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Abstract. Several inconsistency-tolerant semantics have been introduced
for querying inconsistent description logic knowledge bases. This paper
addresses the problem of explaining why a tuple is a (non-)answer to a
query under such semantics. We define explanations for positive and neg-
ative answers under the brave, AR and IAR semantics. We then study
the computational properties of explanations in the lightweight descrip-
tion logic DL-LiteR. For each type of explanation, we analyze the data
complexity of recognizing (preferred) explanations and deciding if a given
assertion is relevant or necessary. We establish tight connections between
intractable explanation problems and variants of propositional satisfia-
bility (SAT), enabling us to compute explanations by exploiting solvers
for Boolean satisfaction and optimization problems. We implemented the
proposed algorithms and empirically showed that the method works.

1 Introduction

Description logic (DL) knowledge bases (KBs) consist of a TBox (ontology)
that provides conceptual knowledge about the application domain and an ABox
(dataset) that contains facts about particular entities [3]. The problem of query-
ing such KBs using database-style queries (in particular, conjunctive queries)
has been a major focus of recent DL research. Since scalability is a key concern,
much of the work has focused on lightweight DLs for which query answering can
be performed in polynomial time w.r.t. the size of the ABox. The DL-Lite family
of lightweight DLs [13] is especially popular due to the fact that query answering
can be reduced, via query rewriting, to the problem of standard database query
evaluation.

Since the TBox is usually developed by experts and subject to extensive
debugging, it is often reasonable to assume that its contents are correct. By
contrast, the ABox is typically substantially larger and subject to frequent mod-
ifications, making errors almost inevitable. As such errors may render the KB
inconsistent, several inconsistency-tolerant semantics have been introduced in
order to provide meaningful answers to queries posed over inconsistent KBs.



The most well-known is the AR semantics [22], inspired by work on consistent
query answering in databases (cf. [7] for a survey). Query answering under AR
semantics amounts to considering those answers (w.r.t. standard semantics) that
can be obtained from every repair, i.e. inclusion-maximal subset of the ABox that
is consistent with the TBox. A more cautious semantics, called IAR semantics
[22], queries the intersection of the repairs and provides a lower bound on AR se-
mantics. The brave semantics [10], which considers the answers holding in some
repair, provides a natural upper bound.

The complexity of inconsistency-tolerant query answering in the presence of
ontologies is now well understood (e.g. [30, 8, 24]), so attention has turned to
the problem of implementing these alternative semantics. There are currently
two systems for querying inconsistent DL-Lite KBs: the QuID system of [31]
implements the IAR semantics, using either query rewriting or ABox cleaning,
and the CQAPri system of [9] implements the AR, IAR and brave semantics,
using tractable methods to obtain the answers under IAR and brave semantics
and calls to a SAT solver to identify the answers holding under AR semantics.

The need to equip reasoning systems with explanation services is widely ac-
knowledged by the DL community (see Section 6 for discussion and references),
and such facilities are all the more essential when using inconsistency-tolerant
semantics, as recently argued in [1, 2]. Indeed, the brave, AR, and IAR semantics
allow one to classify query answers into three categories of increasing reliability,
and a user may naturally wonder why a given tuple was assigned to, or excluded
from, one of these categories. In this paper, we address this issue by propos-
ing and exploring a framework for explaining query answers under these three
semantics. Our contributions are as follows:

– We define explanations of positive and negative query answers under brave,
AR and IAR semantics. Intuitively, such explanations pinpoint the portions
of the ABox that, in combination with the TBox, suffice to obtain the con-
sidered query answer. We focus on ABox assertions since inconsistencies are
assumed to stem from errors in the ABox, and because this yields a simple
but non-trivial framework to explore.

– We study the main decision problems related to explanations: checking if an
assertion is relevant / necessary (i.e. appears in some / all explanations),
and recognizing explanations, resp. most preferred explanations according
to some natural ranking criteria. We determine the data complexity of these
problems for DL-LiteR. For both the intractable decision problems and the
task of generating explanations, we establish tight connections to known
SAT-based reasoning tasks, thereby enabling the use of SAT solvers.

– Finally, we present our implementation of the explanation services in a pro-
totype system, and experiments that show that explanations for a query
answer can be computed very quickly, typically a few milliseconds, and al-
most always in less than half a second.

Proof details are provided in the appendix.



2 Preliminaries

We briefly recall the syntax and semantics of description logics (DLs), and the
inconsistency-tolerant semantics we use.

Syntax A DL knowledge base (KB) consists of an ABox and a TBox, both
constructed from a set NC of concept names (unary predicates), a set of NR

of role names (binary predicates), and a set NI of individuals (constants). The
ABox (dataset) consists of a finite number of concept assertions of the form
A(a) and role assertions of the form R(a, b), where A ∈ NC, R ∈ NR, a, b ∈ NI.
The TBox (ontology) consists of a set of axioms whose form depends on the DL
in question.

In the logic DL-LiteR, TBox axioms are either concept inclusions B v C or
role inclusions Q v S formed according to the following syntax (where A ∈ NC

and R ∈ NR):

B := A | ∃Q C := B | ¬B Q := R | R− S := Q | ¬Q

Semantics An interpretation has the form I = (∆I , ·I), where ∆I is a non-
empty set and ·I maps each a ∈ NI to aI ∈ ∆I , each A ∈ NC to AI ⊆ ∆I ,
and each R ∈ NR to RI ⊆ ∆I × ∆I . The function ·I is straightforwardly
extended to general concepts and roles, e.g. (R−)I = {(c, d) | (d, c) ∈ RI} and
(∃Q)I = {c | ∃d : (c, d) ∈ QI}. An interpretation I satisfies an inclusion G v H
if GI ⊆ HI ; it satisfies A(a) (resp. R(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ RI).
An interpretation I is a model of K = (T ,A) if I satisfies all axioms in T
and assertions in A. A KB K is consistent if it has a model; otherwise it is
inconsistent, denoted K |= ⊥. An ABox A is T -consistent if the KB K = (T ,A)
is consistent.

Example 1. As a running example, we consider a simple KB Kex = (Tex,Aex)
about the university domain that contains concepts for postdoctoral researchers
(Postdoc), professors (Pr) of two levels of seniority (APr,FPr), and PhD holders
(PhD), and roles to link advisors to their students (Adv) and instructors to their
courses (Teach). The ABox Aex provides information about an individual a:

Tex ={Postdoc v PhD,Pr v PhD,Postdoc v ¬Pr,

FPr v Pr,APr v Pr,APr v ¬FPr,∃Adv v Pr}
Aex ={Postdoc(a),FPr(a),APr(a),Adv(a, b),

Teach(a, c1),Teach(a, c2),Teach(a, c3)}

Observe that Aex is Tex-inconsistent.

