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1Projet réalisé au LRI (Paris 11) en collaboration avec l’Université Fédérale de
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mathématique appliquée. Email: rca@lia.ufc.br



Résumé : Considérons un graphe non orienté et connexe G = (V,E) ayant
pour l’ensemble des nœuds V et l’ensemble des arêtes E, avec cuv > 0 étant
l’énergie associée à une arête uv ∈ E. Soit T un arbre couvrant de G dont la
racine est un noeud distingué k ∈ V , où chaque noeud v ∈ V −{k} accumule
les informations sur l’énergie des arêtes dans le chemin du noeud racine k
jusqu’à v en T . Nous disons que deux noeuds u et v présentent des potentiels
d’équilibre stable en T si l’arête uv ∈ E qui n’est pas en T a plus d’énergie
que toute autre arête dans le chemin direct de u à v en T . Deux noeuds u
et v, avec uv ∈ E et uv /∈ T , ont un potentiel d’équilibre instable en T si les
chemins de u et v à leur premier ancêtre commun dans leurs chemins à k
contiennent exactement (chaque trajet) la même quantité d’arêtes d’énergies
de valeurs plus grandes que celle de uv et toutes les autres arêtes du chemin
direct de u à v en T ont une valeur d’énergie qui ne dépasse pas celle de uv.
Un arbre couvrant k-enraciné de G avec des potentiels équilibrés est nommé
un arbre de cristal. Dans ce travail, nous présentons quelques propriétés des
arbres de cristal et discutons leurs relations / différences par rapport aux
arbres couvrants d’énergie minimale et aux arbres k-enracinés de plus court
chemin. Nous introduisons une nouvelle fonction de potentiel permettant
de décrire l’ensemble des arbres de cristal d’un graphe G comme étant des
solutions d’un système linéaire polynomial en nombre des contraintes et des
variables.
Mots-clés: arbre de cristal, arbre couvrant de poids minimum, fonction de
modélisation de super-ensemble.
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Abstract. Consider an undirected and connected graph G = (V,E) of
node set V and edge set E, with cuv > 0 being the energy associated
with an edge uv ∈ E. Let T be a pending spanning tree of G rooted at a
distinguished node k ∈ V , where each node v ∈ V −{k} accumulates the
information of the energy of the edges in the path from the root node k
until v in T . We say that two nodes u and v present stable potential equi-
librium in T if any edge uv ∈ E not in T have greater energy than the
edge with larger energy in the direct path from u to v in T . Two nodes
u and v, with uv ∈ E and uv /∈ T , have instable potential equilibrium in
T if the paths from u and v to their first common ancestor in their paths
to k contain exactly (each path) the same edge energies having larger
values than the one of uv and all the remaining edges in the direct path
from u to v in T have not greater energy than cuv. A k-rooted pending
spanning tree of G with equilibrated potentials is a crystal tree. In this
work we present some properties of crystal trees and discuss their rela-
tions/differences with respect to spanning trees of minimum energy and
k-rooted shortest path trees. We introduce a potential function allowing
to describe the complete set of crystal trees of a graph G as solutions of
a polynomially bounded system of linear inequalities.

Keywords: crystal tree, minimum spanning tree, multi-set modeling
function.

1 Introduction

Let G = (V,E) be an undirected and connected graph (V and E are the sets
of nodes and edges, respectively) where with each edge uv ∈ E we associate an
energy cuv > 0. Let T be a pending spanning tree of G rooted at a distinguished
node k ∈ V , where each node v ∈ V − {k} accumulates the information (as a
multi-set of values, in a mathematical sense) of the energy of the edges in the
path from the root node k until v in T . We represent the accumulated potential
information of a node v in T by a multi-set Φk

v , with the root node having null
potential (i.e. Φk

k = ∅). Thus, if uv ∈ E is a k-rooted pending spanning tree T
of G and u precedes v in the path from k to v, then Φk

v = Φk
u ∪ {cuv}. We say

that two nodes u and v present stable potential equilibrium in T if any edge
uv ∈ E not in T have greater energy than the edge with larger energy in the
direct path from u to v in T . Two nodes u and v, with uv ∈ E and uv /∈ T ,
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have instable potential equilibrium in T if the paths from u and v to their first
common ancestor in their paths to k contain exactly (each path) the same edge
energies having larger values than the one of uv and all the remaining edges in
the direct path from u to v in T have not greater energy than cuv. A k-rooted
pending spanning tree of G with equilibrated (i.e. stable or instable) potentials
is a crystal tree. In Figure 1 we show some examples to help understanding the
concept of a crystal tree.

