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Abstract

We consider an n-player strategic game with finite action sets. The payoffs of

each player are random variables. We assume that each player uses a satisfic-

ing payoff criterion defined by a chance-constraint, i.e., players face a chance-

constrained game. We consider the cases where payoffs follow normal and ellip-

tically symmetric distributions. For both cases we show that there always exists

a mixed strategy Nash equilibrium of corresponding chance-constrained game.

Keywords: Chance-constrained game, Elliptically symmetric distribution,

Normal distribution, Nash equilibrium.

1. Introduction

In 1928, John von Neumann [1] showed that there exists a mixed strategy

saddle point equilibrium for a two player zero sum game with finite number

of actions for each player. In 1950, John Nash [2] showed that there always

exists a mixed strategy Nash equilibrium for an n-player general sum game

with finite number of actions for each player. In both [1, 2], it is considered

that the players’ payoffs are deterministic. But, there can be the cases where

the players’ payoffs are random variables following certain distributions. The

wholesale electricity markets are the good examples that capture this situation.
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A recent paper by Mazadi et al. [3] introduced wind integration on electricity

markets due to which the payoffs become random variables. In some cases the

consumers’ demand are random that introduce randomness in the firms’ payoffs

[4, 5, 6]. One obvious way to handle such type of games is to replace random

variables by their expected value and solve the corresponding deterministic game

[5, 6]. But, this criterion fails to take proper account of the stochasticity in

the payoffs. For example, the observed sample payoffs can be large amounts

with very small probabilities and players may be satisfied to get payoffs of

highest level with certain probability. To capture such a situation the concept

of satisficing has been considered in the literature where players are interested in

a strategy which maximizes their total payoff that can be obtained with at least

a given probability. Such payoff criterion is defined using chance-constrained

programming [7, 8, 9] and due to which we call such games as chance-constrained

games. The papers [3, 4] mentioned above on electricity markets use chance-

constrained game formulation to study the situation. The action sets of the

players are not finite in both cases. In [3] the game problem is formulated as

an equivalent linear complementarity problem (LCP). Hence, the existence of

Nash equilibrium depends on whether the corresponding LCP has a solution.

The existence of Nash equilibrium for the games where the action sets are not

finite is not easy to show even when the payoffs are deterministic. It depends

on the nature of action sets and payoff functions [10, 11]. There is also a

game theoretic situation in electricity market where the action sets are finite

[12]. Although the players’ payoffs are deterministic in [12], the counterpart

of the model where the payoffs are random variables using chance-constrained

game formulation can be considered. Only few theoretical results on zero sum

chance-constrained games with finite action sets of all players are available in

the literature so far [13, 14, 15, 16].

In this paper we focus on the games where the payoffs of the players are

random variables and each player considers a satisficing payoff criterion defined

using a chance-constraint. The players face a chance-constrained game. To the

best of our knowledge there is no result on the existence of Nash equilibrium of
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chance-constrained games even when the action sets of all players are finite. We

consider an n-player game where payoffs of each player are random variables.

We consider the cases where the payoffs are normal and elliptically symmetric

random variables. For each case we show that there always exists a mixed

strategy Nash equilibrium for the underlying chance-constrained game.

The structure of the rest of the paper is as follows: in Section 2 we give

the definition of chance-constrained games. Existence of mixed strategy Nash

equilibrium is then given in Section 3.

2. The Model

We consider an n-player strategic game. Let I = {1, 2, · · · , n} be a set of all

players. For each i ∈ I, let Ai be a finite action set of player i and its generic

element is denoted by ai. A vector a = (a1, a2, · · · , an) denotes an action profile

of the game. Let A=×n
i=1Ai be a set of all action profiles of the game. Denote,

A−i=×n
j=1;j 6=iAi and a−i ∈ A−i is a vector of actions aj , j 6= i. The action

set Ai of player i is also called as a set of pure strategies of player i. A mixed

strategy of a player is represented by a probability distribution over its action

set. For each i ∈ I, let Xi be a set of mixed strategies of player i, i.e., it is a set

of all probability distributions over an action set Ai. A mixed strategy τi ∈ Xi

is represented by τi = (τi(ai))ai∈Ai , where τi(ai) ≥ 0 is a probability with

which player i chooses an action ai and
∑
ai∈Ai

τi(ai) = 1. Let X= ×n
i=1Xi

be a set of all mixed strategy profiles of the game and its element is denoted

by τ = (τi)i∈I . Denote, X−i=×n
j=1;j 6=iXi and τ−i ∈ X−i is a vector of mixed

strategies of all players excluding player i. We define (νi, τ−i) to be a strategy

profile where player i uses strategy νi and each player j, j 6= i, uses strategy τj .