Queries We focus on conjunctive queries (CQs) which take the form ∃y ψ, where
ψ is a conjunction of atoms of the forms A(t) or R(t, t′), t, t′ are variables or
individuals, and y is a tuple of variables from ψ. When we use the generic term
query, we mean a CQ. Given a CQ q with free variables x1, . . . , xk and a tuple
of individuals a = (a1, . . . , ak), we use q(a) to denote the first-order sentence



resulting from replacing each xi by ai. A tuple a is a certain answer to q over
K, written K |= q(a), iff q(a) holds in every model of K.

Causes and conflicts A cause for q(a) w.r.t. KB K = (T ,A) is a minimal
T -consistent subset C ⊆ A such that T , C |= q(a). We use causes(q(a),K) to
refer to the set of causes for q(a). A conflict for K is a minimal T -inconsistent
subset of A, and confl(K) denotes the set of conflicts for K.

When K is a DL-LiteR KB, every conflict for K has at most two assertions.
We can thus define the set of conflicts of a set of assertions C ⊆ A as follows:

confl(C,K) = {β | ∃α ∈ C, {α, β} ∈ confl(K)}.

Inconsistency-tolerant semantics A repair of K = (T ,A) is an inclusion-
maximal subset of A that is T -consistent. We consider three previously studied
inconsistency-tolerant semantics based upon repairs. Under AR semantics, a
tuple a is an answer to q over K, written K |=AR q(a), just in the case that
T ,R |= q(a) for every repair R of K (equivalently: every repair contains some
cause of q(a)). If there exists some repair R such that T ,R |= q(a) (equivalently:
causes(q(a),K) 6= ∅), then a is an answer to q under brave semantics, written
K |=brave q(a). For IAR semantics, we have K |=IAR q(a) iff T ,R∩ |= q(a)
(equivalently, R∩ contains some cause for q(a)), where R∩ is the intersection of
all repairs of K. The three semantics are related as follows:

K |=IAR q(a) ⇒ K |=AR q(a) ⇒ K |=brave q(a)

For S ∈ {AR,brave, IAR}, we call a a (positive) S-answer (resp. negative S-
answer) if K |=S q(a) (resp. K 6|=S q(a)).

Example 2. The example KB Kex has three repairs:

R1 = Aex \ {FPr(a),APr(a),Adv(a, b)}
R2 = Aex \ {Postdoc(a),FPr(a)}
R3 = Aex \ {Postdoc(a),APr(a)}

We consider the following example queries: q1 = Prof(x), q2 = ∃y PhD(x) ∧
Teach(x, y), and q3 = ∃yTeach(x, y). Evaluating these queries on Kex yields the
following results:

– Kex |=brave q1(a) but Kex 6|=AR q1(a)
– Kex |=AR q2(a) but Kex 6|=IAR q2(a)
– Kex |=IAR q3(a)

3 Explaining Query Results

The inconsistency-tolerant semantics from the preceding section allows us to
identify three types of positive query answer:

IAR-answers ⊆ AR-answers ⊆ brave-answers



The goal of the present work is to help the user understand the classification
of a particular tuple, e.g. why is a an AR-answer, and why is it not an IAR-
answer? To this end, we introduce the notion of explanation for positive and
negative query answers under brave, AR, and IAR semantics. Note that for
consistent KBs, these three semantics collapse into classical semantics, so existing
techniques for explaining query answers can be used instead [11, 14, 16].

Formally, the explanations we consider will take either the form of a set of
ABox assertions (viewed as a conjunction) or a set of sets of assertions (inter-
preted as a disjunction of conjunctions). We chose to focus on ABox assertions,
rather than TBox axioms, since we target scenarios in which inconsistencies are
due to errors in the ABox, so understanding the link between (possibly faulty)
ABox assertions and query results is especially important. Moreover, as we shall
see in Sections 4 and 5, our ‘ABox-centric’ explanation framework already poses
non-trivial computational challenges.

The simplest answers to explain are positive brave- and IAR-answers. For
the former, we can use the query’s causes as explanations, and for the latter, we
consider the causes that do not participate in any contradictions. Note that in
what follows we suppose that K = (T ,A) is a KB and q is a query.

Definition 1. An explanation for K |=brave q(a) is a cause for q(a) w.r.t. K.
An explanation for K |=IAR q(a) is a cause C for q(a) w.r.t. K such that C ⊆ R
for every repair R of K.

Example 3. There are three explanations for Kex |=brave q1(a): FPr(a), APr(a),
and Adv(a, b). There are twelve explanations for Kex |=brave q2(a): Postdoc(a) ∧
Teach(a, cj), FPr(a)∧Teach(a, cj), APr(a)∧Teach(a, cj), and Adv(a, b)∧Teach(a, cj),
for each j ∈ {1, 2, 3}. There are three explanations forKex |=IAR q3(a): Teach(a, c1),
Teach(a, c2), and Teach(a, c3).

To explain why a tuple is an AR-answer, it is no longer sufficient to give a
single cause, since different repairs may use different causes. We will therefore
define explanations as (minimal) disjunctions of causes that ‘cover’ all repairs.

Definition 2. An explanation for K |=AR q(a) is a set E = {C1, . . . , Cm} ⊆
causes(q(a),K) such that (i) every repair R of K contains some Ci, and (ii) no
proper subset of E satisfies this property.

Example 4. There are 36 explanations for Kex |=AR q2(a), each taking one of the
following two forms:

Eij =(Postdoc(a) ∧ Teach(a, ci)) ∨ (Adv(a, b) ∧ Teach(a, cj))

E ′ijk =(Postdoc(a) ∧ Teach(a, ci)) ∨ (FPr(a) ∧ Teach(a, cj))

∨ (APr(a) ∧ Teach(a, ck))

for some i, j, k ∈ {1, 2, 3}.

We next consider how to explain negative AR- and IAR-answers, that are
brave-answers not entailed under AR or IAR semantics. For AR semantics, the



idea is to give a (minimal) subset of the ABox that is consistent with the TBox
and contradicts every cause of the query, since any such subset can be extended
to a repair that omits all causes. For IAR semantics, the formulation is slightly
different as we need only ensure that every cause is contradicted by some con-
sistent subset.

Definition 3. An explanation for K 6|=AR q(a) is a T -consistent subset E ⊆ A
such that (i) T , E ∪ C |= ⊥ for every C ∈ causes(q(a),K), and (ii) no proper
subset of E has this property. An explanation for K 6|=IAR q(a) is a (possibly
T -inconsistent) subset E ⊆ A such that (i) for every C ∈ causes(q(a),K), there
exists a T -consistent subset E ′ ⊆ E with T , E ′∪C |= ⊥, and (ii) no proper subset
of E has this property.

