rounds.

Definition 10 (Leaf of PIF-tree).
• The record (u,⊥,⊥) of KTz is leaf if the node z is a cluster-head, or it does not have any
descendant (i.e., HSz = CH ∨ Nz/{u} = ∅).
• The record (u, z,⊥) of KTw is a leaf if the node w is a cluster-head or all its descendant are
ordinaries (i.e., HSw = CH ∨ ∀v ∈ Nz/{v, z} : HSv = O).
• The record (u, z, w) of KTv is always a leaf.

The adapted PFC algorithm is presented in Protocol 2, whereas the structure of the PIF-tree is
shown in Figure 4.
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Protocol 2 : PIF Algorithm on node v
Note: Gij is the guard of rule Rij defined in section 5.
Predicates:

Disabled(v) :: ∀i ∈ [1, 3], G0i(v) = False ∧Gi1(v) = False ∧Gi2(v) = False

Constraint1(v) :: ∀(z,⊥,⊥, hsv, pifv) ∈ KTv ∧ (hsv 6= NCH ∨ pifv 6= C)
⇒ ∀u ∈ Nv/{z}, (z, v,⊥, hsu, pifu) ∈ KTu∧(hsu = hsv)∧(pifv = C∨pifu 6= C)

Constraint2(v) :: ∀(z, w,⊥, hs, pif) ∈ KTv ∧ (hs 6= NCH ∨ pif 6= C)
⇒ ∀u ∈ Nv/{z, w}, (HSu = O) ∨ (z, v, w) ∈ KTu

Constraint3(v, u) :: ∀(z,⊥,⊥, hsu, pifu) ∈ KTu ∧ (hsu 6= NCH ∨ pifu = F )

⇒
“
(z, u,⊥, hsv, pifv) ∈ KTv ∧ (hsv 6= NCH ∨ pifv 6= C)

”
Rules:

/* Initiating the broadcast by the root */

RB(v) ::
`
(HSv = NCH ∧Readyv = RO) ∨ (HSv = NO ∧Readyv = RCH)

´
∧ (v,⊥,⊥, C) ∈ KTv ∧`

∀u ∈ Nv, (v,⊥,⊥, C) ∈ KTu

´
∧Disabled(v) = True −→ UpdatePIF (v,⊥,⊥, B);

/* Termination of the PIF and updating the Ready variable */

RF-Guard(v) :: (v,⊥,⊥, hsv, B) ∈ KTv ∧ (∀u ∈ Nv, (v,⊥,⊥, hsu, F ) ∈ KTu) ∧ (hsv = hsu) ∧Disabled(v) = True

RRCH(v) :: HSv = NCH ∧RF -Guard(v) = True −→ Readyv := RCH; UpdatePIF (v,⊥,⊥, F );

RRO(v) :: HSv = NO ∧RF -Guard(v) = True ∧ Constraint1(v) = True ∧ Constraint2(v) = True
−→ Readyv := RO; UpdatePIF (v,⊥,⊥, F );

/* Participating to the Broadcast by nodes at distance 1 from the root. */

IB(v) :: ∃(u,⊥,⊥, hsv, C) ∈ KTv ∧ (u ∈ Nv) ∧ (u,⊥,⊥, pif) ∈ KTu ∧ (pif 6= C) ∧“
(HSv = CH) ∨ (∀z ∈ Nv/{u} : (u, v,⊥, hsz, C) ∈ KTz ∧ hsz = hsv)

”
∧Disabled(v) = True ∧

Constraint2(v) ∧ Constraint3(v, u) −→ UpdatePIF (u,⊥,⊥, B);

/* Propagation of Feedback by nodes at distance 2 and 1 from the root. */
IF-d1(v) :: ∃(u,⊥,⊥, hsv, B) ∈ KTv ∧ u ∈ Nv ∧ (u,⊥,⊥, pif) ∈ KTu ∧ pif ∈ {B, F} ∧“

(HSv = CH) ∨ (∀z ∈ Nv/{u} : (u, v,⊥, hsz, F ) ∈ KTz ∧ hsz = hsv)
”
∧Disabled(v) = True ∧

Constraint2(v) ∧ Constraint3(v, u) −→ UpdatePIF (u,⊥,⊥, F );

IF-d2(v) :: ∃(u, z,⊥, hsv, C) ∈ KTv ∧ z ∈ Nv ∧ (u,⊥,⊥, pif) ∈ KTz ∧ pif ∈ {B, F} ∧ (HSz 6= CH) ∧“
HSv = CH ∨ ∀w ∈ Nv/{u, z}, HSw = O ∨ ((u, v, z, hsw) ∈ KTw ∧ hsw = hsv)

”
∧Disabled(v) = True

−→ UpdatePIF (u, z,⊥, F );

/* Correction rules : deal with incorrect initial configurations, and initiate the cleaning phase. */
RC(v) :: (v,⊥,⊥, pif) ∈ KTv ∧

`
(HSv = CH ∧ pif ∈ {B, F}) ∨ (HSv = NCH ∧Readyv = RO ∧ pif = F ) ∨

(HSv = NO ∧Readyv = RCH ∧ pif = F )
´
−→ UpdatePIF (v,⊥,⊥, C);

IC-d1(v) :: ∃(u,⊥,⊥, hsv, pifv) ∈ KTv ∧ (pifv 6= C) ∧ (u ∈ Nv) ∧ (u,⊥,⊥, hsu, C) ∈ KTu ∧Disabled(v) = True
−→ UpdatePIF (u,⊥,⊥, C);

IC-d2(v) :: ∃(u, z,⊥, hsv, pifv) ∈ KTv ∧ (pifv 6= C) ∧ (z ∈ Nv) ∧ (u,⊥,⊥, hsz, C) ∈ KTz ∧Disabled(v) = True
−→ UpdatePIF (u, z,⊥, C);
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(v,⊥,⊥) ∈ KTv

HSz 6= CH ∧ Nz/{v} 6= ∅
(v,⊥,⊥) ∈ KTz(v,⊥,⊥) ∈ KTz

(v, z,⊥) ∈ KTw

(v, z,⊥) ∈ KTw

(v, w, z) ∈ KTu

HSz = CH ∨ Nz/{v} = ∅

HSw 6= CH ∧ ∃u ∈ Nw/{v, z} : HSu 6= O

HSw = CH ∨ ∀u ∈ Nw/{v, z} : HSu = O

HSu 6= O

Fig. 4. Structure of a PIF-tree rooted at (v,⊥,⊥) of KTv

The rules computing the knowledge table (i.e., Ri, i ∈ [0, 3]) have priority over rules of PIF algorithm
(except correction rules RC and IC). This priority ensures that when a node v performs a PIF rule,
v knows all paths leading to leaders and pseudo-leaders known by its neighbors. Therefore, at the
end of the PIF, the root knows the path to all leaders and pseudo-leaders having participated to the
PIF. This priority is established in the Algorithm by the predicate Disabled: a node v can perform
a PIF rule only if Disabled(v) is satisfied.

A root initiates the PIF by performing the broadcast rule RB. Nodes of the tree which are at
distance 1 from the root participate to this phase by performing the rule IB. This rule can be
performed on a record only if the descendants of this record are in the cleaning state. The feedback
is initiated by a node in two cases : if it is a leaf at distance 1 or 2 from the root (IF -d1 and IF -d2),
or it is not leaf at distance 2 from the root but all its descendants which are non ordinary have a
record about the root (IF -d2).
At the end of the PIF, RF -guard is satisfied by the root; thus, the rule RRCH or RRO is enabled.
Upon the execution of the rule RRCH or RRO, the variable Ready is set to RCH or RO. Now, the
clustering protocol may change the node hierarchical status.

Notice that the adapted PFC v’s algorithm has other rules: RC and IC rules. These rules set the
pif field of a record in KTv to C. This action starts a cleaning phase in v’s sub-tree : all nodes of
its sub-tree will take the C state. The cleaning phase is used (1) to reset records of the PIF-tree, or
(2) to abort the current PIF no more needed.

7 Illustration of the functioning of CNK protocol

In this section, we illustrate the functioning of the two modules of CNK protocol : computing the
knowledge tables, and the service guarantee mechanism.

7.1 Illustration of computing the knowledge tables

Let study the network example shown in Figure 5.
In the initial configuration (5.a), the network is partitioned into two clusters. Z and W are cluster-
heads (i.e., StatusZ = StatusW = CH), whereas U and V are ordinaries (i.e., StatusU = StatusV =
O). The node V affiliates with the Z’s cluster, and U affiliates with the W ’s cluster. Assume that
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UV WZ

Cluster-head Nearly cluster-head Nearly ordinaryOrdinary node

UV WZ

(a) Initial configuration (b) Clustering protocol actions

Fig. 5. An example to show the computation of knowledge tables and service guarantee mechanism

initially the knowledge tables are empty for every node. The computation of knowledge tables is
done as follows:
• In the first round : the cluster-head Z (resp. W ) performs the rule R01 : It sets its variables
HSZ (resp. HSW ) to CH, and ReadyZ (resp. ReadyW ) to RCH, and it inserts in its knowledge
table KTW (resp. KTZ) a record about its cluster.
• In the second round : all nodes are enabled, because the rule R11 is enabled for every node.
During this round, the nodes U and W get a record about the cluster of Z. Similarly, the nodes Z
and V get a record about the cluster of W .

The reached configuration satisfies the completeness and correctness properties; it is a legitimate
configuration. The change in content of the knowledge tables during the two rounds is illustrated
in the follwing table.