Let ri : A→ R be a payoff function of player i. Specifically, player i gets payoff

ri(a) when player i, i ∈ I, chooses an action ai. For a given strategy profile

τ ∈ X the payoff of player i, i ∈ I, is defined as

ri(τ) =
∑
a∈A

n∏
j=1

τj(aj)ri(a). (2.1)

3



For such games, Nash [2] showed that there always exists a Nash equilibrium in

mixed strategies.

We consider the case where payoffs of each player are random variables and

follow a certain distribution. One way to handle these games is by taking the

expected value of random variables and solve the corresponding deterministic

game. Another way to deal with this situation is by using satisficing payoff

criterion defined by a chance constraint [13, 14, 15, 16]. We assume that each

player uses satisficing payoff criterion, i.e., at strategy profile τ ∈ X the payoff

of each player is the highest level of his payoff that he can attain with at least a

specified level of confidence. The confidence level of each player is given a priori

and it is not known to the other players. Let αi ∈ [0, 1] be the confidence level

of player i and α = (αi)i∈I . For a given strategy profile τ ∈ X and a confidence

level vector α the payoff of player i, i ∈ I, is given by

uαi
i (τ) = sup{u|P (ri(τ) ≥ u) ≥ αi}. (2.2)

These games are known as chance-constrained games because the payoff of each

player is defined using a chance-constraint. For a given α ∈ [0, 1]n, the above

chance constrained game is a non-cooperative game where the payoffs of a player

defined by (2.2) is known to all other players. The set of best response strategies

of player i, i ∈ I, against a given strategy profile τ−i of other players is given by

BRαi
i (τ−i) = {τ̄i ∈ Xi|uαi

i (τ̄i, τ−i) ≥ uαi
i (τi, τ−i), ∀ τi ∈ Xi}. (2.3)

Next, we give the definition of Nash equilibrium.

Definition 2.1 (Nash equilibrium). A strategy profile τ∗ ∈ X is said to be

a Nash equilibrium for a given α ∈ [0, 1]n, if for all i ∈ I the following inequality

holds,

uαi
i (τ∗i , τ

∗
−i) ≥ u

αi
i (τi, τ

∗
−i), ∀ τi ∈ Xi.

That is, τ∗ is a Nash equilibrium if and only if τ∗i ∈ BR
αi
i (τ∗−i) for all i ∈ I.
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3. Existence of Nash equilibrium

We assume that the payoffs of each player are random variables following

a certain distribution. We consider various cases and show the existence of a

mixed strategy Nash equilibrium of chance-constrained game for different values

of α.

3.1. Payoff with one random variable component

We consider the case where for each player i, i ∈ I, there exists an action

profile ai ∈ A such that ri(a
i) is a random variable whose inverse cumulative

distribution function (CDF) F−1
ri(ai)

(·) exists. For all a ∈ A \ {ai}, ri(a) ∈ R.

For a given strategy profile τ , we have from (2.1)

ri(τ) = ri(a
i)

n∏
j=1

τj(a
i
j) + ci,

where ri(a
i)
∏n
j=1 τj(a

i
j) is a random variable and the constant ci is given below,

ci =
∑

a∈A;a 6=ai

n∏
j=1

τj(aj)ri(a).

For a given τ ∈ X such that τj(a
i
j) > 0 for all j ∈ I, we have from (2.2),

uαi
i (τ) = sup

{
u|P

(
ri(a

i)

n∏
j=1

τj(a
i
j) + ci ≥ u

)
≥ αi

}

= sup

{
u|P

(
ri(a

i) ≤ u− ci∏n
j=1 τj(a

i
j)

)
≤ 1− αi

}

= sup

{
u|u ≤ ci +

n∏
j=1

τj(a
i
j)F
−1
ri(ai)

(1− αi)

}
.