Example 5. The unique explanation for Kex 6|=AR q1(a) is Postdoc(a), which
contradicts the three causes of q1(a). The explanations for Kex 6|=IAR q2(a) are:
FPr(a) ∧ Postdoc(a), APr(a) ∧ Postdoc(a), and Adv(a, b) ∧ Postdoc(a).

When there are a large number of explanations for a given result, it may
be impractical to present them all to the user. In such cases, one may choose
instead to rank the explanations according to some preference criteria, and to
present one or a small number of most preferred explanations. In the present
work, we will use cardinality to rank explanations for brave- and IAR-answers
and negative AR- and IAR-answers. For positive AR-answers, we consider two
ways of ranking explanations: the number of disjuncts, and the total number of
assertions. Another interesting criterion is the difficulty of the associated TBox
reasoning. For example, we may compute for each cause the minimum number
of TBox axioms needed to show that the cause yields the query, and then use
this number to rank explanations for brave- and IAR-answers.

Example 6. Reconsider explanations E1 1 and E ′1 2 3 for Kex |=AR q2(a). There are
at least two reasons why E1 1 may be considered easier to understand than E ′1 2 3.
First, E1 1 contains fewer disjuncts, hence requires less disjunctive reasoning.
Second, both disjuncts of E1 1 use the same Teach assertion, whereas E ′1 2 3 uses
three different Teach assertions, which may lead the user to (wrongly) believe
all are needed to obtain the query result. Preferring explanations having the
fewest number of disjuncts, and among them, those involving a minimal set
of assertions, leads to focusing on the explanations of the form Ei i, where i ∈
{1, 2, 3}.

A second complementary approach is to concisely summarize the set of ex-
planations in terms of the necessary assertions (i.e. those which appear in every
explanation) and the relevant assertions (i.e. appear in at least one explanation).

Example 7. If we tweak the example KB to include n courses taught by a, then
there would be n2 + n3 explanations for Kex |=AR q2(a), built using only n + 4
assertions. Presenting the necessary assertions (in this case, Postdoc(a)) and
relevant ones (FPr(a), APr(a), Adv(a, b), Teach(a, ci)) gives a succinct overview
of the set of explanations.



brave, IAR AR neg. IAR neg. AR

rel in P Σp
2 -co in P NP-co

nec in P NP-co in P coNP-co

rec in P BH2-co in P in P

best rec† in P Πp
2 -co‡ coNP-co∗ coNP-co∗

† upper bounds hold for ranking criteria that can be decided in P
‡ Πp

2 -hard for smallest disjunction or fewest assertions
∗ coNP-hard for cardinality-minimal explanations

Fig. 1: Data complexity results for conjunctive queries.

4 Algorithms and Complexity Results

We next study the computational properties of the different notions of explana-
tion defined in Section 3. In addition to the problem of computing explanations,
we consider four natural decision problems: decide whether a given assertion ap-
pears in some explanation (rel) or in every explanation (nec), decide whether
a candidate is an explanation (rec), resp. a best explanation according a given
criteria (best rec). As we target applications in which the ABox is significantly
larger than the TBox and query, we use data complexity, which is only with re-
spect to the size of the ABox, to measure the difficulty of these reasoning tasks.

Here and in the following section, we focus on KBs expressed in the lightweight
logic DL-LiteR since it is a popular choice for ontology-based data access and
the only DL for which the three considered semantics have been implemented.
We recall that in DL-LiteR, KB satisfiability and query answering are both in
P w.r.t. data complexity [13], and conflicts are of size at most two.

Theorem 1. The results in Figure 1 hold1.

In what follows, we sketch the proof of the complexity results from Theorem 1,
and we also explain how to compute explanations and relevant and necessary
assertions. Often this will take the form of a reduction to a SAT-related reasoning
task, which can be performed by a SAT solver.

Positive brave- and IAR-answers It is possible to compute the causes and
their conflicts in polytime w.r.t. data complexity. It follows that recognizing a
best explanation and computing the union and intersection of explanations to
identify relevant and necessary assertions can also be done in P.

Positive AR-answers We relate explanations of AR-answers to minimal un-
satisfiable subsets of a set of propositional clauses. Let us recall that, given sets
F and H of soft and hard clauses respectively, a subset M ⊆ F is a minimal

1 The P upper bounds for rel and nec can be improved to AC0, but the proofs
involve cumbersome query rewriting constructions that are less suited for use in
practice than the methods used to show P membership.



unsatisfiable subset (MUS) of F w.r.t. H if (i) M ∪H is unsatisfiable, and (ii)
M ′ ∪H is satisfiable for every M ′ (M .

To explain K |=AR q(a), we consider the soft clauses

ϕ¬q = {
∨

β∈confl(C,K)

xβ | C ∈ causes(q(a),K)}

and the hard clauses

ϕcons={¬xα ∨ ¬xβ | xα, xβ∈vars(ϕ¬q), {α, β}∈confl(K)}

It was proven in [9] that K |=AR q(a) iff ϕ¬q ∪ϕcons is unsatisfiable, and we can
further show:

Proposition 1. The explanations for K |=AR q(a) are the sets of causes which
correspond to the MUSes of ϕ¬q w.r.t. ϕcons.

By the preceding proposition, we can compute all explanations for K |=AR q(a)
by computing all MUSes of ϕ¬q w.r.t. ϕcons.

The upper bounds for rel, nec, and rec follow immediately from Propo-
sition 1 and known complexity results for MUSes [23]. For best rec, we show
that an explanation is not a best one by guessing a better candidate and checking
in BH2 that it is an explanation.

For the lower bounds, we use the following reduction from the corresponding
MUSes problems. Let ϕ0 = {C1, ..., Cn} be an unsatisfiable set of clauses over
{X1, ..., Xp}, and consider the following KB:

T0 = {∃P−v¬∃N−,∃U− v ¬∃P,∃U− v ¬∃N, ∃Uv A}
A0 = {P (ci, xj) | Xj ∈ Ci} ∪ {N(ci, xj) | ¬Xj ∈ Ci} ∪ {U(a, ci) | 1 ≤ i ≤ n}

It was proven in [8] that ϕ is unsatisfiable iff T0,A0 |=AR A(a). We further
observe that the explanations of T0,A0 |=AR A(a) correspond to the MUSes of
ϕ0 w.r.t. ∅. The lower bounds for rel, nec, and rec follow immediately, and
the proof of [23] of Σp

2 -hardness of deciding if there exists a MUS of size at most
k also shows that deciding if a set of clauses is a smallest MUS is Πp

2 -hard, so
deciding if an explanation contains a smallest number of causes is Πp

2 -complete.
Since here a cause contains only one assertion, deciding if an explanation contains
a smallest number of assertions is also Πp

2 -complete.