KTV KTZ KTW KTU

Initially
HSZ = CH HSW = CH

Round 1 ReadyZ = RCH ReadyW = RCH
(Z,⊥,⊥, CH, C) (W,⊥,⊥, CH,C)

HSZ = CH HSW = CH
ReadyZ = RCH ReadyW = RCH

Round 2 (Z,⊥,⊥, CH, C) (W,⊥,⊥, CH,C)
(Z,⊥,⊥, CH, C) (Z,⊥,⊥, CH, C) (W,⊥,⊥, CH,C) (W,⊥,⊥, CH,C)

(W,⊥,⊥, CH,C) (Z,⊥,⊥, CH,C)

7.2 Illustration of the service guarantee mechanism.

Starting from the configuration satisfying the completeness property obtained above, let us study
the changes done by the clustering protocol shown in Figure 5.b. The nodes Z and W want to be
ordinaries. They take the nearly-ordinary status (i.e., StatusZ = StatusW = NO). Similarly, U
and V want to become cluster-heads; so, they take the nearly cluster-head status (i.e., StatusU =
StatusV = NCH).
Assume that ReadyZ = ReadyW = RCH and ReadyU = ReadyV = RO. The node Z (resp. W )
can become ordinary only if ReadyZ = RO (resp. ReadyW = RO). As the same, U (resp. V ) can
become cluster-head only if ReadyU = RCH (resp. ReadyV = RCH).
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In follows we illustrate step by step, the actions done by nodes in order to update the value of
Ready.
• In round 1 : The nearly cluster-head V (resp. U) performs the rule R01 and adds a record about
its pseudo-cluster to its table KT . The nearly ordinary node Z (resp. W ) performs the rule R02 to
set the hs field of the record about its cluster to NO.
• In round 2 : The nearly cluster-head V (resp. U) performs the two rules R12 and R21. It sets
to NO the hs field of the record about Z’s (resp. W ’s) cluster (rule R12), and adds a record about
the W ’s (resp. Z’s) cluster taking Z (resp. W ) as first gateway (using the rule R21). The nearly
ordinary Z (resp. W ) performs the two rules R11 and R12. It sets to NO the hs field of the record
about W ’s (resp. Z’s) cluster (rule R12), and adds a record about the V ’s (resp. U ’s) cluster (using
the rule R11).
• In round 3 : The nearly cluster-head V (resp. U) performs the two rules R22 and RB. It sets
to NO the hs field of the record about W ’s (resp. Z) cluster (rule R22), and it initiates the PIF
process by updating the pif field of the record of V ’s (resp. U ’s) cluster to B. The nearly ordinary
Z (resp. W ) performs the two rules R21 and RB. It adds a record about the U ’s (resp. V ’s) cluster
taking W (resp. Z) as gateway (rule R21), and it starts a PIF process by updating the pif field of
the record of Z’s (resp. W ’s) cluster to B.
• In round 4 : The nearly cluster-head V (resp. U) performs the two rules R31 and IF -d1. It
adds a record about the U ’s (resp. V ’s) cluster taking Z (resp. W ) as first gateway and W (resp.
Z) as second gateway (rule R31). Furthermore, it participates to the PIF process by returning the
feedback to Z (resp. W ) using the rule IF -d1.
The nearly ordinary Z (resp. W ) performs the rule IB twice to participate to the PIF processes
started by V and W (resp. U and Z).
• In round 5 : All the nodes perform the rule IF -d2. The nearly cluster-head V (resp. U) initiates
the feedback towards W (resp. Z); whereas, the node Z (resp. W ) initiates the feedback towards
U (resp. V ).
• In round 6 : Only the nodes Z and W perform the rule IF -d1. The nearly ordinary Z participates
to the feedback towards W and V ; whereas, the node W participates to the feedback towards Z
and U .
• In round 7 : Each node is able to achieve its PIF process, and then updates its variable Ready.
The nearly ordinary Z (resp. W ) terminates its PIF by performing the rule RRO. By this action,
the variable ReadyZ (resp. ReadyW ) is set to RO. The nearly cluster-head V (resp. U) terminates
its PIF by performing the rule RRCH , and then it sets the variable ReadyV (resp. ReadyU ) to
RCH.

The change in content of the knowledge tables during the 7 rounds is illustrated in the following
table.
After the round 7, the clustering protocol is authorized to change the hierarchical status of nodes V
and U to CH, and those of Z and W to O. During these rounds, and after the hierarchical status
change done by the clustering protocol the completeness property stays preserved.

8 Strong-Completeness predicate

The completeness satisfiability depends on the value of both clustering protocol and CNK protocol
variables (Status and KT ). Thus, the completeness property may be compromised by an action
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KTV KTZ KTW KTU

Round 1 (Z,⊥,⊥, CH,C) (Z,⊥,⊥, NO, C) (Z,⊥,⊥, CH, C) (W,⊥,⊥, CH,C)
(V,⊥,⊥, NCH,C) (W,⊥,⊥, CH,C) (W,⊥,⊥, NO, C) (U,⊥,⊥, NCH,C)
(Z,⊥,⊥, NO, C) (Z,⊥,⊥, NO, C) (Z,⊥,⊥, NO, C) (Z, W,⊥, CH,C)

Round 2 (W, Z,⊥, CH, C) (W,⊥,⊥, NO, C) (W,⊥,⊥, NO, C) (W,⊥,⊥, NO, C)
(V,⊥,⊥, NCH,C) (V,⊥,⊥, NCH,C) (U,⊥,⊥, NCH,C) (U,⊥,⊥, NCH,C)
(Z,⊥,⊥, NO, C) (Z,⊥,⊥, NO, B) (Z,⊥,⊥, NO, C) (Z, W,⊥, NO, C)

Round 3 (W, Z,⊥, NO, C) (W,⊥,⊥, NO, C) (W,⊥,⊥, NO, B) (W,⊥,⊥, NO, C)
(V,⊥,⊥, NCH, B) (V,⊥,⊥, NCH,C) (U,⊥,⊥, NCH,C) (U,⊥,⊥, NCH, B)

(U, W,⊥, NCH,C) (V,Z,⊥, NCH, C)
(Z,⊥,⊥, NO, F ) (Z,⊥,⊥, NO, B) (Z,⊥,⊥, NO, B) (Z, W,⊥, NO, C)

Round 4 (W, Z,⊥, NO, C) (W,⊥,⊥, NO, B) (W,⊥,⊥, NO, B) (W,⊥,⊥, NO, F )
(V,⊥,⊥, NCH, B) (V,⊥,⊥, NCH, B) (V,Z,⊥, NCH, C) (V,W, Z, NCH, C)
(U, Z,W, NCH, C) (U, W,⊥, NCH,C) (U,⊥,⊥, NCH,B) (U,⊥,⊥, NCH, B)
(Z,⊥,⊥, NO, F ) (Z,⊥,⊥, NO, B) (Z,⊥,⊥, NO, B) (Z, W,⊥, NO, F )

Round 5 (W, Z,⊥, NO, F ) (W,⊥,⊥, NO, B) (W,⊥,⊥, NO, B) (W,⊥,⊥, NO, F )
(V,⊥,⊥, NCH, B) (V,⊥,⊥, NCH, B) (V,Z,⊥, NCH,F ) (V,W, Z, NCH, C)
(U, Z,W, NCH, C) (U, W,⊥, NCH,F ) (U,⊥,⊥, NCH,B) (U,⊥,⊥, NCH, B)
(Z,⊥,⊥, NO, F ) (Z,⊥,⊥, NO, B) (Z,⊥,⊥, NO, F ) (Z, W,⊥, NO, F )

Round 6 (W, Z,⊥, NO, F ) (W,⊥,⊥, NO, F ) (W,⊥,⊥, NO, B) (W,⊥,⊥, NO, F )
(V,⊥,⊥, NCH, B) (V,⊥,⊥, NCH,F ) (V,Z,⊥, NCH,F ) (V,W, Z, NCH, C)
(U, Z,W, NCH, C) (U, W,⊥, NCH,F ) (U,⊥,⊥, NCH,F ) (U,⊥,⊥, NCH, B)
(Z,⊥,⊥, NO, F ) (Z,⊥,⊥, NO, F ) (Z,⊥,⊥, NO, F ) (Z, W,⊥, NO, F )
ReadyV = RCH ReadyZ = RO ReadyW = RO ReadyU = RCH

Round 7 (W, Z,⊥, NO, F ) (W,⊥,⊥, NO, F ) (W,⊥,⊥, NO, F ) (W,⊥,⊥, NO, F )
(V,⊥,⊥, NCH,F ) (V,⊥,⊥, NCH,F ) (V,Z,⊥, NCH,F ) (V,W, Z, NCH, C)
(U, Z,W, NCH, C) (U, W,⊥, NCH,F ) (U,⊥,⊥, NCH,F ) (U,⊥,⊥, NCH,F )
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of the clustering protocol even if its was satisfied before this action. Let us illustrate this feature
by an example based on a configuration c presented in Figure 1. Assume that in c, v5 is a nearly
cluster-head, Readyv5 = RCH, and KTv5 does not contain any record at destination of CH3. In
c, v5 is not leader, but v5 may become a leader at any time by an action of the clustering protocol
(see Figure 2). The completeness property is satisfied in c; nevertheless the completeness property
is no longer satisfied after that v5 becomes leader.
Therefore, we have to find a predicate that (1) is closed under any action of the clustering protocol
and of the CNK protocol and that (2) ensures the fulfilment of the completeness property. To achieve
that we define the Strong-Completeness predicate.

Definition 11 (Quasi-leader, and Quasi-ordinary). Let the predicates,
• QL(v) ≡ (HSv = CH) ∨ (HSv = NO) ∨ (HSv = NCH ∧Readyv = RCH)
• QO(v) ≡ (HSv = O) ∨ (HSv = NCH) ∨ (HSv = NO ∧Readyv = RO)

A node v satisfies QL(v), will be called quasi-leader, and a node v that satisfies QO(v), it will be
called quasi-ordinary. The definitions of quasi-leader and quasi-ordinary nodes are given regardless
the status of v within clustering protocol, i.e., the variable Status.
Each quasi-leader (resp. quasi-ordinary) v, acts as a leader of cluster (resp. an ordinary node).
Notice that a node v may be both quasi-leader and quasi-ordinary when v has a pending request to
change its status. In this case, v is leader of its cluster, and it may be a gateway if necessary.

Definition 12. The k-QR-neighborhood of a node v (for k quasi-restricted neighborhood), de-
noted QRNk

v , is the nodes of v’s k-neighborhood reached by a path where the gateway(s) is (resp.
are) quasi-ordinary(ies). It is defined by induction as follows:{

QRN1
v = Nv

QRNk+1
v = QRNk

v ∪ {u ∈ V | ∃z ∈ QRNk
v : QO(z) ∧ u ∈ Nz}

Definition 13 (Strong-Completeness predicate). The Strong-Completeness predicate is satis-
fied if and only if each quasi-leader knows all quasi-leaders within its 3-QR-neighborhood, and all
paths leading to them.

The Strong-completeness predicate value depends only on the value of the CNK variables (i.e. it
is uncorrelated of the values of the variables status and Head). Thus no action of the clustering
protocol can falsify (or can satisfy) the Strong-completeness predicate.

9 Proofs of the stabilization with service-guarantee

The proof has three parts. First, we define the attractor SC1, subsection 9.1. We prove that if the
Strong-completeness predicate is satisfied in a configuration of SC1, then the completeness property
is verified. In the subsection 9.2, we present an attractor SC2 (a subset of SC1) in which the Strong-
completeness predicate is always satisfied. In the last subsection, we conclude that any computation
of clustering and CNK protocols has a suffix where the completeness property is always verified
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9.1 SC1 attractor

Lemma 1. I0 = {c ∈ Conf | ∀v ∈ V : (HSv 6= CH ∨ Readyv = RCH) ∧ (HSv 6= O ∨ Readyv = RO) } is
closed under any action of the clustering and CNK protocol.