Fig. 1. In (a) we have a graph G. In (b) and (c) we have two 1-rooted pending spanning
trees T1 and T2 of G. We use arcs only to structure these pending trees from the circled
root nodes. T1 is not a crystal tree. Indeed, edge (2, 4) /∈ T1 has energy c24 < c14 and
there is no edge with energy equal to c14 in the path from 2 to 1, thus the potentials
Φ1

2 and Φ1
4 of T1 are not equilibrated. In the other hand, edge (3, 5) /∈ T2 has energy

c35 < c25. However, the number of edges with energy equal to c25 are the same in the
paths from 5 to 2 and from 3 to 2 (node 2 is the first common ancestor in the paths
from nodes 5 and 3 to the root node 1). In this case, the potentials Φ1

5 = {1, 4} and
Φ1

3 = {1, 4, 1} are in instable equilibrium. As the remaining edges not in T2 have larger
energy than the ones in this tree, we say that T2 is a crystal tree of G. In (d) and (f)
we have two shortest-paths (in energy) trees SP (1) and SP2(1) rooted at node 1. Note
that SP (1) is not a crystal tree, while SP2(1) is crystal. In (e) we have a minimum (in
energy) spanning tree MST of G. For every choice of the root node for this tree, all
the resulting structures are crystal trees.
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In this work we present some properties of crystal trees and discuss relations
and differences with respect to spanning trees of minimum energy and k-rooted
shortest (in energy) path trees. We introduce a mathematical function that mod-
els the node potential multi-sets, thus allowing to describe the complete set of
crystal trees of a graph G as solutions of a polynomially bounded system of
linear inequalities.

The technique we develop for representing the new class of crystal trees is
novel for the domain of graph theory and has important applications in the field
of combinatorial optimization. Indeed, the robust tree problem (see e.g. [3]) asks
for solutions presenting, besides the main purpose of this problem, a minimum
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spanning tree structure that is presented here as a particular case of crystal
trees.

2 Algebraic multi-set modeling system

Given any spanning tree T of a connected graph G = (V,E), knowing if T is a
crystal tree with respect to a given root node k ∈ V can be done in polynomial
time. For such, we need just to realize some search operations in paths. If we need
to exhibit one such tree, any minimum spanning tree greed algorithm [1] resolves
this task for crystal trees having only node potentials in stable equilibrium.
However, it seems hard to look for crystal trees presenting node potentials in
instable equilibrium. We do not know if it is possible conceiving an algorithm
that does this task in polynomial time, even if we use a spanning tree of minimum
energy as starting point. Nevertheless, there is a mathematical way to represent
the complete set of crystal trees as solutions of a system of linear inequalities.

Initially, consider a formal definition of a crystal tree. Let T be a k-rooted
pending spanning tree of G having null potential (i.e. Φk

k = ∅). Consider an edge
(u, v) of E not in T . Let Φk

v = {ckv1
, cv1v2

, · · · , cvj−1vj
, cvjvj+1

, · · · , cvpv} be the
multi-set (potential) of v, where k, v1, v2, · · · , vp, v is the sequence of nodes in
the path from k to v. Let Φk

u = {cku1
, cu1u2

, · · · , cuj−1uj
, cujuj+1

, · · · , cuqu} be
the multi-set of u, where k, u1, u2, · · · , uq, u is the sequence of nodes in the path
from k to u. Assume that v1 = u1, v2 = u2, · · · , vj+1 = uj+1 are the nodes
common to the paths from k to v and to u, with uj+1 being the first common
ancestor in the inverse paths from v and u to k. Define, for every edge (u, v) not
in T , Û = {(uj+1, uj+2), · · · , (uq, u)} and V̂ = {(vj+1, vj+2), · · · , (vp, v)} (with

Û and V̂ depending on the distinct nodes u and v).