That is,

uαi
i (τ) =

∑
a∈A;a6=ai

n∏
j=1

τj(aj)ri(a) +

n∏
j=1

τj(a
i
j)F
−1
ri(ai)

(1− αi), i ∈ I. (3.1)

If τj(a
i
j) = 0 for some j ∈ I, then from (2.2) we obtain

uαi
i (τ) = sup {u|P (ci ≥ u) ≥ αi}

= sup {u|ci ≥ u} .
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That is,

uαi
i (τ) =

∑
a∈A;a 6=ai

n∏
j=1

τj(aj)ri(a).

So, for all τ ∈ X the payoff of player i, i ∈ I, is given by (3.1). We can write

(3.1) as,

uαi
i (τ) =

∑
a∈A

n∏
j=1

τj(aj)r̃i(a), i ∈ I,

where,

r̃i(a) =

F
−1
ri(ai)

(1− αi), if a = ai,

ri(a), if a 6= ai.

Hence, the above game is equivalent to a deterministic game with payoff function

r̃i : A→ R for player i, i ∈ I. Therefore, for each α ∈ [0, 1]n there always exists

a mixed strategy Nash equilibrium [2].

3.2. Payoffs following normal distribution

We consider the situation where payoffs of each player are independent nor-

mal random variables. We consider two different cases. For each case we show

the existence of a mixed strategy Nash equilibrium of corresponding chance-

constrained game for different values of α.

3.2.1. Random payoffs for each player corresponding to only one of his action

We consider the case where for each player i, i ∈ I, there exists an ac-

tion āi ∈ Ai such that {ri(āi, a−i)}a−i∈A−i are independent random variables

where for each a−i ∈ A−i, ri(āi, a−i) follows a normal distribution with mean

µi(āi, a−i) and variance σ2
i (āi, a−i). The rest of the payoffs are deterministic.

For a given strategy profile τ ∈ X, we have from (2.1),

ri(τ) = τi(āi)

 ∑
a−i∈A−i

n∏
j=1;j 6=i

τj(aj)ri(āi, a−i)

+ di

= τi(āi)Yi(āi) + di,
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where Yi(āi) =

( ∑
a−i∈A−i

n∏
j=1;j 6=i

τj(aj)ri(āi, a−i)

)
is a random variable and the

constant di is given below,

di =
∑

ai∈Ai;ai 6=āi

τi(ai)

 ∑
a−i∈A−i

n∏
j=1;j 6=i

τj(aj)ri(ai, a−i)

 .

It is well known that a linear combination of independent normal random vari-

ables follows a normal distribution. That is, Yi(āi) follows a normal distri-

bution with mean µi(āi) =
∑
a−i∈A−i

∏n
j=1;j 6=i τj(aj)µi(āi, a−i) and variance

σ2
i (āi) =

∑
a−i∈A−i

∏n
j=1;j 6=i τ

2
j (aj)σ

2
i (āi, a−i). Hence, Zi = Yi(āi)−µi(āi)

σi(āi)
fol-

lows a standard normal distribution. For a given strategy profile τ ∈ X such

that τi(āi) > 0, we have from (2.2),

uαi
i (τ) = sup {u|P (τi(āi)Yi(āi) + di ≥ u) ≥ αi}

= sup

{
u|P

(
Zi ≤

u−di
τi(āi)

− µi(āi)
σi(āi)

)
≤ 1− αi

}
= sup

{
u|u ≤ di + τi(āi)

(
µi(āi) + σi(āi)F

−1
Zi

(1− αi)
)}

= di + τi(āi)
(
µi(āi) + σi(āi)F

−1
Zi

(1− αi)
)
.