Proof. Let c1 be a configuration of I0. Assume that a computation step cs exists: c1
cs−→ c2, such

that c2 /∈ I0. We will prove that cs does not exist. According to our assumptions, in c2, there is at
least a node v which satisfies (HSv = CH ∧ Readyv = RO) ∨ (HSv = O ∧ Readyv = RCH). Two cases are
possible:
• Case 1: In c1, HSv 6= CH ∧HSv 6= O is satisfied.
As long as HSv 6= CH ∧ HSv 6= O is satisfied, the configuration belongs to I0. Let during cs, v
updates HSv to the CH or O value. The only rules can update HSv value are R01(v), R02(v) and
R03(v). However, these rules update also the Readyv value, using the macro UpdateReady. This
macro ensures that when HSv is set to CH, then Readyv is updated to RCH; and when HSv is
set to O, then Readyv is updated to RO. Therefore, c2 cannot be reached from c1.
• Case 2: In c1, HSv = CH ∨HSv = O is satisfied.
If during cs, the node v sets HSv to NO or NCH, then the reached configuration belongs to I0.
If the node v updates HSv from CH (resp. O) to O (resp. CH), then the reached configuration
belongs also to I1 (see proofs of Case 1).
Let during cs, v updates Readyv without updating HSv. Notice that, the only rule can set Readyv

to RO (resp. RCH) without updating HSv is RRO and RCO (resp. RRCH and RCCH). The rules
RRO and RRCH are disabled in c1, because HSv /∈ {NCH, NO}. The execution of RCO and
RCCH reaches a configuration of I0. Thus, c2 cannot be reached from c1.

The computation step cs does not exist. There is a contradiction. I0 is closed under any computation
step. �

Lemma 2. I0 is an attractor from Conf in the composition of the clustering and CNK protocol.

Proof. Let c be a configuration of Conf , but not of I0. In c, there is at least a node v which satisfies
(HSv = CH ∧Readyv = RO) ∨ (HSv = O ∧Readyv = RCH). In c, two cases are possible:
• Case 1: Statusv = HSv.
The node v does not need to adjust the value of HSv. The rule RCO(v) or RCCH(v) (depending
on whether HSv = O or HSv = CH ) is enabled, and it stays enabled while Statusv = HSv

and Readyv is not updated. By fairness, the node v performs the rule RCO(v) or RCCH(v). After
execution of this action, a configuration of I0 is reached, because (HSv = O ∧ Readyv = RO) or
(HSv = CH ∧Readyv = RCH) holds.
• Case 2: Statusv 6= HSv.
Depending on the value of Statusv, and whether (v,⊥,⊥) exists in KTv or not, a rule among R01,
R02 and R03 is enabled. This rule stays enabled while Statusv 6= HSv. By fairness, the node v
performs one rule; and two sub-cases may occur:
– v sets HSv to NCH or NO. So, a configuration of I0 is reached.
– v sets HSv to CH or O. As both rules R01, R02, R03 update Readyv using the macro

UpdateReady. So, if HSv is set to CH, then Readyv is updated to RCH, otherwise, Readyv is
updated to RO. Thus, a configuration of I0 is also reached.
According these cases, a configuration of I0 is reached from c after any computation step. I0 is

closed under any computation step (Lemma 3). Thus, I0 is an attractor from Conf . �
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Observation 1

1. In a configuration of I0, the rules RCCH and RCO are disabled for any node v.
2. After performing the rule RRCH by a node v, v becomes (or stays) quasi-leader, i.e., RRCH(v)

does not lead v to the non quasi-leader status.
3. After performing the rule RRO by a node v, v becomes (or stays) quasi-ordinary.
4. The rules action except action of the rules R01, R02, R03, RRO, and RRCH by v do not modified

the satisfiability of QL(v) and QO(v).

Lemma 3. I1 = I0 ∩ {c ∈ Conf | ∀v ∈ V : Leader(v) ⇒ QL(v)} is closed under any any action
of the clustering and CNK protocol.

Proof. Let c1 be a configuration of I1. Assume that a computation step cs exists: c1
cs−→ c2, such

that c2 does not belong to I1. We will prove that cs does not exist. According to our assumptions,
in c2, there is at least a node v which satisfies Leader(v) ∧ ¬QL(v). Two cases are possible:
• Case 1: In c1, v is leader. As consequence, v is also quasi-leader.
If during cs, the node v performs a clustering rule and becomes non leader, then the reached
configuration belongs to I1. So, to reach c2, v remains leader, but it becomes non quasi-leader. This
change cannot be done by the rules RCCH(v), RCO(v), RRO(v) and RRCH(v) (see Observation
1). Furthermore, the rules R01(v), R02(v), and R03(v) always set HSv to Statusv. As in c1, v is
leader. Thus, during cs, any update of HSv ensures that HSv ∈ {CH, NO}, i.e. QL(v), holds in
c2. There is a contradiction.
• Case 2: In c1, v is non leader (i.e. Statusv = O ∨ Statusv = NCH). Two sub-cases are
possible:
• In c1, v is non quasi-leader (i.e., HSv = O ∨ (HSv = NCH ∧Readyv = RO)).
During cs, v has to perform a clustering rule to become leader, but it should stay non quasi-leader.
Notice that in c1, if HSv = O then Readyv = RO (c1 ∈ I0). Thus, in c1, Readyv = RO whatever
the value of HSv. As long as Readyv = RO, no clustering rule can set the variable Statusv to
CH, and so to NO (see Figure 2). So, v cannot become leader as long as v is a non quasi-leader.
There is a contradiction.
• In c1, v is quasi-leader (i.e., HSv ∈ {NO,CH} ∨ (HSv = NCH ∧Readyv = RCH)).
As long as v is quasi-leader, the configuration belongs to I1. In order to reach c2, the node v
should change simultaneously its status from non leader to leader, and from quasi-leader to non
quasi-leader.
According to Observation 1, during cs, the node v did not perform the rules RCCH , RCO, RRCH

and RRO. The only rules may be performed by v during cs, are the clustering rules and the rules
R01, R02.
In c1, if Statusv 6= NCH ∨ Readyv 6= RCH, the node v cannot become leader by performing a
clustering rule (see figure 2).
Assume that Statusv = NCH ∧ Readyv = RCH is satisfied in c1. The rule R03(v) is disabled
in c1, whereas the execution of rule R01(v) or R02(v) reaches a configuration where HSv =
NCH ∧ Readyv = RCH, i.e., QL(v) holds in c2. Therefore, a configuration in which v is leader
but non quasi-leader is not reached from c1.

The computation step cs does not exist. We conclude that I1 is closed under any computation step.
�
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Lemma 4. I1 is an attractor from I0.

Proof. Let c be a configuration of I0, but not of I1. In c, there is at least a node v that satisfies
Leader(v) ∧ ¬QL(v).
As c belongs to I0, in c we have: Statusv ∈ {CH, NO} ∧HSv 6= Statusv ∧Readyv = RO.
If v performs a clustering action to become non leader, then the reached configuration belongs to I1.
In c, one rule among R01(v) and R02(v) is enabled, and it stays enabled as long as HSv 6= Statusv.
By fairness, the node v performs this rule. Upon execution of this rule, HSv is set to Statusv. So,
the reached configuration belongs to I1, because v is quasi-leader (HSv ∈ {NO,CH}).
According to that, a configuration of I1 is reached from c after a computation step. I1 is closed
under any computation step (Lemma 3). Thus, I1 is an attractor from I0. �

Lemma 5. SC1 = I1 ∩ {c ∈ Conf | ∀v ∈ V : ¬Leader(v) ⇒ QO(v)} is closed under any any
action of the clustering and CNK protocol.

Proof. Let c1 be a configuration of SC1. Assume that a computation step cs exists: c1
cs−→ c2, such

that c2 does not belong to SC1. We will prove that cs does not exist. According to our assumptions,
in c2, there is at least a node v which satisfies ¬Leader(v) ∧ ¬QO(v). Two cases are possible:
• Case 1: In c1, v is non leader. As consequence, v is also a quasi-ordinary.
If during cs, the node v becomes leader, then the reached configuration belongs to SC1. So, to
reach c2, v remains non leader, but it becomes non quasi-ordinary.
This change cannot be done by the rules RCCH(v), RCO(v), RRCH(v), and RRO(v) (see Obser-
vation 1). So, during cs, v updates HSv to be non quasi-ordinary using one rule among R01(v),
R02(v), and R03(v). However, these rules set HSv to Statusv. As in c1, v is non leader. Thus,
any update of HSv ensures that HSv ∈ {O,NCH}, i.e. QO(v) holds. According to that, v cannot
become non quasi-ordinary as long as it is non leader.
• Case 2: In c1, v is Leader (i.e., Statusv ∈ {NO,CH}).
As long as v is leader, the configuration belongs to SC1. Two sub-cases are possible:
• In c1, v is a non quasi-ordinary (i.e., HSv = CH ∨ (HSv = NO ∧ Readyv = RCH)). In
order that v reaches c2, v must stay non quasi-ordinary, but it changes its status from leader to a
non leader by performing a clustering rule.
Notice that in c1, if HSv = CH then Readyv = RCH (c1 ∈ I0). Thus, in c1, Readyv = RCH
whatever the value of HSv. According to the status transition diagram shown in figure 2, as long
as Readyv = RCH, no clustering rule can change the Statusv value to O, and so to NCH. So, v
cannot become non leader as long as v is a non quasi-ordinary. Thus, c2 is not reached from c1.
• In c1, v is quasi-ordinary (i.e. HSv = O ∨ HSv = NCH ∨ (HSv = NO ∧ Readyv = RO)).
As long as v is quasi-ordinary, the configuration belongs to SC1. So, to reach c2, the node v
simultaneously changes its status from leader to a non leader, and from quasi-ordinary to non
quasi-ordinary.
During cs, the node v did not perform a rule among RCCH , RCO, RRCH , and RRO (see Observa-
tion 1). So, the only rules performed by v during cs are both a clustering rule, and one rule from
R01(v), R02(v) and R03(v).
In c1, if Statusv 6= NO ∨ Readyv 6= RO is satisfied, the node v cannot become non leader by
performing a clustering rule (see Figure 2).
Let in c1, Statusv = NO ∧Readyv = RO. In c1, the rule R03(v) is disabled. Moreover, if the rule
R01(v) or R02(v) is performed, even concurrently with a clustering rule, HSv is set to Statusv.
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So, QO(v) holds in c2. According to that, a configuration in which v is non leader and non quasi-
ordinary is not reached from c1.

According to these cases, the computation step cs does not exist. Thus, SC1 is closed under any
computation step. �

Lemma 6. SC1 is an attractor from I1.

Proof. Let c be a configuration of I1, but not of SC1. In c, there is a node v which satisfies
¬Leader(v) ∧ ¬QO(v).
As c belongs to I1, in c we have: Statusv ∈ {O,NCH} ∧HSv 6= Statusv ∧Readyv = RCH.
If v becomes leader by performing a clustering rule, then the reached configuration belongs to SC1.
Assume that during e, v did not become leader. In c, one rule among R01, R02, R03 is enabled, and
it stays enabled as long as HSv 6= Statusv.
By fairness, the node v performs this action. After that, HSv is set to Statusv. So, the reached
configuration belongs to SC1, because v is quasi-ordinary (HSv ∈ {O,NCH}).
According to that, a configuration of SC1 is reached from I1 after any computation step. SC1 is
closed (Lemma 5). Thus, SC1 is an attractor from I1. �

Theorem 1. Let c be a configuration of SC1, which satisfies the Strong-completeness predicate.
The completeness property is also satisfied in c.