Definition 1 T , a k-rooted pending spanning tree of G = (V,E), is a crystal tree
if all edges (u, v) of E not in T are such that exactly one of the two conditions
is satisfied:

1. cuv ≥ ce, for all e ∈ Û ∪ V̂ .
2. Eu∆Ev = ∅, with Eu := {ce | e ∈ Û , cuv < ce} and Ev := {ce | e ∈

V̂ , cuv < ce}, where Eu and Ev are multi-sets and ∆ stands for the multi-
set symmetric difference operation between Eu and Ev.

Remark 1 In the direct path between any pair of nodes u and v of a k-rooted
pending spanning tree T of G = (V,E), there exist at most min{|V | − 1,M}
edges of same energy, where M is the number of occurrences of the energy value
with largest occurrence among all the ce values, for all e ∈ E.

Definition 2 Let O = {o1, o2, · · · , os}, with s ≤ |E|, be the set of s distinct
energy values of the edges in E. Define the expanded energy of an element i in
O as

φ(i) = b|{o∈O | o< i}| (1)

where b = 1 + min{|V | − 1,M} denotes the factor (base) of expansion of the
energies in O.
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Definition 3 Let T be a k-rooted pending spanning tree of G = (V,E). Let the
sequence of nodes in the path from k to v in T be v0, v1, v2, · · · , vj, with v0 = k
and vj = v for some j. Define the expanded potential of a node v in T as

Φk
v =

j∑
i=1

φ(ci−1,i) (2)

with Φk
k = 0. Definitions 2 and 3 can be used to characterize alternatively a

crystal tree.

Theorem 1 Let T be a k-rooted pending tree of G = (V,E) and Φk, with Φk
k = 0,

be the expanded node potentials of T as in the Definition 3. T is crystal if and
only if

|Φk
u − Φk

v | ≤ (b− 1)φ(cuv), ∀ uv ∈ E (3)

Proof. It follows from the Definition 1 of a crystal tree. Note that if the condition
(2) of the Definition 1 were not satisfied (i.e. Eu∆Ev 6= ∅ for some pair of nodes
u and v in T ), there should exist at least one edge with (unbalanced) expanded
energy strictly larger than the one of cuv. As the number of edges with smaller
expanded energy than φ(cuv) is at most min{|V | − 1,M}, and the base b is one
unit larger than this value with M as defined above, then (3) would be violated
because edges with smaller expanded energy than φ(cuv) cannot be used to
balance the expanded potential of these nodes. �

We present now a system of linear inequalities describing the complete set of
crystal trees of a graph G = (V,E). For this, we need to represent any k-rooted
pending spanning tree of G by an arborescence. This can be done by using one of
the directed tree models in [2] exploring the idea of sending one unit of flow from
the root node k to every node in V − {k}. In this case, the resulting aggregated
flow leaving the root node k must be equal to |V | − 1 units and the resulting
flow entering the remaining nodes must be equal to 1. Consider Ĝ = (V,A) the
directed graph obtained from G, where Ĝ has set of nodes V and set of arcs
A := E ∪ {vu | uv ∈ E}, with arcs uv and vu having the same energy as
the corresponding edge in E. Represent a k-rooted arborescence T of Ĝ by a
node-arc incidence vector x ∈ {0, 1}|A|, where xuv = 1 if arc uv belongs to T ,
and xuv = 0, otherwise. Note that T must have exactly |V | − 1 arcs. Consider
fuv ≥ 0 the amount of flow in arc uv and assume that if an arc is not in T , then
no flow traverses this arc. Thus, the set Tk of k-rooted arborescences of Ĝ can
be given by
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Tk =