If τi(āi) = 0, then from (2.2), ui(τ) = di. That is, the payoff of player i, i ∈ I,

for a given τ ∈ X is given by,

uαi
i (τ) =

∑
ai∈Ai;ai 6=āi

τi(ai)

( ∑
a−i∈A−i

n∏
j=1;j 6=i

τj(aj)ri(ai, a−i)

)

+ τi(āi)
(
µi(āi) + σi(āi)F

−1
Zi

(1− αi)
)
. (3.2)

Theorem 3.1. Consider an n-player game where each player has finite number

of actions. If for each player i, i ∈ I, there exists an action āi ∈ Ai such that the

payoffs {ri(āi, a−i)}a−i∈A−i
are independent random variables, where ri(āi, a−i)

follows a normal distribution with mean µi(āi, a−i) and variance σ2
i (āi, a−i),

and all other payoffs are deterministic, then there exists a mixed strategy Nash

equilibrium for all α ∈ [0, 1]n.
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Proof. Let P(X) be a power set of X. Define a set valued map G : X → P(X)

such that G(τ) =
n∏
i=1

BRαi
i (τ−i). A strategy profile τ ∈ X is said to be a fixed

point of a set valued map G if τ ∈ G(τ). It is easy to see that a fixed point of

G is a Nash equilibrium. So, it is sufficient to show that G has a fixed point. In

order to show that G has a fixed point, we show that G satisfies all the following

conditions of Kakutani fixed point theorem [17]:

1. X is a non-empty, convex and compact subset of a finite dimensional

Euclidean space.

2. G(τ) is non-empty and convex for all τ ∈ X.

3. G(·) has closed graph: If (τn, τ̄n) → (τ, τ̄) with τ̄n ∈ G(τn) for all n then

τ̄ ∈ G(τ).

Condition 1 holds from the definition of X. Fix α ∈ [0, 1]n. For fixed τ−i,

uαi
i (·, τ−i) is a continuous function of τi from (3.2). So, BRαi

i (τ−i) is non-

empty for each i ∈ I because a continuous function uαi
i (·, τ−i) over a compact

set Xi always attains maxima. Hence, G(τ) is non-empty for all τ ∈ X. For

each i ∈ I, BRαi
i (τ−i) is a convex set because uαi

i (·, τ−i) given by (3.2) is a

linear function of τi. Hence, G(τ) is a convex set for all τ ∈ X. Now, we prove

that G(·) is a closed graph. Assume that G(·) is not a closed graph, i.e., there

is a sequence (τn, τ̄n)→ (τ, τ̄) with τ̄n ∈ G(τn) for all n, but τ̄ /∈ G(τ). In this

case τ̄i /∈ BRi(τ−i) for some i ∈ I. Then, there is an ε > 0 and a τ̃i such that

uαi
i (τ̃i, τ−i) > uαi

i (τ̄i, τ−i) + 3ε. (3.3)

Since uαi
i (·) is a continuous function of τ from (3.2), uαi

i (τ̄ni , τ
n
−i)→ uαi

i (τ̄i, τ−i).

Then there is an integer N1 such that

uαi
i (τ̄ni , τ

n
−i) < uαi

i (τ̄i, τ−i) + ε, ∀ n ≥ N1. (3.4)

From (3.3) and (3.4), we have

uαi
i (τ̄ni , τ

n
−i) < uαi

i (τ̃i, τ−i)− 2ε, ∀ n ≥ N1. (3.5)
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Similarly, uαi
i (τ̃i, τ

n
−i)→ uαi

i (τ̃i, τ−i). So, there is an integer N2 such that

uαi
i (τ̃i, τ−i) < uαi

i (τ̃i, τ
n
−i) + ε, ∀ n ≥ N2. (3.6)

Let N = max{N1, N2}. Then, from (3.5) and (3.6), we have

uαi
i (τ̃i, τ

n
−i) > uαi

i (τ̄ni , τ
n
−i) + ε, ∀ n ≥ N.

That is, τ̃i performs better than τ̄ni against τn−i for all n ≥ N which contradicts

τ̄ni ∈ BR
αi
i (τn−i) for all n. Hence, G(·) is a closed graph. That is, the set valued

map G(·) satisfies all the conditions of Kakutani fixed point theorem. Hence,

G(·) has a fixed point τ∗, i.e., τ∗ ∈ G(τ∗). Such τ∗ is a Nash equilibrium of

the game. The α ∈ [0, 1]n is arbitrary, so, there always exists a mixed strategy

Nash equilibrium for all α ∈ [0, 1]n.