Negative IAR-answers To compute the explanations and cardinality-minimal
explanations for negative IAR-answers, we rely on the following proposition.

Proposition 2. The explanations (resp. cardinality-minimal explanations) for
K 6|=IAR q(a) are the sets of assertions corresponding to the inclusion-minimal
(resp. cardinality-minimal) models of ϕ¬q.

The relevant and necessary assertions can however be computed in P, from the
causes and their conflicts, computable in P w.r.t. data complexity. An assertion



α is necessary iff it is the only conflict of some cause, and it is relevant iff it is
in conflict with a cause C such that for every other cause C′, if confl(C′,K) ⊆
confl(C,K), then α ∈ confl(C′,K). We can therefore compute the necessary and
relevant assertions by examining the conflicts confl(C,K) of each cause C:

– If confl(C,K) contains only one assertion, that assertion is necessary
– We compute the set of assertions relevant for C as follows:
• let RelevantC = confl(C,K)
• for all confl(C′,K) such that confl(C′,K) ⊆ confl(C,K),

RelevantC ← RelevantC ∩ confl(C′,K)
All assertions in RelevantC are relevant for explaining the negative answer.

Recognizing an explanation for a negative answer under IAR semantics can be
done in P by checking that it contains at least one conflict of each cause, and
that it is minimal. For best rec, an explanation is not a best one if we can
guess a better one, so for ranking criteria that can be decided in P, the problem
best rec can be decided in coNP.

The lower bound for best rec for cardinality-minimal explanations is by
reduction from the problem of deciding if a valuation ν that satisfies a monotone
3-SAT formula ϕ = C1 ∧ ... ∧Cn over {X1, ..., Xp} assigns a minimal number of
variables to true. Take the KB and query

T = {∃P−k v ¬T | 1 ≤ k ≤ 3}
A = {T (xi) | 1 ≤ i ≤ p} ∪ {Pk(cj , xi) | Xi k

th term of Cj}
q = ∃yz1z2z3 P1(y, z1) ∧ P2(y, z2) ∧ P3(y, z3)

An explanation for K 6|=IAR q is a set E of T such that for every cj , there is at
least one Xi ∈ Cj such that T (xi) ∈ E . Thus, ν assigns a minimal number of
variables to true iff E = {T (xi) | ν(Xi) = true} is a smallest explanation.

Negative AR-answers Similarly to negative IAR-answers, there is a corre-
spondence between the explanations and the models of propositional formulas.

Proposition 3. The explanations (resp. cardinality-minimal explanations) for
K 6|=AR q(a) are the sets of assertions corresponding to the inclusion-minimal
(resp. cardinality-minimal) models of ϕ¬q ∧ ϕcons.

Recognizing an explanation E for a negative AR-answer can be done by checking
consistency of E , inconsistency of E ∪ C for every cause C, and minimality of
E . Since each can be done in P, rel is in NP and best rec in coNP for
ranking criteria that can be decided in P (guess an explanation that contains
the assertion, resp. is a better explanation). Deciding if an assertion is necessary
is in coNP: α is necessary iff ϕ¬q ∧ ϕcons ∧ ¬xα is unsatisfiable. To compute all
necessary assertions, we test every assertion involved in ϕ¬q ∧ ϕcons.

The lower bounds are proved by reduction from (UN)SAT:

– For nec, we consider T1 = T0 ∪ {∃U v ¬S} and A1 = A0 ∪ {S(a)}. It
can be shown that ϕ0 is satisfiable iff S(a) is not necessary for explaining
T1,A1 6|=AR A(a).



– For rel, we use T1 and A2 = A1∪{U(a, cn+1), P (cn+1, xp+1)}, and we show
that ϕ0 is satisfiable iff P (cn+1, xp+1) is relevant for T1,A2 6|=AR A(a).

– For best rec, we consider the KB:

T3 =T0 ∪ {U1 v U,U2 v U,∃U−1 v ¬T, ∃U2 v ¬S}
A3 ={P (ci, xj) | Xj ∈ Ci} ∪ {N(ci, xj) | ¬Xj ∈ Ci}∪

{U1(a, ci), U2(a, ci), T (ci) | 1 ≤ i ≤ n} ∪ {S(a)}

One can show that E = {S(a), T (c1), ..., T (cm)} is a smallest explanation for
T3,A3 6|=AR A(a) iff ϕ0 is unsatisfiable.

5 Prototype and experiments

We implemented our explanation framework in Java using the CQAPri system
(www.lri.fr/~bourgaux/CQAPri) and the SAT4J v2.3.4 SAT solver (www.sat4j.
org). CQAPri supports querying of DL-LiteR KBs using a variety of inconsistency-
tolerant semantics [9], including those we focus on: brave, AR and IAR. In
addition to satisfiability testing, SAT4J can be used to compute MUSes and
cardinality-minimal models [6].

Our prototype runs in two modes: either it explains some selected query
answers among those computed by CQAPri, or all the answers while they are
being computed by CQAPri. These answers are divided into three classes:

– Possible: K |=brave q(a) and K 6|=AR q(a)
– Likely: K |=AR q(a) and K 6|=IAR q(a)
– (Almost) sure: K |=IAR q(a)

Concretely, explaining an answer a consists in providing, for the relevant se-
mantics S, S′ according to the class of a: (i) all explanations of K |=S q(a), as
well as necessary and relevant assertions, and (ii) one smallest explanation of
K 6|=S′ q(a), with necessary and relevant assertions when S′ = IAR, and neces-
sary assertions when S′ = AR together with necessary and relevant assertions
for K 6|=IAR q(a). Positive explanations are ranked as explained in Section 3.
For explanations of K |=AR q(a), the user chooses the priority of the two criteria
(i.e., number of disjuncts and total number of assertions).

To explain the answers to a query, we rely on the algorithms of the preced-
ing section.The system therefore needs the causes of the query answers as well
as their conflicts. The conflicts are directly available from CQAPri but not the
causes: CQAPri uses query rewriting to identify consistent (but not necessarily
minimal) subsets of the ABox entailing the answers, from which we must prune
the non-minimal ones.