Proof. In c, each quasi-leader knows all paths towards all quasi-leaders of its 3-QR-neighborhood.
In c, each leader v is a quasi-leader (Lemma 2). Thus, in c, each leader knows paths to all leaders
of its 3-QR-neighborhood.
In c, each non leader is quasi-ordinary (Lemma 6). So, in c, the v’s 3R-neighborhood belongs to the
v’s 3-QR-neighborhood. This proof can be done by induction on k ∈ [1, 3] value; the inductive step
is ∀v ∈ V,RNk

v ⊆ QRNk
v . We conclude that in c, each leader knows all paths to the leaders of its

3R-neighborhood.
Therefore, the completeness property is satisfied in c.

Observation 2 In a configuration of SC1, the following results are obvious:

• If a node v is non quasi-leader, then v is non leader; i.e., ¬QL(v)⇒ ¬Leader(v) (Lemma 3).
• If a node v is non quasi-ordinary, then v is leader; i.e., ¬QO(v)⇒ Leader(v) (Lemma 5).

Lemma 7. In a configuration of SC1, only the rule RRCH can lead a node from non quasi-leader
status to the quasi-leader status.

Proof. Let v be a node. Let c be a configuration of SC1, where v is non quasi-leader. As c ∈ I1,
then v is non leader (see Observation 2). Starting from c, if v updates HSv (using the rules R01(v),
R02(v), and R03(v)), then it stays non quasi-leader.
Thus, only the update of Readyv to RCH using RRCH(v) rule, can lead v to the quasi-leader status.

Lemma 8. In a configuration of SC1, only the rule RRO can lead a node from non quasi-ordinary
status to the quasi-ordinary status.

Proof. Let v be a node. Let c be a configuration of SC1, where v is non quasi-ordinary. As c ∈ SC1,
then v is leader (see Observation 2). Starting from c, if v updates HSv (using the rules R01(v),
R02(v), and R03(v)), then it stays non quasi-ordinary.
Thus, only the update of Readyv to RO using the rule RRO(v) can lead v to the quasi-ordinary
status.
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9.2 SC2 attractor

In follows, we define formally the Strong-completeness predicate, called SP . Thereafter, we present
the attractor SC2 where SP is always satisfied.

Definition 14 (the Strong-completeness predicate SP ).
• SP ≡ ∀v ∈ V, Sp0(v) ∧ Sp1(v) ∧ Sp2(v) ∧ Sp3(v)
• Sp0(v) ≡ ¬QL(v) ∨ (v,⊥,⊥) ∈ KTv

• Sp1(v) ≡ ¬QL(v) ∨ ∀z ∈ Nv, (v,⊥,⊥) ∈ KTz

• Sp2(v) ≡ ∀(v, z, w) ∈ Path,¬QL(v) ∨ ¬QO(z) ∨ (v, z,⊥) ∈ KTw

• Sp3(v) ≡ ∀(v, z, w, u) ∈ Path,¬QL(v) ∨ ¬QO(z) ∨ ¬QO(w) ∨ ¬QL(u) ∨ (v, w, z) ∈ KTu

Description of SP : The predicate SP stipulates the Strong-completeness property.
∀v ∈ V, Sp0(v) is satisfied if every quasi-leader v has a record about its own cluster in its KTv.
∀v ∈ V, Spi(v)(i ∈ {1, 2}) is satisfied if every node v has in KTv a record about quasi-leaders within
its i-QR-neighborhood.
∀v ∈ V, Sp3(v) is satisfied if every quasi-leader v has in KTv a record about quasi-leaders within its
3-QR-neighborhood. Note that, a non quasi-leader v satisfies forever Spi(v), i ∈ [0, 3]. The predicate
SP is satisfied if for every node v, Spi(v), i ∈ [0, 3] is satisfied.

9.2.1 Proof of SP at distance 0 and 1
Lemma 2 (lemma resp. 3) establishes that once a configuration of a A0 (resp. A1) is reached, each
quasi-leader v (resp.every v’s neighbor) have a record in its Knowledge Table (KT ) about the v’s
cluster.

Lemma 9. A0 = SC1∩{c ∈ Conf | ∀v ∈ V : Sp0(v) is satisfied } is closed under any computation
step.

Proof. Le c1 be a configuration of A0. According to Lemma 7, starting from c1, RRCH(v) is the
only rule that leads a non quasi-leader v to the quasi-leader status. However, this rule is disabled
as long as (v,⊥,⊥) /∈ KTv, because the guard RF -guard(v) is not satisfied. On the other hand,
R03(v) is the only rule that removes the record (v,⊥,⊥) from KTv. However, this rule leads v to
the non quasi-leader status, by setting HSv to O.
Thus, starting from a configuration of A0, a configuration that does not belong to A0 can never be
reached. Therefore, A0 is closed under any computation step. �

Theorem 2. A0 is an attractor from SC1.

Proof. Let c be a configuration of SC1, but not of A0. In the configuration c, there is at least a
node v such that SP0(v) is not satisfied, i.e., QL(v) ∧ (v,⊥,⊥) /∈ KTv.
In c, if Statusv = O, then HSv 6= Statusv, because v is quasi-leader. So, R03(v) is enabled.
Otherwise (i.e., Statusv 6= O), the rule R01(v) is enabled (by assumption, (v,⊥,⊥) /∈ KTv). One
rule among R01(v) and R03(v) is enabled till QL(v) ∧ (v,⊥,⊥) /∈ KTv. By fairness, the node v
performs one of the two rules.
• After performing R01(v), the record (v,⊥,⊥) belongs to KTv. The reached configuration belongs
to A0.
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• After performing R03(v), HSv is set to O. So, v becomes non quasi-leader. The reached configu-
ration belongs also to A0.

Eventually, a configuration of A0 is reached. A0 is closed under any computation step (Lemma
9). Thus, A0 is an attractor from SC1. �

Lemma 10. A1 = A0∩{c ∈ Conf | ∀v ∈ V : Sp1(v) is satisfied } is closed under any computation
step.

Proof. Let c1 be a configuration of A1.
According to Lemma 7, starting from c1, RRCH(v) is the only rule that leads a non quasi-leader
v to the quasi-leader status. However, this rule is disabled while there exists a v’s neighbor z such
that (v,⊥,⊥) /∈ KTz, because the guard RF -guard(v) is not satisfied.
Let z be a v’s neighbor. R13(z) is the only rule can remove the record (v,⊥,⊥) from KTz. However,
in c1, as long as v is quasi-leader this rule is disabled, because (v,⊥,⊥) ∈ KTv (c1 ∈ A0). Thus,
staring from c1, all reached configurations belong to A1. �

Theorem 3. A1 is an attractor from A0.

Proof. Let c be a configuration of A0, but not of A1. In c, there is a node v such that Sp1(v) is
not satisfied, i.e.,QL(v) ∧ ∃z ∈ Nv, (v,⊥,⊥) /∈ KTz. As c ∈ A0 (i.e., (v,⊥,⊥) ∈ KTv), then the
rule R11(z) is enabled in c. As A0 is closed, the rule R11(z) stays enabled as long as Sp1(v) is
not satisfied. By fairness, the node z performs this action, and adds the record (v,⊥,⊥) to KTz. A
configuration of A1 is reached. As A1 is closed under any computation step (Lemma 10); thus, A1
is an attractor from A0. �

9.2.2 Proof of SP at distance 2

Lemma 12 establishes that the hs field of the record stored by node a v in KTv about its own cluster
has always the same value as HSv.

Lemma 11.
A2 = A1 ∩ {c ∈ Conf | ∀v ∈ V : (v,⊥,⊥, hs, pif) ∈ KTv ⇒ hs = HSv ∧ HSv 6= O } is closed
under any computation step.

Proof. Let c be a configuration of A2. The only rule that adds the record (v,⊥,⊥, hs, pif) to KTv

is R01(v). However, this rule ensures that HSv 6= O, and it sets hs to HSv. Furthermore, hs and
HSv are always simultaneously updated (see rules R02(v) and R04(v)). Moreover, the only rule that
sets HSv to O is R03(v), but this rule deletes the record (v,⊥,⊥) from KTv. Thus, starting from
c, after any computation step the reached configuration belongs to A2. �

Lemma 12. A2 is an attractor from A1.

Proof. Let c be a configuration of A1, but not of A2. In c, there is at least a node v that satisfies
(v,⊥,⊥, hs, pif) ∈ KTv ∧ (hs 6= HSv ∨HSv = O). In c, according to the value of Statusv and HSv,
one rule among R02(v), R03(v), R04(v) is enabled.
• If Statusv = O, the rule R03(v) is enabled.
• If Statusv 6= O, then either R02(v) or R04(v) is enabled.

24



One among these rules stays enabled as long as hs 6= HSv. By fairness, the node v performs a
rule.
• After performing R03(v), (v,⊥,⊥) is removed from KTv.
• After performing R02(v) or R04(v), hs is updated to HSv, and HSv 6= O.

In both cases, a configuration of A2 is reached. As A2 is closed (Lemma 11), thus A2 is an
attractor from A1. �

To explain the following lemmas, let us define the notion of new, old and very old records.

Notation 1 (New, Old, very Old records) A record of a knowledge table is said to be new if
the value of its hs and pif fields are respectively NCH and C. Otherwise, it is called an old record
(it has not recently inserted). A old record is said very old if hs 6= NCH or pif = F .

Lemma 14 establishes that each quasi-leader v has an old record about its own cluster in its knowl-
edge table. In the following, we assume that v is a quasi-leader.

Lemma 13. P3(v) ≡ QL(v)⇒ (v,⊥,⊥, hsv, pifv) ∈ KTv ∧ (hsv 6= NCH ∨ pifv 6= C)
A3 = A2 ∩ {c ∈ Conf | ∀v ∈ V : P3(v) is satisfied } is closed under any computation step.