3.2.2. Random payoffs for each player corresponding to all action profiles

We consider the case where all the payoffs of each player are independent

normal random variables. We assume that for each i ∈ I, {ri(a)}a∈A are inde-

pendent random variables, where ri(a) follows a normal distribution with mean

µi(a) and variance σ2
i (a). So, for τ ∈ X, ri(τ) follows a normal distribution with

mean µi =
∑
a∈A

∏n
j=1 τj(aj)µi(a) and variance σ2

i =
∑
a∈A

∏n
j=1 τ

2
j (aj)σ

2
i (a).

So, Zi = ri(τ)−µi

σi
follows a standard normal distribution. Similarly to the pre-

vious case, the payoff of player i, i ∈ I, for a given τ ∈ X is given by,

uαi
i (τ) =

∑
a∈A

n∏
j=1

τj(aj)µi(a) +

(∑
a∈A

n∏
j=1

τ2
j (aj)σ

2
i (a)

) 1
2

F−1
Zi

(1− αi). (3.7)

For fixed τ−i, the first term of uαi
i (·, τ−i) defined in (3.7) is a linear function of

τi. If αi ∈ [0.5, 1], then the second term of uαi
i (·, τ−i) is a concave function of

τi because F−1
Zi

(1 − αi) ≤ 0 for all αi ∈ [0.5, 1]. So, we can say that for each

i ∈ I, ui(·, τ−i) is a concave function of τi for all αi ∈ [0.5, 1]. Then, for each

i ∈ I, BRαi
i (τ−i) is a convex set for all αi ∈ [0.5, 1]. For each i ∈ I, uαi

i (·)

given in (3.7) is also a continuous function of τ . We have the following result in

this case.
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Theorem 3.2. Consider an n-player game where each player has finite number

of actions. If for each player i, i ∈ I, {ri(a)}a∈A are independent random vari-

ables, where ri(a) follows a normal distribution with mean µi(a) and variance

σ2
i (a), then there exists a mixed strategy Nash equilibrium for all α ∈ [0.5, 1]n.

Proof. Using the fact that BRαi
i (τ−i), i ∈ I, is a convex set for all αi ∈ [0.5, 1]

and uαi
i (·) is a continuous function of τ , the proof follows from similar arguments

as those given in Theorem 3.1.

3.3. Payoffs following multivariate elliptical distributions

We assume that a vector of payoffs (ri(a))a∈A of each player i, i ∈ I, fol-

lows a multivariate elliptically symmetric distribution with parameters µi and

Σi, where vector µi = (µi(a))a∈A represents a location parameter and Σi is

a scale matrix. We assume Σi to be a positive definite matrix. Then, all

linear combinations of the components of payoff vector follow a univariate el-

liptically symmetric distribution [18]. Let η = (η(a))a∈A be a vector, where

η(a) =
∏n
j=1 τj(aj). Then for τ ∈ X, ri(τ), i ∈ I, follows a univariate ellip-

tically symmetric distribution with parameters ηTµi and ηTΣiη. Since Σi is a

positive definite matrix,
√
ηTΣiη will be a norm and it is denoted by ||η||Σi

.

For each i ∈ I, Zi = ri(τ)−ηTµi

||η||Σi
follows a univariate spherically symmetric dis-

tribution with parameters 0 and 1 [18]. From (2.2), for a given τ ∈ X, we

obtain

uαi
i (τ) = sup{u|P (ri(τ) ≥ u) ≥ αi}

= sup

{
u|P

(
ri(τ)− ηTµi
||η||Σi

≤ u− ηTµi
||η||Σi

)
≤ 1− αi

}
= sup

{
u|u ≤ ηTµi + ||η||Σi

F−1
Zi

(1− αi)
}

= ηTµi + ||η||ΣiF
−1
Zi

(1− αi).

That is,

uαi
i (τ) =

∑
a∈A

n∏
j=1

τj(aj)µi(a) + ||η||ΣiF
−1
Zi

(1− αi), i ∈ I. (3.8)
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Fix τ−i, then we can rewrite (3.8) as

uαi
i (τi, τ−i) = h(τi) + ||η||Σi

F−1
Zi

(1− αi), i ∈ I, (3.9)

where h(·) is a linear function of τi. We know that the quantile function

F−1
Zi

(1− αi) ≤ 0 for all αi ∈ (0.5, 1], if Zi has strictly positive density then

F−1
Zi

(1− αi) ≤ 0 for all αi ∈ [0.5, 1] (see [19]).