Experimental setting We used the CQAPri benchmark [9] available at www.lri.
fr/~bourgaux/CQAPri, which builds on the DL-LiteR version [25] of the Lehigh
University Benchmark (swat.cse.lehigh.edu/projects/lubm). It extends the DL-
LiteR TBox with negative inclusions and describes how to obtain an ABox with



Query id shape #atoms #variables #rewritings

g2 atomic 1 1 44
g3 atomic 1 1 44
q1 dag 5 2 6401
q2 tree 3 2 450
q3 tree 2 3 155
q4 dag 6 4 202579

Table 1: Characteristics of the test queries: query shape, numbers of atoms, number of
variables, and number of CQs in the UCQ-rewriting.

a natural repartition of conflicts by adding assertions to an initial ABox consis-
tent with the enriched TBox. The LUBM benchmark has been used to evaluate
close works such [16, 17] on explanations and [31] which evaluates a system that
computes IAR-answers. Since the explanations to an answer generally involve
only a limited part of the ABox linked to the individuals of the answer, we choose
to use datasets of limited size to get a reasonable number of answers and be able
to systematically compute explanations for all these answers.

We picked the so-called u5p0 consistent ABox from the CQAPri benchmark,
because of its reasonable size (∼500K facts), from which we generated ten incon-
sistent ABoxes with different ratios of assertions in conflicts by adding from 384
to 22873 assertions. These ABoxes are denoted cX, with X the ratio of conflicts
varying from a realistic value of 2% to a value of 48% challenging our approach.
Also, the way we generate conflicts ensures cX ⊆ cY if X ≤ Y.

The following six queries were used in our experiments:

g2 = Organization(x)

g3 = Employee(x)

q1 = ∃y Person(x) ∧ takesCourse(x, y) ∧ GraduateCourse(y)∧
takesCourse(GraduateStudent131, y) ∧ Person(GraduateStudent131)

q2 = ∃xEmployee(x) ∧memberOf(x,Department4.University0)∧
degreeFrom(x, y)

q3 = ∃y teacherOf(x, y) ∧ degreeFrom(x, z)

q4 = ∃yz Employee(x) ∧ degreeFrom(x, y) ∧memberOf(x, z) ∧ Employee(u)∧
degreeFrom(u, y) ∧memberOf(u, z)

Table 1 displays the characteristics of these queries, which have (i) a variety
of structural aspects and number of rewritings, and (ii) answers in the three
considered classes (see Table 2). We borrowed g2 and g3 from [9] and designed
the other queries ourselves.

Our experiments ran on an Intel i5-3470 CPU server at 3.20 GHz, with 8 Go
of RAM, and running Windows 7. Reported times are averaged over 10 runs.

Experimental results We summarize below the general tendencies we ob-
served. Table 2 shows for each query the number of answers of each classe it has,
as well as the distribution of the explanation times of these answers. Figures 2
and 3 show the proportion of time spent in the different phases and the total



number of answers < 1 ms [1, 10[ ms [10, 100[ ms [100, 500[ ms > 500 ms

g2 Sure 1764 99.8 0.2 0 0 0
Likely 681 52 45.8 2.1 0 0.1
Poss. 818 44.9 22.3 27.1 5.7 0

g3 Sure 6637 99.9 0.1 0 0 0
Likely 433 81.1 18.7 0.2 0 0
Poss. 895 90.3 8.8 0.9 0 0

q1Likely 10 20 30 50 0 0

q2 Sure 30 100 0 0 0 0
Poss. 103 95.1 4.9 0 0 0

q3 Sure 2571 99.5 0.5 0 0 0
Likely 4 50 50 0 0 0
Poss. 7736 91.8 8.1 0.1 0 0

q4 Sure 6712 99.8 0.2 0 0 0
Likely 186 72.1 27.4 0.5 0 0
Poss. 2960 90.5 9.4 0.1 0 0

Table 2: Number of answers of each class and distribution of explanation times (in
milliseconds) per query on c28.

time to explain all query answers over ABoxes with different proportion of as-
sertions involved in some conflict. The total cost of explanations is given by the
two upper bars which represent the additional cost during the execution phase
(add. exec. cost) and the time spent in explaining (explain); the three lower
bars relate to the query answering phase, which consists in rewriting the query
(rewrite), executing the rewritten query (execute), and identifying IAR, AR and
brave answers (CQA). Regarding explanation costs, additional cost during the
execution phase consists mainly in pruning non-minimal consistent subsets of
the ABox entailing the answers to get the causes, and explaining is computing
the explanations from the causes and conflicts.

The main conclusion is that explaining some selected or all the answers to a
query, as described above, is always feasible and quite fast when there is a few
percent of conflicts in the ABox (Figure 2, c2 case), as is likely to be the case
in most real applications. Moreover, in all the experiments we made, explaining
an answer takes often less than 1ms and almost never more than 0.5s.

g2 g3 q1 q2 q3 q4

c2 c28 c48 c2 c28 c48 c2 c28 c48 c2 c28 c48 c2 c28 c48 c2 c28 c48

Sure 95.9 54 28 98.9 83.3 56.1 100 0 0 89.8 22.6 0 92 24.93 1.3 95.7 68.1 45.8
Likely 2.4 20.9 19.1 0.3 5.5 13.2 0 100 0 0 0 0 0 0.04 0.1 0.3 1.9 1.1

Possible 1.7 25.1 52.9 0.8 11.2 30.7 0 0 100 10.2 77.4 100 8 75.03 98.6 4 30 53.1

Table 3: Distribution of answers in the different classes

In more detail, adding conflicts to the ABox complicates the explanations of
answers, due to their shift from the Sure to the Likely and Possible classes, as
Table 3 shows. Explaining such answers indeed come at higher computational
cost. Figures 2, 3 illustrate this phenomenon. The general trend is illustrated with
the case of q3 in Figure 3: adding more conflicts makes the difficulty of explaining



Fig. 2: Proportion of time spent in the different phases and total time (in second) to
explain all query answers on three ABoxes.

Fig. 3: Time spent for explaining all answers of q3 w.r.t. proportion of assertions in-
volved in some conflict.

grow more rapidly. Observe however that the shift of answers from the Likely
to the Possible classes does not necessarily complicates their explanations, as
shows the shift of the 10 answers of q1 from the Likely class to the Possible one
(Figure 2, c28 and c48, and Table 3). A striking case is that of g2, which leads
to a long explanation time on c28 and even a timeout on c48 (>60min). On c28,
most of the time (∼40min) is spent in explaining the only Likely answer in the
>500 column of Table 2: the difficulty is to compute a smallest explanation for
K 6|=IAR q(a) due to the unusual size of the explanation (24 assertions, whereas
the sizes encountered in our experiments were up to 6).