∑
uv ∈A

xuv = |V | − 1,∑
j | kj ∈A

fkj = |V | − 1,

∑
i | iv∈A

fiv −
∑

j | vj ∈A

fvj = 1, ∀ v ∈ V − {k}

fuv ≤ (|V | − 1)xuv, ∀ uv ∈ A

x ∈ {0, 1}|A|, f ≥ 0


and using non-negative variables Φk ∈ R|V |

+ to represent the expanded node
potentials in T , with Φk

k = 0, we can describe the set Ck of k-rooted pending
crystal trees of G as

Φk
v − Φk

u ≤ φ(cuv) +M(1− xuv), ∀ uv ∈ A (4)

Φk
v − Φk

u ≥ φ(cuv)−M(1− xuv), ∀ uv ∈ A (5)

Φk
v − Φk

u ≤ (b− 1)φ(cuv), ∀ uv ∈ A (6)

Φk
k = 0, Φk ≥ 0 (7)

x ∈ Tk (8)

where M is a very large (infinite) positive constant and φ is the expanded edge
energy function as defined above. Constraints (4) and (5) impose that if an arc
(u, v) is in T , then we must have Φk

v − Φk
u = φ(cuv); otherwise, both constraints

are satisfied by all solutions of this system (i.e. they become |Φk
v − Φk

u| ≤ ∞).
Constraints (6) impose that inequality (3) of the Theorem 1 must be satisfied. To
see this, just consider the two corresponding constraints for each arc uv and vu
of A. Constraints (7) impose the domain of the Φk variables, with the expanded
potential of the root node being null. Constraints (8) state that the vector of
binary variables x describes a general k-rooted arborescence T of Ĝ, induced by
the non null entries of this vector.

Proposition 1 The set of feasible solutions of the model (4)-(8) corresponds to
the complete set of k-rooted crystal trees.

Proof. Let Φ̄k and x̄ be a feasible solution for (4)-(8). By (8), x̄ is a k-pending
spanning tree rooted at k. By (7), Φ̄k

k = 0. Note that if an arc uv is in the
solution, then by (4) and (5) we have Φk

v = Φk
u + φ(cuv). Thus, the Φ̄k variables

accumulate correctly the expanded potential of any node. Constraints (6) impose
that condition (3) of the Theorem 1 is satisfied, thus the resulting tree is crystal.
In the other hand, every k-rooted crystal tree corresponds to a feasible solution
of the above system. To see this, consider the k-rooted pending tree structure
and orient its edges following the path from k to every node in V − {k} and set
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the corresponding arc variables equal to one for all arcs appearing in this tree
and set at zero all the remaining arc variables. Finally, set the node potential
variables (by using the expanded energy function φ) according to the crystal tree
node potentials. Clearly, this is a feasible solution for (4)-(8). �

3 Properties of crystal trees

We present below some properties of crystal trees that allow distinguishing them
from k-rooted shortest paths trees and from minimum spanning trees.

Proposition 2 Let T be a shortest path tree of G = (V,E) with root node k. In
this case:

1. T is not necessarily a crystal tree of G.
2. if T is a crystal tree of G, then T is not necessarily a minimum spanning

tree of G.

It is the case of the 1-rooted shortest-path (in energy) tree SP (1) in the Figure 1
(d), where the nodes 1 and 4 are clearly not equilibrated. However, SP2(1) in
the Figure 1 (f) is a 1-rooted shortest-path tree that is also a crystal tree: the
edge (2, 4) does not belong to this tree, but its energy is larger than all these
ones in the paths from 2 and 4 to the root node 1; and the edge (3, 5) /∈ SP2(1)
has energy smaller than the ones of the edges (1, 3) and (2, 5) that are of same
value and appear in same number (i.e. they are balanced) in the paths from 3
and 5 to the root node 1.

Proposition 3 Let T be a k-rooted crystal tree of G = (V,E) and auv denote
the first common ancestor in the paths from u and v to k. If

|Φ(u)− Φ(auv)| ≤ φ(cuv) and |Φ(v)− Φ(auv)| ≤ φ(cuv), ∀uv ∈ E, uv /∈ T

then the crystal tree T is in stable equilibrium; otherwise, T is in instable equi-
librium.

Proposition 3 is an alternative way of characterizing the two possible states of
equilibrium of a crystal tree.