Proof. Let cs be a computation step c1
cs−→ c2, such that c1 ∈ A3. In c1, two cases are possible:

• v is non quasi-leader. The only rule can lead v to the quasi-leader status is RRCH(v) (Lemma
7). The execution of this rule during cs ensures that (v,⊥,⊥, NCH,F ) ∈ KTv holds in c2. Thus,
c2 belongs to A3.
• v is quasi-leader. By assumption, in c1 we have (v,⊥,⊥, hsv, pifv) ∈ KTv ∧
(hsv 6= NCH ∨ pifv 6= C). In order that c2 /∈ A3, during cs v should remove the record (v,⊥,⊥)
from KTv, or it should update the value of hsv or pifv.
• Deleting (v,⊥,⊥) from KTv. As long as v is quasi-leader, it cannot delete the record (v,⊥,⊥)

from KTv, because c1 ∈ A0, and A0 is closed (Lemma 9).
• Updating of hsv. As c1 ∈ A2, we have HSv 6= O and hsv = HSv; so, R02(v) is the only rule

can update hsv. Note that R02(v) sets pifv to C. If during cs, hsv is set to NO or CH, then
c2 ∈ A3.
If during cs, hsv is set to NCH then in c1 Statusv = NCH (i.e., v is non leader). So, in c1, v is
quasi-ordinary (Lemma 6). In addition, R02(v) is performed during cs, only if Statusv 6= HSv

in c1. We conclude that in c1, HSv ∈ {O,NO} ∧ Readyv = RO. In c2, v is non quasi-leader,
because hsv = NCH ∧ Readyv = RO. Thus, c2 belongs to A3.
• Updating of pifv only. The configuration c2 does not belong to A3 if hsv = NCH and

pifv = C. The rule that sets pifv to C without changing the hsv value, is RC(v). As long as v
is quasi-leader and hsv = NCH (so, Readyv = RCH), this rule is disabled.
According to these cases, starting from c1 and after any computation step, the reached configu-

ration belongs to A3. Thus, A3 is closed under any computation step. �

Lemma 14. A3 is an attractor from A2.

Proof. Let c be a configuration of A2, but not of A3. In c, there is at least a node v that does not
satisfy P3(v), i.e., QL(v)∧ (v,⊥,⊥, hsv, pifv) ∈ KTv ∧ hsv = NCH ∧ pifv = C (because c1 ∈ A0).
We prove that all computations starting from c reach a configuration of A3. In c, two cases are
possible:
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• Case 1: HSv 6= Statusv. In c, v is enabled and it stays enabled up to the time where it performs
R02(v) or R03(v). By fairness, the node v performs one of these actions. The reached configuration
belongs to A3, because hsv 6= NCH or HSv = O (i.e., v is no longer quasi-leader).
• Case 2: HSv = Statusv. While HSv = Statusv (= NCH), v stays quasi-leader, because no rule
can set Readyv to RO. After at most 2 rounds, a configuration of A3 is reached where pifv 6= C.
The convergence from c to a configuration of A3 is done as follows.
In c, we have (v,⊥,⊥, hsv, pifv) ∈ KTv, hsv = NCH and pifv = C. Furthermore, in c, every node
z neighbor of v has a record (v,⊥,⊥, hsz, pifz) in KTz, because v is quasi-leader and c ∈ A1. In c,
hsz may be different to hsv, or pifz may be different to C.
In round 1: the node z either updates hsz by performing R12(z), or it updates pifz by performing
IC-d1(z). After the z’s action, we have (v,⊥,⊥, NCH,C) ∈ KTz.
In round 2: the rule RB(v) is enabled, because (v,⊥,⊥, NCH,C) ∈ KTv and
(v,⊥,⊥, NCH,C) ∈ KTz. The node v stays enabled up to the time where it performs this action.
By fairness, v performs this action.

After executing RB(v), a configuration of A3 is reached where (v,⊥,⊥, NCH,B) ∈ KTv. As
A3 is closed under any computation step (Lemma 13). Thus, A3 is an attractor from A2. �

Lemma 16 establishes that any neighbor z of v has a record concerning the v’s cluster in its knowledge
table. If the record in KTz is old then it cannot become new because the rules R12 and IC-d1 cannot
be performed in A4. These rules are the only ones that may replace a old record about v in KTz

by a new one.

Lemma 15.
P4(v) ≡ QL(v)⇒ ∀z ∈ Nv : (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz = HSv ∨HSv 6= NCH)
A4 = A3 ∩ {c ∈ Conf | ∀v ∈ V : P4(v) is satisfied } is closed under any computation step.

Proof. Let cs be a computation step c1
cs−→ c2, such that c1 ∈ A4. In c1, two general cases are

possible:
• Case 1: v is quasi-leader. As c1 ∈ A3, we have: (v,⊥,⊥, hsv, pifv) ∈ KTv ∧
(hsv 6= NCH ∨ pifv 6= C).
• Deleting (v,⊥,⊥) from KTz. Starting from c1, z cannot remove the record (v,⊥,⊥) from

KTz as long as QL(v) is satisfied (c1 ∈ A1, and A1 is closed).
• Updating of hsz. The rule R12(z) is the only rule that changes hsz value. This rule always

sets hsz to hsv which has the same value as HSv -hsv = HSv (c1 ∈ A2) -.
• Updating of HSv. The rules can change HSv value are R02(v) and R03(v). If during cs, HSv

is set to CH, NO or O, then c2 belongs to A4. Let during cs, HSv is set to NCH; so, in c1,
Statusv = NCH (i.e., v is non leader). According to Lemma 6, in c1, v is quasi-ordinary. In
addition, R02(v) is performed during cs, only if Statusv 6= HSv in c1. We conclude that in c1,
HSv ∈ {O,NO}∧Readyv = RO. In c2, v is non quasi-leader, because HSv = NCH∧ Readyv =
RO. Thus, c2 belongs to A4.

• Case 2: v is non quasi-leader. Starting from c1, RRCH(v) is the only rule that leads v to the
quasi-leader status (Lemma 7). This rule is disabled as long as there exists a v’s neighbor z where
(v,⊥,⊥, NCH,F ) /∈ KTz ∧HSv = NCH. So, c2 is not reached from c1.

During cs, all reached configurations belong to A4. Therefore, A4 is closed under any computation
step. �
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Lemma 16. A4 is an attractor from A3.

Proof. Let c be a configuration of A3, but not of A4. So in c, there is at least a node v that does
not satisfy P4(v), i.e., QL(v) ∧ ∃z ∈ Nv : (v,⊥,⊥, hsz, pifz) ∈ KTz ∧
hsz 6= HSv ∧HSv = NCH (because c1 ∈ A1). In c, two cases are possible:
• Case 1: HSv 6= Statusv. In c, v is enabled and it stays enabled up to the time where it performs
R02(v) or R03(v). By fairness, the node v performs one of these actions. After that we have,
HSv 6= NCH.
• Case 2: HSv = Statusv. While HSv = Statusv (= NCH), v stays quasi-leader because no rule
can set Readyv to RO. As c belongs to A2 and A3, the rule R12(z) is enabled, and it stays enabled
up to the time where it is performed. By fairness, the node z performs R21(z). After this action,
we have hsz = HSv.

In both cases, a configuration of A4 is reached. Thus, A4 is an attractor from A3. �

Lemma 18 establishes that any neighbor z of a quasi-leader v has an old record concerning the v’s
cluster in its knowledge table.

Lemma 17. P5(v) ≡ QL(v)⇒ ∀z ∈ Nv, (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz 6= C)
A5 = A4 ∩ {c ∈ Conf | ∀v ∈ V : P5(v) is satisfied } is closed under any computation step.

Proof. Let c1 be a configuration of A5. Assume that a computation step cs exists: c1
cs−→ c2, such

that c2 does not belong to A5. In c2, there is at least a node v such that P5(v) is not satisfied, i.e.,
QL(v)∧∃z ∈ Nv, (v,⊥,⊥, hsz, pifz) ∈ KTz ∧hsz = NCH ∧ pifz = C (because c1 ∈ A1). In c1, two
general cases are possible:
• Case 1: v is quasi-leader. As c1 ∈ A3, we have: (v,⊥,⊥, hsv, pifv) ∈ KTv ∧
(hsv 6= NCH ∨pifv 6= C). To reach c2, z should remove the record (v,⊥,⊥) from KTz, or it should
update hsz to NCH, or pifz to C.
• Deleting (v,⊥,⊥) from KTz. Starting from c1, z cannot remove the record (v,⊥,⊥) from

KTz as long as v is quasi-leader (c1 ∈ A1, and A1 is closed).
• Updating of hsz to NCH. The rule R12(z) is the only rule that changes the hsz value. This

rule always sets hsz to hsv if they are different. In c1, hsv = HSv because c1 ∈ A2. Furthermore,
in c1 if hsv = NCH then hsz = hsv because c1 belongs to A4. Therefore, hsz cannot be updated
to NCH.
• Updating of pifz to C. The only rule can set pifz to C without changing hsz is IC-d1(z). If in

c1, hsz ∈ {CH, NO}, then the reached configuration belongs to A5. Let in c1, hsz = NCH; so
pifz 6= C. In c1, if pifv = C, then hsv 6= NCH (c1 ∈ A3); so, hsz 6= hsv. In this configuration,
IC-d1(z) is disabled because disabled(z) is not satisfied (rule R12(z) is enabled).

• Case 2: v is non quasi-leader. Starting from c1, RRCH(v) is the only rule giving v the
quasi-leader status (Lemma 7). This rule is disabled as long as there exists a v’s neighbor z where
(v,⊥,⊥, NCH,F ) /∈ KTz.
The simultaneous execution of RRCH(v) with a z’s action during cs does not falsify the predicate
P5(v). RRCH(v) is performed during cs only if in c1, (v,⊥,⊥, NCH,B) ∈ KTv and
(v,⊥,⊥, NCH,F ) ∈ KTz. In this configuration, the rules R12(z), R13(z) and IC-d1(z) are dis-
abled.

There is a contradiction; cs does not exist. Therefore, A5 is closed under any computation step. �
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Lemma 18. A5 is an attractor from A4.

Proof. Let c be a configuration of A4, but not of A5. In c, there is a node v such that P5(v) is not
satisfied, i.e., QL(v) ∧ ∃z ∈ Nv : (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ hsz = NCH ∧ pifz = C.
We prove that all computations starting from c reach a configuration of A5. In c, two cases are
possible:
• Case 1: HSv 6= NCH. In c, z is enabled and it stays enabled up to the time where it performs
R12(z). By fairness, the node z performs this action. After z’s action, a configuration of A5 is
reached, because (v,⊥,⊥, hsz, C) ∈ KTz ∧ hsz 6= NCH.
• Case 2: HSv = NCH. If every z’s neighbor expect v, named w has the record
(v, z,⊥, hsw, pifw) in its knowledge table where hsw = hsz ∧ pifw = C, then IB(z) is enabled.
Otherwise, the node w is enabled. The maximal computation that reach a configuration of A5
starting from c is as follows.
In round 1: according to whether (v, z,⊥, hsw, pifw) /∈ KTw, or hsw 6= hsz or pifw 6= C, one
rule among R21(w), R22(w) and IC-d2(w) is enabled. This rule stays enabled as long as (v,⊥,⊥
, hsz, pifz) ∈ KTz ∧ pifz = C. By fairness, the node w performs one of these actions. After a w’s
action, we have (v, z,⊥, hsw, C) ∈ KTw ∧ hsw = hsz.
In round 2: IB(z) is enabled, and it stays enabled until pifz 6= C. By fairness, z performs this
action. After that, a configuration of A5 is reached where (v,⊥,⊥, hsz, B) ∈ KTz.

A configuration of A5 is eventually reached. Thus, A5 is an attractor from A4. �

In the following, we assume that z is a neighbor of v that is quasi-ordinary. Let w be a neighbor of
z. If z has an old record concerning v’s cluster then w has also a record concerning the v’s cluster.