Finally, we observed that the average number of explanations per answer is
often reasonably low, although some answers have a large number of explanations
(e.g., on c28, less than 10 on average, but 654 for an IAR-answer to g2, 243 for
an AR-answer to q1, and 693 for a brave-answer to g2).

6 Related Work on Explanations

As mentioned in Section 1, there has been significant interest in equipping DL
reasoning systems with explanation facilities. The earliest work proposed for-
mal proof systems as a basis for explaining concept subsumptions [26, 12]. The



post-2000 literature mainly focuses on axiom pinpointing [32, 21], in which the
problem is to generate minimal subsets of the KB that yield a given (surpris-
ing or undesirable) consequence; such subsets are often called justifications. An
extensive experimental evaluation of algorithms for computing all justifications
for expressive DLs is presented in [20]. For the lightweight DL EL+, justifica-
tions have been shown to correspond to minimal models of propositional Horn
formulas and can computed using SAT solvers [33], and a polynomial algorithm
has been proposed to compute one justification in [4]. In DL-Lite, the problem
is simpler: all justifications of a TBox axiom can be enumerated in polynomial
delay [29].

It should be noted that work on axiom pinpointing has thus far focused on
explaining entailed TBox axioms (or possibly ABox assertions), but not answers
to conjunctive queries. The latter problem is considered by Borgida et al. [11],
who introduce a proof-theoretic approach to explaining positive answers to CQs
over DL-LiteA KBs. The approach outputs a single proof, involving both TBox
axioms and ABox assertions, using minimality criteria to select a ‘simplest’ proof.

More recently, the problem of explaining negative query answers over DL-
LiteA KBs has been studied by Calvanese et al. [14]. Formally, the explana-
tions for T ,A 6|= q(a) correspond to sets A′ of ABox assertions such that
T ,A ∪ A′ |= q(a). Practical algorithms and an implementation for comput-
ing such explanations were described in [16] (where the problem is called ABox
abduction). The latter work was recently extended in [17] to the case of inconsis-
tent KBs. Essentially the idea is to add a set of ABox assertions that will lead to
the answer holding under IAR semantics (in particular, the new assertions must
not introduce any inconsistencies). By contrast, in our setting, negative query
answers result not from the absence of supporting facts, but rather the presence
of conflicting assertions, and thus, our explanations are composed of assertions
from the original ABox.

Probably the closest related work is [1, 2] which addresses the problem of ex-
plaining positive and negative answers under the inconsistency-tolerant seman-
tics ICR [8] in the argumentation framework. The authors define explanations
of positive answers as sets of facts and rules from which the query can be de-
rived and propose a dialectical explanation for query failure, which consists of
a dialogue between the user and the reasoner that gives counter-argument to
arguments supporting the query and may explain why they are conflicting. We
do not consider the same semantics but their ideas can be used to present the
TBox axioms that link our causes to the query.

Finally, we note that the problem of explaining query results has been studied
in the database community, cf. [15] for a survey pertaining to positive query
answers and [18] for negative answers.

7 Conclusion and Future Work

In this paper, we proposed a framework for explaining query answers and non-
answers over DL KBs under three commonly considered inconsistency-tolerant



semantics (brave, AR, IAR). We then investigated the computational properties
and practical feasibility of the framework, focusing on the lightweight descrip-
tion logic DL-LiteR that underpins the OWL 2 QL profile [27]. While some of
the explanation tasks were shown to be intractable, we exhibited tight connec-
tions with variants of propositional satisfiability, which allowed us to exploit the
facilities of modern SAT solvers. The experimental evaluation of our prototype
system shows that explanations of query (non-)answers can be generated very
quickly (typically less than 1ms).

There are several natural directions for future work. First, we plan to accom-
pany our explanations with details on the TBox reasoning involved, using the
work of [11] on proofs of positive query answers as a starting point. As mentioned
in Section 3, the difficulty of such proofs could provide an additional criteria for
ranking explanations. The work on the cognitive complexity of justifications [19]
may provide a starting point in defining a suitable measure for quantifying the
difficulty of proofs. Second, our experiments showed that a query answer can
possess a very large number of explanations, many of which are quite similar in
structure. We therefore plan to investigate ways of improving the presentation of
explanations, e.g. by identifying and grouping similar explanations (as has been
done for justifications in [5]), by defining a notion of representative explanation
as in [16], or by adopting a factorized representation (like in [28]). Finally, it
would be interesting to explore how explanations can be used to partially repair
the data based upon the user’s feedback. For instance, in our running example,
if q2(a) is sure according to the user, and should therefore hold under IAR se-
mantics, the system may propose to remove Postdoc(a), which is necessary for
explaining Kex 6|=IAR q2(a).
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A Proofs for Section 4

In what follows, we will not distinguish between sets of clauses and conjunctions
of clauses.

A.1 Proofs of Propositions 1 and 2, 3

We recall that the encoding is composed of the set of soft clauses:

ϕ¬q =
∧

C∈causes(q(a),K)

(
∨

β∈confl(C,K)

xβ)

and the set of hard clauses:

ϕcons =
∧

xα,xβ∈vars(ϕ¬q),{α,β}∈confl(K)

(¬xα ∨ ¬xβ)

Proposition 1. The explanations of K |=AR q(a) are the sets of causes which
correspond to the MUSes of ϕ¬q ∧ ϕcons.

Propositions 2, 3. The explanations (resp. of smallest cardinality) of K 6|=AR

q(a) are the sets of assertions which correspond to the inclusion-minimal (resp.
cardinality-minimal) models of ϕ¬q∧ϕcons, and the explanations (resp. of small-
est cardinality) of K 6|=IAR q(a) are the sets of assertions which correspond to
the inclusion-minimal (resp. cardinality-minimal) models of ϕ¬q.

Proof. It is shown in [9] that K |=AR q(a) iff ϕ¬q ∧ ϕcons is unsatisfiable. This
is because the assertions whose corresponding variables are assigned to true
in a valuation that satisfies ϕ¬q ∧ ϕcons form a subset of the ABox which: (i)
contradicts every cause, since ϕ¬q states that for every cause, one conflicting
assertion is selected, and (ii) is consistent, since ϕcons states that two assertions
in a conflict cannot be selected together. Thus, the inclusion-minimal models of
ϕ¬q∧ϕcons are precisely the explanations for negative AR-answers. For negative
IAR-answers, we drop the consistency condition, so explanations correspond
instead to inclusion-minimal models of the (trivially satisfiable) ϕ¬q. We have
thus established Propositions 2, 3.