Lemma 3.3. uαi
i (·, τ−i), i ∈ I, is a concave function of τi for all αi ∈ (0.5, 1].

Proof. Fix αi ∈ (0.5, 1] and i ∈ I. Let τ1
i , τ

2
i ∈ Xi. Let ηk = (ηk(a))a∈A,

where ηk(a) = τki (ai)
∏n
j=1;j 6=i τj(aj), k = 1, 2. For λ ∈ [0, 1], λη1 + (1−λ)η2 =(

λη1(a) + (1− λ)η2(a)
)
a∈A, where,

λη1(a) + (1− λ)η2(a) =
(
λτ1
i (ai) + (1− λ)τ2

i (ai)
) n∏
j=1;j 6=i

τj(aj).

Then, from (3.9) we have for all λ ∈ [0, 1],

uαi
i (λτ1

i + (1− λ)τ2
i , τ−i) = h(λτ1

i + (1− λ)τ2
i ) + ||λη1 + (1− λ)η2||Σi

F−1
Zi

(1− αi)

≥ λ
(
h(τ1

i ) + ||η1||Σi
F−1
Zi

(1− αi)
)

+ (1− λ)
(
h(τ2

i ) + ||η2||ΣiF
−1
Zi

(1− αi)
)

= λuαi
i (τ1

i , τ−i) + (1− λ)uαi
i (τ2

i , τ−i).

So, we can say that for each i ∈ I, uαi
i (·, τ−i) is a concave function of τi for all

αi ∈ (0.5, 1].

Remark 3.4. If payoff vector (ri(a))a∈A, i ∈ I, has strictly positive density

then Lemma 3.3 holds for all αi ∈ [0.5, 1].

Theorem 3.5. Consider an n-player game where each player has finite number

of actions. If a payoff vector (ri(a))a∈A of player i, i ∈ I, follows a multivariate

elliptically symmetric distribution with location parameter µi = (µi(a))a∈A and

scale matrix Σi which is positive definite, then there exists a mixed strategy Nash

equilibrium for all α ∈ (0.5, 1]n.
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Proof. For each i ∈ I, BRαi
i (τ−i) is a convex set for all αi ∈ (0.5, 1] from

Lemma 3.3. From (3.8), ui(·) is a continuous function of τ . Then, the proof

follows using similar arguments as those given in Theorem 3.1.

Remark 3.6. For each i ∈ I, if payoff vector (ri(a))a∈A has strictly positive

density then Theorem 3.5 holds for all α ∈ [0.5, 1]n.

Acknowledgements

This research was supported by Fondation DIGITEO, SUN grant No. 2014-

0822D.

References

[1] J. V. Neumann, Zur theorie der gesellschaftsspiele, Math. Annalen 100 (1)

(1928) 295–320.

[2] J. F. Nash, Equilibrium points in n-person games, Proceedings of the Na-

tional Academy of Sciences 36 (1) (1950) 48–49.

[3] M. Mazadi, W. D. Rosehart, H. Zareipour, O. P. Malik, M. Oloomi, Im-

pact of wind integration on electricity markets: A chance-constrained Nash

Cournot model, International Transactions on Electrical Energy Systems

23 (1) (2013) 83–96.

[4] P. Couchman, B. Kouvaritakis, M. Cannon, F. Prashad, Gaming strat-

egy for electric power with random demand, IEEE Transactions on Power

Systems 20 (3) (2005) 1283–1292.

[5] J. Valenzuela, M. Mazumdar, Cournot prices considering generator avail-

ability and demand uncertainty, IEEE Transactions on Power Systems

22 (1) (2007) 116–125.

[6] D. D. Wolf, Y. Smeers, A stochastic version of a Stackelberg-Nash-Cournot

equilibrium model, Management Science 43 (2) (1997) 190–197.

12



[7] A. Charnes, W. W. Cooper, Deterministic equivalents for optimizing and

satisficing under chance constraints, Operations Research 11 (1) (1963)

18–39.

[8] J. Cheng, A. Lisser, A second-order cone programming approach for linear

programs with joint probabilistic constraints, Operations Research Letters

40 (5) (2012) 325–328.
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