Lemma 19. P6(z) ≡ QO(z) ∧ ∃(v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz 6= C)
⇒ ∀w ∈ Nz/{v} : (v, z,⊥) ∈ KTw

A6 = A5 ∩ {c ∈ Conf | ∀z ∈ V : P6(z) is satisfied } is closed under any computation step.

Proof. Let c1 be a configuration of A6. Assume that a computation step cs exists: c1
cs−→ c2, such

that c2 /∈ A6. In c2, there is at least a node z such that P6(z) is not satisfied; i.e., QO(z) ∧
∃(v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨pifz 6= C)∧∃w ∈ Nz/{v} : (v, z,⊥) /∈ KTw is satisfied.
In c1, four cases are possible:
• Case 1: In c1, ¬QO(z). RRO(z) is the only rule that leads z to the quasi-ordinary status
(Lemma 8). In c1, if there exists (v,⊥,⊥) ∈ KTz and a z’s neighbor w, such that (v, z,⊥) /∈ KTw,
the predicate Constraint1(z) is not satisfied, and RRO(z) is disabled.
• Case 2: In c1, QO(z) ∧ (v,⊥,⊥) /∈ KTz. In c1, v is non quasi-leader (HSv ∈ {O,NCH}),
because c1 ∈ A1. To reach c2, z should add the record (v,⊥,⊥) to KTz. R11(z) is the only rule
can do this action. However, the execution of this rule during cs requires that (v,⊥,⊥, hsv, pifv)
belongs to KTv in c1. We conclude that in c1, hsv = NCH because HSv 6= O and hsv = HSv

(c1 ∈ A2). If R11(z) is performed during cs, the reached configuration belongs to A6, because
(v,⊥,⊥, NCH, C) ∈ KTz.
• Case 3: In c1, QO(z) ∧ (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ hsz = NCH ∧ pifz = C.
To reach c2, either z updates pifz to B or F , or it updates hsz to NO or CH.
• Updating of pifz. Starting from c1 (i.e. pifz = C), IB(z) is the only rule can update pifz.

However, this rule is disabled as long as QO(z) and ∃w ∈ Nz/{v}, (v, z,⊥) /∈ KTw.
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• Updating of hsz. In c1, v is non quasi-leader, i.e., HSv ∈ {O,NCH}; because (v,⊥,⊥
, NCH,C) ∈ KTz and c1 ∈ A5. As c1 ∈ A2, if (v,⊥,⊥, hsv, pifv) ∈ KTv then hsv = NCH; so,
hsv = hsz. R12(z) is the only rule can update hsz, but it can be performed during cs only if in
c1 hsz 6= hsv. Thus, in c1, this rule is disabled.

• Case 4: In c1, QO(z) ∧ ∃(v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz 6= C). To reach
c2, a z’s neighbor w should delete the record (v, z,⊥) from KTw. R23(w) is the only rule can do
this action. Nevertheless, this rule is disabled in c1, and it stays disabled as long as QO(z) and
(v,⊥,⊥) ∈ KTz are satisfied.

There is a contradiction; the computation step cs does not exist. Therefore, A6 is closed under
any computation step. �

Lemma 20. A6 is an attractor from A5.

Proof. Let c be a configuration of A5, but not of A6. So, in c, there is at least a node z that
does not satisfy P6(z), i.e., QO(z) ∧ ∃(v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz 6= C) ∧
∃w ∈ Nz/{v}, (v, z,⊥) /∈ KTw. In c, the rule R21(w) is enabled, and it stays enabled as long
as (v,⊥,⊥, hsz, pifz) ∈ KTz, QO(z), and (v, z,⊥) /∈ KTw. By fairness, the node w performs this
action, and it adds the record (v, z,⊥) to KTw. As A6 is closed (Lemma 19); thus, A6 is an attractor
from A5. �

Once a configuration of A6 is reached, all nodes in v’s 2-QR-neighborhood have a record con-
cerning v’s cluster. Because, all v’s neighbors have an old record concerning v’s cluster in their
knowledge table.

Theorem 4. In a configuration of A6, every node v satisfies Sp2(v).

Proof. Let v, z and w be nodes, such that (v, z, w) ∈ Path. Let c be a configuration of A6.
As c belongs to A5, P5(v) is satisfied in c, and it stays satisfied after any computation step (A5 is
an attractor, Lemma 18). Thus, we have

QL(v)⇒ (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz 6= C) (1)

On the other hand, P6(z) is satisfied in c (c ∈ A6) and after any computation step (A6 is an
attractor, Lemma 20). Thus, we have,

QO(z) ∧ (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz 6= C)⇒ (v, z,⊥) ∈ KTw (2)

According to equations (1) and (2), we conclude that in c and along any computation, the predicate
Sp2(v) is satisfied: QL(v) ∧QO(z)⇒ (v, z,⊥) ∈ KTw. �

9.2.3 Proof of SP at distance 3

Notation 2 In follows we use the notation B/F as a value of a pif field to denote that the pif
field has either the value B or F (ex. (z,⊥,⊥, ., B/F ) ∈ KTz).

Definition 15. Let PQO(z, w) be a predicate defined as follows.
PQO(z, w) ≡ QO(z) ∨

(
(z,⊥,⊥, NO, B/F ) ∈ KTz ∧ (z,⊥,⊥, NO, B/F ) ∈ KTw

)
.
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The predicate PQO(z, w) is introduced to describe configurations where either (1) z is quasi-
ordinary or (2) z has the nearly ordinary status, it has already initiated a PIF, and the z’s neighbor
w has participated to this PIF.

Lemma 21. Starting from a configuration c where the predicate PQO(z, w) is not satisfied, only
the execution of the rule IB(w) reaches a configuration where PQO(z, w) is satisfied.

Proof. Let us study the w’s and z’s actions that reach a configuration where PQO(z, w) is satisfied.
RRO(z) is the only rule that leads z to the quasi-ordinary status (Lemma 8). RRO(z) is performed
only if (z,⊥,⊥, NO, B) ∈ KTz and (z,⊥,⊥, NO, F ) ∈ KTw. Thus, before the execution of this
rule, the predicate PQO(z, w) is verified.
The rule reaching a configuration where (z,⊥,⊥, NO, B) ∈ KTz is RB(z). The execution of this
rule requires that (z,⊥,⊥, NO, C) ∈ KTz and (z,⊥,⊥, NO, C) ∈ KTw. Thus, after execution of
RB(z), the predicate PQO(z, w) stays non satisfied.
On the other hand, the rule reaching a configuration where (z,⊥,⊥, NO, F ) ∈ KTz is RRO(z). As
mentionned above, before the execution of this rule, the predicate PQO(z, w) is satisfied.
The only rule reaching a configuration where (z,⊥,⊥, NO, F ) ∈ KTw is IF -d1(w). IF -d1(w) is per-
formed only if (z,⊥,⊥, NO, B/F ) ∈ KTz and (z,⊥,⊥, NO, B) ∈ KTw. Thus, before the execution
of this rule, the predicate PQO(z, w) is verified.
As consequence, only the execution of IB(w) may reach a configuration satisfying PQO(z, w). �

Observation 3
• In any configuration c of A6, if PQO(z, w) is satisfied, then HSz 6= CH, because either QO(z)
or HSz = NO (in c, (z,⊥,⊥, NO, B/F ) ∈ KTz and c ∈ A2).
• In any configuration c of A6, if PQO(z, w) is not satisfied but the rule IB(w) is enabled, then
HSz = NO because (z,⊥,⊥, NO, B/F ) ∈ KTz and c ∈ A2.

In the following, we assume that w is a neighbor of z and PQO(z, w) is verified. Lemma 22 establishes
that if z has a record concerning v’s cluster with the pif field value different of C then w cannot
perform a rule R2i where i ∈ [1, 3] on the record (v, z,⊥).

Lemma 22. P7(z) ≡ ∀(v, z, w) ∈ Path, PQO(z, w) ∧ (v,⊥,⊥, hsz, B/F ) ∈ KTz

⇒ (v, z,⊥, hsw, pifw) ∈ KTw ∧ hsw = hsz

A7 = A6 ∩ {c ∈ Conf | ∀z ∈ V : P7(z) is satisfied } is closed under any computation step.

Proof. Let cs be a computation step c1
cs−→ c2, such that c1 ∈ A7. Assume that c2 does not belong

to A7. In c1, three cases are possible:
• Case 1: In c1, (v,⊥,⊥, hsz, B/F ) /∈ KTz. Starting from c1, only the rules IB(z) and IF -d1(z)
reach a configuration where (v,⊥,⊥, hsz, B/F ) ∈ KTz.
In c1, if the predicate PQO(z, w) is not satisfied, and the rule IB(w) is disabled, then the reached
configuration belongs to A7 (because PQO(z, w) stays not satisfied). Otherwise (i.e., PQO(z, w)
is satisfied or IB(w) is enabled), we have HSz 6= CH (see Observation 3). IB(z) and IF -d1(z) are
disabled as long as (v, z,⊥, hsw, pifw) /∈ KTw ∨ hsw 6= hsz.
• Case 2: In c1, ¬Pzw∧ (v,⊥,⊥, hsz, B/F ) ∈ KTz. According to lemma 21, only the rule IB(w)
reaches a configuration where the predicate PQO(z, w) is satisfied. According to Observation 3, in
c1 if this rule is enabled, then HSz = NO. Starting from c1, as long as (v,⊥,⊥, hsz, B/F ) ∈ KTz,
and (v, z,⊥, hsw, pifw) /∈ KTw or hsw 6= hsz, the predicate Disabled(w) is not satisfied (rule
R21(w) or R22(w) is enabled). In this configuration, the rule IB(w) is disabled.
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• Case 3: PQO(z, w) ∧ (v,⊥,⊥, hsz, B/F ) ∈ KTz.
To reach c2, either the node w deletes (v, z,⊥, hsw, pifw) from KTw, or it updates hsw.
• Deleting of (v, z,⊥) from KTw. In c1, we have HSz 6= CH (see Observation 3). As long

as HSz 6= CH and (v,⊥,⊥) ∈ KTz, w cannot delete the record (v, z,⊥) from KTw, because
R23(w) is disabled.
• Updating of hsw. hsw is always sets to hsz by the rule R22(w).

There is a contradiction; cs does not exist. Therefore, A7 is closed under any computation step. �

Lemma 23. A7 is an attractor from A6.