Corollary 1 T is a minimum (in energy) spanning tree of G = (V,E) if and
only if for all k ∈ V , T is a k-rooted crystal tree.

Proof. If T is a minimum spanning tree of G = (V,E) then it follows directly
from the definition of a minimum spanning tree (see e.g. [1]) that for all k ∈ V ,
T is a k-rooted crystal tree where all nodes are in stable equilibrium. Suppose
now that for all k ∈ V , T is a k-rooted crystal tree and that T is not a spanning
tree of minimum energy of G. Thus, there is a k-rooted crystal tree T of G, for
some k, whose some nodes (say u and v) are in instable equilibrium. But, in this
case, when T is rooted at u or at v, these two nodes are not in equilibrium with
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respect to T , thus contradicting the fact that T is a k-rooted crystal tree for all
k ∈ V . Therefore, T must be a minimum (in energy) spanning tree of G. �

Corollary 1 establishes implicitly that we need to know only the ‘order’ each
value has in an increasing ordered list of the distinct edge energy values to
determine which edges (not forming a cycle) can be present in any minimum
spanning tree. This is the idea behind a greedy algorithm [1] for the problem of
determining an independent set of minimum weight in the corresponding matroid
structure.

Corollary 2 If all the edges of G = (V,E) have distinct energy values, then G
has a unique crystal tree T that is also its minimum (in energy) spanning tree.

Proof. It is not difficult to see that T is composed only of stable potentials, thus
it is a minimum spanning tree of G. The proof of its uniqueness follows directly
from the one of the minimum spanning tree of G under such assumption (see
e.g. [1] for further details). �

Corollary 3 There exists a system of linear inequalities allowing to characterize
all minimum spanning trees of a graph G = (V,E).

The idea is, for each k ∈ V , to use xk ∈ {0, 1}|A| decision variables, flow

variable vectors fk ∈ R|A|
+ and potential Φk ∈ R|V |

+ variable vectors with their
corresponding constraints (4)-(8), and to employ additional constraints for the
xk ∈ Ck variables in order to establish that the arcs associated with all the xk

decision variables induce the same edges appearing in any feasible solution for
the resulting system. Thus, we propose the following model of linear inequalities
for obtaining minimum spanning trees

Φk
v − Φk

u ≤ φ(cuv) +M(1− xk
uv), ∀ uv ∈ A, ∀ k ∈ V (9)

Φk
v − Φk

u ≥ φ(cuv)−M(1− xk
uv), ∀ uv ∈ A, ∀ k ∈ V (10)

Φk
v − Φk

u ≤ (b− 1)φ(cuv), ∀ uv ∈ A, ∀ k ∈ V (11)

x1
uv + x1

vu = xk
uv + xk

vu, ∀ uv ∈ E, ∀ k ∈ V − {1} (12)

Φk
k = 0, Φk ≥ 0, ∀ k ∈ V (13)

xk ∈ Tk, ∀ k ∈ V (14)

where constraints (12) impose that we must have the same edges induced by the
xk variables to be considered with the expanded node potentials Φk, and the
remaining constraints impose that we must have a k-rooted crystal tree for all
k ∈ V . To the best of our knowledge, this is the first work modeling minimum
spanning trees only by means of a system of linear inequalities.

An interesting question is knowing if we really need to use all blocks of con-
straints defining k-rooted crystal trees for every value of k (or only a part of
them) in order to obtain a minimum spanning tree model with smaller dimen-
sions. Moreover, as the theory we develop here requires working with very large
numbers, how to overcome the limited machine technology in order to handle the
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expanded node potentials constraints implicitly, for instance, in a branch-and-
bound algorithm. All these technical details, as well as practical experiments to
show the viability of our models, constitute research works in progress.

4 Final remarks

This work introduces and characterizes the novel set of k-rooted crystal trees.
Based on the original idea of the expanded potential function to model multi-sets,
we present some properties of these structures and propose a linear system, whose
feasible solutions are k-rooted crystal trees. This system is important because it
can be used to represent spanning trees of minimum weight in undirected graphs.
Thus, opening many possibilities (as future research) for solving more complex
optimization problems constrained to have such a structure.
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