We next consider the case of positive AR-answers (Proposition 1). Since ϕcons
is composed of hard clauses (and trivially satisfied by assigning all variables
to false), when ϕ¬q ∧ ϕcons is unsatisfiable, the MUSes are sets of clauses of
ϕ¬q which cannot be satisfied together with ϕcons. A set of clauses of ϕ¬q is
unsatisfiable together with ϕcons just in the case where it is not possible to
select one conflicting assertion for each corresponding cause in a consistent way.
It follows that the MUSes are the explanations of K |=AR q(a).

A.2 Complexity upper bounds

The following two lemmas will be used for the upper complexity bounds.



Lemma 1. An assertion α is relevant for K 6|=IAR q(a) iff it is in conflict with
a cause C such that for every other cause C′, if confl(C′,K) ⊆ confl(C,K), then
α ∈ confl(C′,K).

Proof. For the first direction, suppose α is relevant for K 6|=IAR q(a). Then there
is a subset E ⊆ A with α ∈ E such that every cause of q(a) is in conflict with
some assertion in E , and no proper subset of E ′ possesses this property. Since E
is a minimal set of assertions having this property, we know that there is some
cause C that does not conflict with any assertion in E \ {α}, and so there cannot
exist another cause C′ such that confl(C′,K) ⊆ confl(C,K) and α 6∈ confl(C′,K).

For the second direction, suppose that α is in conflict with a cause C of q(a)
and for every other cause C′, confl(C′,K) ⊆ confl(C,K) implies α ∈ confl(C′,K).
It follows that for every cause C′ of q(a), either α ∈ confl(C′,K), or there exists
an assertion βC′ ∈ confl(C′,K) such that βC′ /∈ confl(C,K). We can therefore
construct an explanation for K 6|=IAR q(a) by taking α together with some of the
assertions βC′ .

Lemma 2. An assertion α is necessary for K 6|=AR q(a) iff ϕ¬q ∧ ϕcons ∧ ¬xα
is unsatisfiable.

Proof. The proof of Proposition 3 shows that the explanations of K 6|=AR q(a)
correspond to the minimal models of ϕ¬q ∧ ϕcons. It follows that ϕ¬q ∧ ϕcons ∧
¬xα is unsatisfiable iff every model of ϕ¬q ∧ ϕcons contains xα, i.e., iff every
explanation for K 6|=AR q(a) contains α.

A.3 Complexity lower bounds

We next detail the proofs of the complexity lower bounds, which are broken into
several propositions.

Proposition 4. Regarding explanations for AR-answers, rec is BH2-hard, nec
is NP-hard, rel is Σp

2 -hard, and best rec is Πp
2 -hard w.r.t. data complexity.

Proof. We link the explanations of AR-answers with the minimum unsatisfiable
subsets (MUSes) of a CNF formula.

Let ϕ0 = C1 ∧ ... ∧ Cn be an unsatisfiable set of clauses over {X1, ..., Xp}.
Consider the following KB and query (borrowed from [8]):

T0 = {∃P− v ¬∃N−,∃U− v ¬∃P,∃U− v ¬∃N, ∃U v A}
A0 = {P (ci, xj) | Xj ∈ Ci} ∪ {N(ci, xj) | ¬Xj ∈ Ci} ∪ {U(a, ci) | 1 ≤ i ≤ n}
q0 =A(x)

The causes for q0(a) are given by the assertions U(a, ci), which are in conflict with
assertions of the form P (ci, xj) or N(ci, xj). It was shown in [8] that T0,A0 |=AR

A(a) iff ϕ0 is unsatisfiable. To prove the proposition, we will require the following
stronger claim:

Claim. The following are equivalent:



1. the set of clauses {Ci1 , ..., Cik} is unsatisfiable
2. every repair of (T0,A0) contains some assertion from {U(a, ci1), ..., U(a, cik)}

Proof of claim. It will be more convenient to show that the negations of the
two statements are equivalent. First suppose that {Ci1 , ..., Cik} is satisfiable,
as witnessed by the satisfying assignment ν. Define a repair Rν of (T0,A0) by
including the assertion P (ci, vj) if ν(vj) = true, including N(ci, vj) if ν(vj) =
false, and then adding as many other assertions as needed to obtain a maximal
T0-consistent subset. Since ν satisfies every clause in {Ci1 , ..., Cik}, it follows
that for every index ` ∈ {i1, . . . , ik}, the clause C` contains a positive literal
v` such that ν(v`) = true, or a negative literal ¬v` such that ν(v`) = false. In
the former case, Rν contains the assertion P (c`, v`), and in the latter case, Rν
contains N(c`, v`). In both cases, there is an assertion in Rν that conflicts with
U(a, c`), so the latter assertion cannot appear in Rν . We have thus shown that
Rν does not contain any of the assertions in {U(a, ci1), ..., U(a, cik)}.

Next suppose that there is a repair R that have an empty intersection
with {U(a, ci1), ..., U(a, cik)}. By the maximality of R, it follows that for ev-
ery ` ∈ {i1, . . . , ik}, there must exist an assertion in R of the form P (c`, vj) or
N(c`, vj). Define a (possibly partial) assignment νR by setting by Xj to true if
R contains some P (ci, xj) and to false if R contains some N(ci, xj) (recall that
R is consistent with T0, and so it cannot contain both P (ci, xj) and N(ck, xj)).
By construction, νR satisfies all of the clauses in {Ci1 , ..., Cik} , i.e. {Ci1 , ..., Cik}
is satisfiable. (end proof of claim)

It follows from the preceding claim that the explanations for T0,A0 |=AR

q0(a), i.e., the minimal sets of causes for q0(a) that cover all repairs, correspond
precisely to the MUSes of ϕ0. We can therefore exploit known complexity results
for MUSes ([23]):

– Deciding if a clause belongs to a MUS is Σp
2 -complete, so deciding if U(a, ci)

belongs to an explanation for T0,A0 |=AR q0(a) is Σp
2 -hard w.r.t. data com-

plexity.
– Deciding if a clause belongs to every MUS is NP-complete, so deciding

if U(a, ci) belongs to every explanation for T0,A0 |=AR q0(a) is NP-hard
w.r.t. data complexity.

– Deciding if a set of clauses is a MUS is BH2-complete, so deciding if
{{U(a, ci1)}, ..., {U(a, cik)}} is an explanation is BH2-hard w.r.t. data com-
plexity.

The proof of [23] for Σp
2 hardness of deciding if there exists a MUS of size at

most k also shows that deciding if a set of clause is a smallest MUS is Πp
2 -hard.