Proof. Let c be a configuration of A6, but not of A7. In c, there is at least a node z such that P7(z)
is not satisfied, i.e., PQO(z, w) ∧ (v,⊥,⊥, hsz, B/F ) ∈ KTz ∧ ∃w ∈ Nz/{v}, (v, z,⊥, hsw, pifw) /∈
KTw ∨ hsw 6= hsz.
In c, we have HSz 6= CH, because PQO(z, w) is satisfied (see Observation 3).
In c, according to whether (v, z,⊥, hsw, pifw) /∈ KTw or hsw 6= hsz, one of the rules R21(w) and
R22(w) is enabled. This rule stays enabled as long as HSz 6= CH and (v,⊥,⊥, hsz, pifz) ∈ KTz.
By fairness, the node w performs one of these rules, and get (v, z,⊥, hsw, pifw) ∈ KTw∧hsw = hsz.
A configuration of A7 is reached. As A7 is closed (Lemma 22); thus, A7 is an attractor from A6. �

Lemma 25 establishes that any neighbor z of a quasi-leader v has a very old record concerning the
v’s cluster in its knowledge table.

Lemma 24. P8(v) ≡ QL(v)⇒ ∀z ∈ Nv, (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz = F )
A8 = A7 ∩ {c ∈ Conf | ∀v ∈ V : P8(v) is satisfied } is closed under any computation step.

Proof. Let c1 be a configuration of A8. Assume that a computation step cs exists: c1
cs−→ c2, such

that c2 does not belong to A8. In c1, two general cases are possible:
• Case 1: v is quasi-leader. As c1 ∈ A3, we have: (v,⊥,⊥, hsv, pifv) ∈ KTv ∧ (hsv 6= NCH ∨
pifv 6= C). To reach c2, z should remove the record (v,⊥,⊥) from KTz, or it should update hsz to
NCH, or pifz to B or C.
• Deleting (v,⊥,⊥) from KTz. Starting from c1, z cannot remove the record (v,⊥,⊥) from

KTz as long as QL(v) is satisfied (c1 ∈ A1, and A1 is closed).
• Updating of hsz to NCH. R12(z) is the only rule that changes the hsz value. This rule always

sets hsz to hsv. In c1, hsv = HSv because c1 ∈ A2. Furthermore, in c1 if hsv = NCH then
hsz = hsv because c1 ∈ A4. In this configuration, R12(z) is disabled.
• Updating of pifz to B or C. The only rules can set pifz to B or C without changing hsz are

IC-d1(z) and IB(z). If in c1, hsz ∈ {CH, NO}, then the reached configuration belongs to A8.
Let in c1, hsz = NCH; so pifz = F . As in c1 pifz = F , then IB(z) is disabled. IC-d1(z) is
enabled in c1 only if pifv = C, i.e., hsv 6= NCH (c1 ∈ A3); so, hsz 6= hsv. In this configuration,
disabled(z) is not satisfied (rule R12(z) is enabled). Thus, IC-d1(z) is also disabled.

• Case 2: v is non quasi-leader. Starting from c1, RRCH(v) is the only rule giving v the
quasi-leader status (Lemma 7). This rule is disabled as long as there exists a v’s neighbor z where
(v,⊥,⊥, NCH,F ) /∈ KTz.
Let us study the simultaneous execution of RRCH(v) with a z’s action during cs. RRCH(v) is
performed during cs only if in c1, (v,⊥,⊥, NCH,B) ∈ KTv and (v,⊥,⊥, NCH,F ) ∈ KTz. At
that time, P8(v) is verified, and no z’s action can falsify the predicate P8(v), because the rules
R11(z), R12(z), R13(z), IC-d1(z), IB(z) and IF -d1(z) are disabled.
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There is a contradiction; cs does not exist. Therefore, A8 is closed under any computation step. �

Lemma 25. A8 is an attractor from A7.

Proof. Let c be a configuration of A7, but not of A8. In c, there is at least a node v such that P8(v)
is not satisfied, i.e., QL(v) ∧ ∃z ∈ Nv : (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ hsz = NCH ∧ pifz 6= F .

We prove that all computations starting from c reach a configuration of A8. In c, two cases are
possible:
• Case 1: HSv 6= NCH. In c, z is enabled and it stays enabled up to the time where it performs
R12(z). By fairness, the node z performs this action. After z’s action, a configuration of A8 is
reached, because (v,⊥,⊥, hsz, C) ∈ KTz ∧ hsz 6= NCH.
• Case 2: HSv = NCH. As c1 ∈ A3, we have (v,⊥,⊥, hsv, pifv) ∈ KTv∧hsv = NCH ∧pifv 6= C.
As c1 ∈ A5, we have pifz 6= C; so, pifz = B. Since c ∈ A7, every node w neighbor of z
(w 6= v ∧HSz 6= CH) has the record (v, z,⊥, hsw, pifw) in KTw, and hsw = NCH.
The maximal computation that reaches a configuration of A8 is as follows.
In round 1: every non ordinary node u neighbor of w (u 6= z ∧ u 6= v ∧HSw 6= CH ∧HSu 6= O)
that does not have the record (v, w, z, hsu, pifu) in KTu, or hsu 6= NCH is enabled. One rule
among R31(u), R32(u) is enabled. This rule stays enabled as long as (v, z,⊥, hsw, pifw) ∈ KTw ∧
hsw = NCH. By fairness, the node u performs one of these actions. After the u’s action, we have
(v, w, z, hsu, C) ∈ KTu ∧ hsu = NCH.
In round 2: the rule IF -d2(w) is enabled, and it stays enabled as long as pifw = C, pifz = B and
(v, w, z, NCH, C) ∈ KTu. By fairness, w performs this rule. After that, we have (v, z,⊥, NCH,F ) ∈
KTw.
In round 3: the rule IF -d1(z) becomes enabled because pifv 6= C, pifz = B and
(v, z,⊥, NCH,F ) ∈ KTw. By fairness, the node z performs this action. Once z performs this action,
we have (v,⊥,⊥, NCH,F ) ∈ KTz.

A configuration of A8 is eventually reached. Thus, A8 is an attractor from A7. �

In A9, if z has a very old record concerning v’s cluster then w has a old record concerning the v’s
cluster.

Lemma 26.
P9(z) ≡ ∀(v, z, w) ∈ Path, PQO(z, w) ∧ (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz = F )

⇒ (v, z,⊥, hsw, pifw) ∈ KTw ∧ (hsw 6= NCH ∨ pifw 6= C)
A9 = A8 ∩ {c ∈ Conf | ∀z ∈ V : P9(z) is satisfied } is closed under any computation step.

Proof. Let cs be a computation step c1
cs−→ c2, such that c1 ∈ A9. Assume that c2 does not belong

to A9. In c1, four cases are possible:
•Case 1: In c1, (v,⊥,⊥) /∈ KTz. In c1, v is non quasi-leader (HSv ∈ {O,NCH}), because c1 ∈ A1.
To reach c2, z should add the record (v,⊥,⊥) to KTz. R11(z) is the only rule can do this action.
However, the execution of this rule during cs requires that (v,⊥,⊥, hsv, pifv) belongs to KTv in
c1. We conclude that in c1, hsv = NCH because HSv 6= O and hsv = HSv (c1 ∈ A2). If R11(z) is
performed during cs, the reached configuration belongs to A9, because (v,⊥,⊥, NCH,C) ∈ KTz.
• Case 2: In c1, (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ hsz = NCH ∧ pifz 6= F .
To reach c2, either z updates pifz to F , or it updates hsz to NO or CH.
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• Updating of pifz to F . Starting from c1, IF -d1(z) is the only rule can update pifz to F .
In c1, if PQO(z, w) is not satisfied and the rule IB(w) is disabled, then after z’s action the
configuration still belongs to A9, because PQO(z, w) stays not satisfied.
Otherwise (i.e., PQO(z, w) is satisfied or IB(w) is enabled), in c1 we have HSz 6= CH (Obser-
vation 3). IF -d1(z) is disabled as long as HSz 6= CH and (v, z,⊥, hsw, pifw) /∈ KTw ∨
hsw 6= hsz ∨ pifw = C.
• Updating of hsz to NO or CH. In c1, v is non quasi-leader, i.e., HSv ∈ {O,NCH}; because

hsz = NCH, pifz 6= F and c1 ∈ A7. In c1, if (v,⊥,⊥, hsv, pifv) ∈ KTv then hsv = NCH
(c1 ∈ A2). R12(z) is the only rule can update hsz, and it always sets hsz to hsv. In c1,
hsz = hsv; thus R12(z) is disabled.

• Case 3: ¬PQO(z, w) ∧ (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz = F ). According to
lemma 21, only the rule IB(w) reaches a configuration where the predicate PQO(z, w) is satisfied.
According to Observation 3, in c1, if this rule is enabled, then HSz = NO. In c1, as long as
(v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pif = F ), but (v, z,⊥, hsw, pifw) /∈ KTw or
hsw = NCH∧pifw = C, then the predicate Constraint3(w) is not satisfied; and IB(w) is disabled.
• Case 4: PQO(z, w) ∧ (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz = F ). To reach c2, either
w deletes the record (v, z,⊥, hsw, pifw) from KTw, or it updates hsw to NCH, or it updates pifw

to C.
• Deleting of (v, z,⊥) from KTw. According to Observation 3, in c1, HSz 6= CH. Starting from

c1, as long as HSz 6= CH and (v,⊥,⊥) ∈ KTz, the node w cannot delete the record (v, z,⊥)
from KTw, because R23(w) is disabled.
• Updating of hsw to NCH. The rule R22(w) is the only rule that changes the hsw value.

This rule always sets hsw to hsz. However, in c1 if hsz = NCH, then pifz = F ; so hsz = hsw

(because c1 ∈ A7). In this configuration, R22(w) is disabled.
• Updating of pifw to C. IC-d2(w) is the only rule can update pifw to C without updating

hsw. Thus, if in c1, hsw ∈ {CH, NO} then the reached configuration belongs to A9. Let in
c1, hsw = NCH ∧ pifw 6= C. During cs, IC-d2(w) is performed only if in c1, pifz = C (i.e.,
hsz 6= NCH). In this configuration, disabled(w) is not satisfied, because R22(w) is enabled
(hsw 6= hsz). Thus, IC-d2(w) is disabled in c1.

There is a contradiction; cs does not exist. Therefore, A9 is closed under any computation step. �

Lemma 27. A9 is an attractor from A8.

Proof. Let c be a configuration of A8, but not of A9. In c, there is at least a node z that does not
satisfy P9(z), i.e., PQO(z, w) ∧ (v,⊥,⊥, hsz, pifz) ∈ KTz ∧ (hsz 6= NCH ∨ pifz = F ) ∧
∃w ∈ Nz/{v}, (v, z,⊥, hsw, pifw) ∈ KTw ∧ hsw = NCH ∧ pifw = C (because c ∈ A7).
In c, we have HSz 6= CH, because PQO(z, w) is satisfied (see Observation 3). We prove that all
computations starting from c reach a configuration of A8. In c, two cases are possible:
• Case 1: hsz 6= NCH. In c, w is enabled and it stays enabled up to the time where it performs
R22(w). By fairness, the node w performs this action. After the w’s action, a configuration of A9
is reached where (v, z,⊥, hsw, C) ∈ KTz ∧ hsw 6= NCH.
• Case 2: hsz = NCH. Since pifz = F and c ∈ A7, every node w neighbor of z (w 6= v) has the
record (v, z,⊥, hsw, pifw) in KTw, and hsw = hsz. Moreover, in c1, HSz 6= CH (Observation 3).
The maximal computation that reaches a configuration of A9 is as follows.
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In round 1: every non-ordinary node u neighbor of w (u 6= z ∧ u 6= v ∧HSw 6= CH ∧HSu 6= O)
that does not have the record (v, w, z, hsu, pifu) in KTu, or hsu 6= NCH is enabled. One rule
among R31(u), R32(u) is enabled. This rule stays enabled as long as (v, z,⊥, hsw, pifw) ∈ KTw ∧
hsw = NCH. By fairness, the node u performs one of these actions. After u’s action, we have
(v, w, z, hsu, C) ∈ KTu ∧ hsu = hsw.
In round 2: the rule IF -d2(w) is enabled, and it stays enabled as long as pifz = F . By fairness,
the node w performs this action. After this action, we have (v, z,⊥, NCH,F ) ∈ KTw.