It follows that deciding if an explanation for an AR-answer contains a smallest
number of causes is Πp

2 -complete. Moreover, since every cause in the considered
KB consists of a single assertion, deciding if an explanation for an AR-answer
contains a smallest number of assertions is also Πp

2 -complete.

Proposition 5. Regarding explanations for negative AR-answers, nec is coNP-
hard, rel is NP-hard, and best rec is coNP-hard (for explanations of smallest
cardinality) w.r.t. data complexity.



Proof. All reductions are from SAT. Let ϕ = C1 ∧ ... ∧ Cn be a set of clauses
over propositional variables {X1, ..., Xp}.

• nec: Let T0, A0, and q0 be as in Proposition 4. Define a new TBox T1 =
T0∪{∃U v ¬S} and ABox A1 = A0∪{S(a)}. By construction, the assertion S(a)
contradicts every cause for q0(a), so T1,A1 6|=AR q0(a). We show that deciding
whether ϕ is satisfiable is equivalent to deciding if S(a) is not necessary for
explaining T1,A1 6|=AR q0(a). This establishes the coNP-hardness of checking
necessity.
⇒ Let ν be a satisfying valuation for ϕ. It can be easily verified that the

set {P (ci, vj) ∈ A0 | ν(vj) = true} ∪ {N(ci, vj) ∈ A0 | ν(vj) = false} conflicts
with every cause of q0(a), and so by choosing a subset of these assertions, we
can construct an explanation for T1,A1 6|=AR q0(a) that does not contain S(a).
⇐ An explanation E that does not contain S(a) forms a T1-consistent set of

P - and N -assertions such that every ci has an outgoing P - or N -edge. We obtain
a (partial) assignment νE that satisfies ϕ by setting νE(vj) = true if E contains
an assertion P (ci, vj) and νE(vj) = false if E contains an assertion N(ci, vj).

• rel: We use the TBox T1 and the ABoxA2 = A1∪{U(a, cn+1), P (cn+1, xp+1)}.
Again, we note that S(a) contradicts every cause for q0(a), so T1,A2 6|=AR

q0(a). We show that ϕ is satisfiable iff P (cn+1, xp+1) is relevant for explaining
T1,A2 6|=AR q0(a); it follows that relevance is NP-hard.
⇒ If ϕ is satisfiable, then we can obtain an explanation for T1,A2 6|=AR

q0(a) by adding P (cn+1, xp+1) to a minimal subset of the P - and N -assertions
corresponding to a satisfying truth assignment for ϕ.
⇐ If ϕ is unsatisfiable, then every explanation must contain S(a). It follows

that {S(a)} is the only explanation, so P (cn+1, xp+1) is not relevant.

• best rec: We consider the following KB:

T3 = T0 ∪ {U1 v U,U2 v U,∃U−1 v ¬T, ∃U2 v ¬S}
A3 = {P (ci, xj) | Xj ∈ Ci} ∪ {N(ci, xj) | ¬Xj ∈ Ci}∪

{U1(a, ci), U2(a, ci), T (ci) | 1 ≤ i ≤ n} ∪ {S(a)}

We claim that E = {S(a), T (c1), ..., T (cm)} is a smallest explanation for
T3,A3 6|=AR q0(a) iff ϕ is unsatisfiable.
⇒ If ϕ is satisfiable, then we can use a satisfying truth assignment to define

a consistent set of m P - and N -edges such that every ci has an outgoing edge.
This set is an explanation for T3,A3 6|=AR q0(a), and it has fewer assertions than
E .
⇐ If there exists an explanation of size at most m, it contains necessarily

only P - and N -edges, since m assertions (P , N or T ) are needed to conflict all
U1, and S(a) is needed as soon as one of the U1-assertions is conflicted only by a
T -assertion. It follows that there exists a consistent set of P - and N -assertions
such that every ci has an outgoing edge, from which we can construct a satisfying
assignment for ϕ.



Lemma 3. Deciding if a truth assignment that satisfies a monotone 3-SAT for-
mula assigns a smallest number of variables to true is coNP-hard.

Proof. The proof is by reduction from the following NP-hard problem: given a
set ϕ = {C1, . . . , Cn} of monotone 3-clauses over variables {X1, ..., Xp}, is there
a satisfying truth assignment for ϕ that has at most k variables assigned to true?

Consider the set of clauses ϕ′ = {Ci ∨ Yj | 1 ≤ i ≤ p, 1 ≤ j ≤ k + 1}
where Y1, ..., Yk+1 are fresh variables. We claim that there is a satisfying truth
assignment for ϕ that assigns at most k variables to true iff the following truth
assignment ν′ is not minimal for ϕ′: ν′(Xi) = false (1 ≤ i ≤ p) and ν′(Yj) = true
(1 ≤ j ≤ k+1). Indeed, if there exists a truth assignment ν of the Xi that satisfies
ϕ and contains at most k variables assigned to true, the truth assignment that
extends ν by assigning every Yj to false satisfies ϕ′, since it makes every Cl true.
It follows that ν′ is not minimal. For the other direction, if ν′ is not minimal,
there exists a truth assignment of the Xi and Yj that satisfies ϕ′ and assigns
at most k variables to true. The valuation ν′ makes C1, ..., Cn true, otherwise
it should satisfy Y1 ∧ ... ∧ Yk+1, which is not possible with only k variables
assigned to true. It follows that there exists a truth assignment of {X1, ..., Xp}
that satisfies ϕ and contains at most k variables assigned to true.

Proposition 6. Regarding explanations for negative IAR-answers, best rec is
coNP-hard (for explanations of lowest cardinality) w.r.t. data complexity.

Proof. We use a reduction from the coNP-hard problem of deciding if a truth
assignment that satisfies a monotone 3-SAT formula assigns a smallest number
of variables to true (Lemma 3).

Let ϕ = C1 ∧ ... ∧ Cn be a monotone 3-CNF over the variables {X1, ..., Xp},
and let ν be a truth assignment that satisfies ϕ. Consider the following KB:

T = {∃P−k v ¬T | 1 ≤ k ≤ 3}
A = {T (xi) | 1 ≤ i ≤ p} ∪ {Pk(cj , xi) | Xi k

th term of Cj}
q =∃yz1z2z3 P1(y, z1) ∧ P2(y, z2) ∧ P3(y, z3)

The causes for q(a) take the form {P1(cj , xi1), P2(cj , xi2), P3(cj , xi3)}. It follows
that an explanation for T ,A 6|=IAR q is a set E of T -assertions such that for
every cj , there is at least one Xi ∈ Cj such that T (xi) ∈ E .

Deciding if ν assigns a minimal number of variables to true is equivalent to
deciding if E = {T (xi) | ν(Xi) = true} is a smallest explanation.
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