A configuration of A9 is reached. As A9 is closed (Lemma 26); thus, A9 is an attractor from A8. �

In the following, we assume that u is a neighbor of w that is a quasi-ordinary, and u is a quasi-
leader. If w has an old record concerning v’s cluster then u has also a record concerning the v’s
cluster.

Lemma 28. P10(w) ≡ ∀(v, z, w, u) ∈ Path, PQO(z, w) ∧QO(w) ∧ (v, z,⊥, hsw, pifw) ∈ KTw ∧
(hsw 6= NCH ∨ pifw 6= C)⇒ ¬QL(u) ∨ (v, w, z) ∈ KTu

SC2 = A9 ∩ {c ∈ Conf | ∀w ∈ V : P10(w) is satisfied } is closed under any computation step.

Proof. Let cs be a computation step c1
cs−→ c2, such that c1 ∈ SC2. Starting from c1, only the

execution of w’s rules can reach a configuration where PQO(z, w) ∧QO(w) ∧ (v, z,⊥, hsw, pifw) ∈
KTw ∧ (hsw 6= NCH ∨ pifw 6= C) is satisfied (if it is not satisfied in c1). As the same, only the
execution of u’s rules can reach a configuration where ¬QL(u) ∨ (v, w, z) ∈ KTu is not satisfied.
As in an atomic step, w and u execute only one rule. Thus, only the execution of one rule among
IB(w), RRO(w), R21(w), R22(w), IF -d2(w), RRCH(u), R33(u) and R34(u) during cs, may falsify
the predicate P10(w).

According to lemma 21, only the execution of IB(w) may reach a configuration where the predicate
PQO(z, w) is satisfied. In c1, as long as QO(w)∧(v, z,⊥, hsw, pifw) ∈ KTw∧(hsw 6= NCH∨pifw 6=
C), and there is quasi-leader u where (v, w, z) /∈ KTu, the predicate Constraint2(w) is not satisfied;
and so, the rule IB(w) is disabled.

RRO(w) is the only rule that leads w to the quasi-ordinary status (Lemma 8). In c1, as long as
(v, z,⊥, hsw, pifw) ∈ KTw ∧ (hsw 6= NCH ∧ pifw 6= C) and there exists a quasi-leader u where
(v, w, z) /∈ KTu, the predicate Constraint2(w) is not satisfied; and so, RRO(w) is disabled.

R21(w) is the only rule can add the record (v, z,⊥) to KTw. As long as in c1 PQO(z, w) is satisfied,
then HSz 6= CH (Observation 3). Furthermore, as c1 ∈ A9, in c1 we have (v,⊥,⊥, hsz, pifz) /∈
KTz∨(hsz = NCH∧pifz 6= F ). The execution of R21(w) during cs requires that (v,⊥,⊥, hsz, pifz)
belongs to KTz in c1. We conclude that in c1, hsz = NCH. If R21(w) is performed during cs, the
reached configuration belongs to SC2, because (v, z,⊥, NCH, C) ∈ KTw.

Let in c1, PQO(z, w) ∧ QO(w) ∧ (v, z,⊥, hsw, pifw) ∈ KTw but hsw = NCH ∧ pifw = C. Let us
study the updating of hsw and pifw values.
• Updating of pifw. Starting from c1 (i.e. pifw = C), IF -d2(w) is the only rule can update
pifw. The rule IF -d2(w) is disabled as long as QO(w) and there exists a quasi-leader u where
(v, w, z) /∈ KTu.
• Updating of hsw. R22(w) is the only rule updating hsw. According to Observation 3, in c1 we
have HSz 6= CH because Pzw is satisfied. Furthermore, as c1 ∈ A9 and hsw = NCH∧pifw = C, we
conclude that in c1 (v,⊥,⊥, hsz, pifz) /∈ KTz∨ (hsz = NCH ∧pifz 6= F ). The execution of R22(w)
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during cs requires that in c1 (v,⊥,⊥, hsz, pifz) ∈ KTz. In this configuration, hsz = hsw = NCH.
Thus, R22(w) is disabled.

Let in c1, PQO(z, w) ∧ QO(w) ∧ (v, z,⊥, hsw, pifw) ∈ KTw ∧ (hsw 6= NCH ∨ pifw 6= C). Let us
study the u’s actions that may falsify the predicate P10(w).
• Deleting of (v, w, z) from KTu. Starting from c1, a quasi-leader u cannot remove the record
(v, w, z) from KTu as long as (v, z,⊥) ∈ KTw and QO(w), because the rules R33(w) and R34(w)
are disabled.
• Becoming quasi-leader. The rule RRCH(u) is the rule that leads u to the quasi-leader status.
However, as long as (v, z,⊥, hsw, pifw) ∈ KTw ∧ (hsw 6= NCH ∨pifw 6= C), QO(w) and (v, w, z) /∈
KTu, the predicate disabled(u) is not satisfied (rule R31(u) is enabled). In this configuration,
RRCH(u) is disabled.

Starting from c1, all reached configurations belong to SC2. Therefore, SC2 is closed under any
computation step. �

Lemma 29. SC2 is an attractor from A9.

Proof. Let c be a configuration of A9, but not of SC2. In c, there is at least a node w that does not
satisfy P10(w), i.e., ∃(v, z, w, u) ∈ Path, PQO(z, w) ∧QO(w) ∧ (v, z,⊥, hsw, pifw) ∈ KTw ∧
(hsw 6= NCH ∨ pifw 6= C) ∧QL(u) ∧ (v, w, z) /∈ KTu.
In c, we have HSw 6= CH, and HSu 6= O (by definitions of quasi-ordinary and quasi-leader). In
c, the rule R31(u) is enabled, and it stays enabled as long as QO(w), (v, z,⊥, hsw, pifw) ∈ KTw,
QL(u) and (v, w, z) /∈ KTu. By fairness, the node u performs this action, and it adds the record
(v, w, z) to KTu. As SC2 is closed (Lemma 28); thus, SC2 is an attractor from A9. �

Once a configuration of SC2 is reached, all nodes in v’s 3-QR-neighborhood that are quasi-leaders
have a record concerning v’s cluster. Because, all nodes in v’s 2-QR-neighborhood have an old record
concerning v’s cluster in their knowledge table.

Theorem 5. In a configuration of SC2, every node v satisfies Sp3(v).

Proof. Let v, z, w and u be nodes, such that (v, z, w, u) ∈ Path. Let c be a configuration of SC2.
By definition of the predicate PQO(z, w), if z is quasi-ordinary in c, then PQO(z, w) is satisfied. In
c, P8(v) and P9(v) are satisfied, and they stay satisfied after any computation step. Thus, we have

QO(z) ∧QL(v)⇒ (v, z,⊥, hsw, pifw) ∈ KTw ∧ (hsw 6= NCH ∨ pifw 6= C) (3)

P10(z) is satisfied in c (c ∈ SC2) and after any computation step (SC2 is an attractor, Lemma
29). Thus, we have,

QO(z) ∧QO(w) ∧ (v, z,⊥, hsw, pifw) ∈ KTw ∧ (hsw 6= NCH ∨ pifw 6= C)
⇒ ¬QL(u) ∨ (v, w, z) ∈ KTu (4)

According to equations (3) and (4), we conclude that in c and along any computation, the predicate
Sp3(v) is satisfied: QL(v) ∧QO(z) ∧QO(w)⇒ ¬QL(u) ∨ (v, w, z) ∈ KTu. �

The following theorem is a consequence of the lemmas 2, and 3 and the theorems 5 and 4.

Theorem 6. In any configuration of SC2, SP is satisfied.
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9.3 Completeness property

Theorem 7. Any computation of clustering and CNK protocol has a suffix where the completeness
property is verified by all reached configurations.

Proof. Let e be a computation of clustering and CNK protocols. We name e1 the suffix of e starting
from a configuration of SC2 (all reached configurations of e1 belong to SC2). The suffix e1 exists,
because SC2 is an attractor of the clustering and CNK protocols (lemma 29).
In any configuration of SC2, SP is satisfied (theorem 6). We conclude that along e1, the completeness
property is verified (theorem 1) because all reached configurations belong to SC1 and verify the
Strong-completeness predicate. �

10 Concluding remarks

Time complexity. The convergence from any configuration to a configuration satisfying the Strong-
completeness (so, the Completeness) property is achieved in at most 4 rounds. After the first round,
each quasi-leader v has an accurate record about its own cluster in KTv (by performing the rules
R0j where j ∈ [1, 2]). During the i + 1th round (i ∈ [1, 3]), every quasi-leader v knows the paths to
quasi-leaders within its iQR-neighborhood (by performing the rules Rij where i ∈ [1, 3], j ∈ [1, 2]).
In a legitimate configuration, in addition to the completeness property, the correctness property is
satisfied. So, each record of KTv on every node v, is correct: the destination is a leader, the gateways
are not leader, the paths are valid, the list of members is exact.
A request from the clustering protocol (i.e. a node wanting to be cluster-head, or to be ordinary) is
satisfied in at most 7 rounds: it is the number of rounds required to achieve the PIF process. Only
Propagation of Information with Feedback (PIF) within the v’s 3-neighborhood guarantee that each
cluster-head always knows the paths to its neighbor clusters.

After the last modification of hierarchical status, 4 rounds are enough to reach a terminal configu-
ration (that is also a legitimate configuration).

Communication. CNK protocol is designed for the state model. Nevertheless, it can be easily
transformed for the message-passing model. For instance, by the following basic mechanism; each
node v broadcasts periodically in its neighbors its state (i.e. identity of v, HSv, and KTv). Based
on this message, v’s neighbors update their states if necessary.
CNK protocol provides a highly available useful service. Furthermore, storing all paths to the neigh-
bor clusters limits the losses of connectivity in case of failure (not admissible fault). But, it is costly
in term of memory space on each node, and in term of message size. Nevertheless, storing one or
several paths to a given cluster-head does not impact on the number of exchanged messages: each
head has to explore all its 3R-neighborhood to find at least a path to all neighbor clusters.
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