
Dra
ftExtending OCL with Null-References

Towards a Formal Semantics for OCL 2.1

Achim D. Brucker1, Matthias P. Krieger2, and Burkhart Wolff2

1 SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 Université Paris-Sud, Parc Club Orsay Université, 91893 Orsay Cedex, France
{krieger, wolff}@lri.fr

Abstract From its beginnings, OCL is based on a strict semantics for un-
definedness, with the exception of the logical connectives of type Boolean
that constitute a three-valued propositional logic. Recent versions of the
OCL standard added a second exception element, which, similar to the
null references in object-oriented programming languages, is given a non-
strict semantics. Unfortunately, this extension has been done in an ad
hoc manner, which results in several inconsistencies and contradictions.
In this paper, we present a consistent formal semantics (based on our
HOL-OCL approach) that includes such a non-strict exception element.
We discuss the possible consequences concerning class diagram seman-
tics as well as deduction rules. The benefits of our approach for the
specification-pragmatics of design level operation contracts are demon-
strated with a small case-study.
Key words: HOL-OCL, UML, OCL, null reference, formal semantics

1 Introduction

The Object Constraint Language (OCL) has established itself as a language
for annotating models with constraints that are not expressed graphically. OCL
is used for specifying model constraints such as well-formedness rules and for
defining object-oriented designs through operation contracts and class invariants.
The expressions of OCL constitute the core of the language. In essence, OCL
allows for evaluating queries over UML models.

From its beginnings, OCL has been equipped with the notion of an undefined
value called invalid to deal with exceptions occurring during expression evalu-
ation. A classical example of such an exception is a division by zero. In OCL such
an erroneous division is specified to yield an undefined value. Other reasons for
exceptions include attempting to retrieve elements from empty collections, ille-
gal type conversions and evaluating attributes on objects that do not exist. Most
operations in OCL are defined to be strict, i. e., they evaluate to invalid if they
are called with an undefined argument. This ensures that errors are propagated
during expression evaluation so they are visible and handled later on. Naturally,
OCL collections are not allowed to have undefined elements, since errors are more
easily signaled by marking the collection value as undefined.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/
mailto: "Achim D. Brucker" <achim.brucker@sap.com>
mailto: "Matthias P. Krieger" <krieger@lri.fr>
mailto: "Burkhart Wolff" <wolff@@lri.fr>

Dra
ft2 Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff

During the development of OCL, the potential benefits of a second exception
element in addition to invalid became clear. The desired second exception
element, called null, is intended to represent the absence of value rather than
to indicate evaluation errors. The need to express the absence of value arises
naturally when dealing with object attributes with a multiplicity lower bound
of zero. These attributes, that occur frequently in models, are not required to
yield a value when evaluated. Representing this absence of value with the original
undefined value invalid would be inconvenient and counter intuitive. To prevent
a propagation of undefined values, it would be necessary to handle all cases
of value absence immediately. In particular, it would not be possible to pass
potentially null values to strict operations. Since nearly all operations of OCL
are strict, even the most basic operations such as equality testing would not
be realizable without checking for an absence of value. These difficulties can be
avoided by introducing the second exception element null as a valid operation
argument and collection element.

The latest OCL 2.0 standard [17] introduces null as a second exception
element representing the absence of a value. Unfortunately, this extension has
been done in an ad hoc manner, which results in several inconsistencies and
contradictions. For example, both invalid and null are defined to conform to
all classifiers, in particular null conforms to invalid and vice versa. Since the
conforms relationship is antisymmetric, this implies that invalid and null are
indistinguishable. The standard does not make clear when object attributes can
evaluate to null values and how this depends on the multiplicity of the attribute.
There is also no indication in the standard whether objects that do not exist
(“dangling references”) are treated the same way as null or not. Unsurprisingly,
a recent evaluation [11] of OCL tools identified the handling of undefined values
as a major weakness of most tools.

To overcome these problems in the current version of the OCL standard, we
present a consistent formal semantics (based on our HOL-OCL approach [6, 4])
that includes null as non-strict exception element. The paper is organized as
follows. In Section 3, we provide a textbook-style summary of the essentials of the
HOL-OCL semantics, which is a strong formal, i. e., machine-checked semantics
largely following [16, Annex A]. In Section 4, we present as an increment our
proposal for OCL 2.1, focusing to the key issue of null-elements and null-types. In
Section 5, we will discuss the consequences for an omnipresent feature of UML,
namely multiplicities, and its pragmatics. Finally, in Section 6 we will show how
the extended language can be used to describe pretty standard contracts at
design-level for object-oriented programs.

2 Formal and Technical Background

2.1 Higher-order Logic

Higher-order Logic (HOL) [8, 1] is a classical logic with equality enriched by
total parametrically polymorphic higher-order functions. It is more expressive
than first-order logic, e. g., induction schemes can be expressed inside the logic.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ftExtending OCL with Null-References 3

Pragmatically, HOL can be viewed as a typed functional programming language
like Haskell extended by logical quantifiers.

HOL is based on the typed λ-calculus—i. e., the terms of HOL are λ-expressions.
Types of terms may be built from type variables (like α, β, . . . , optionally anno-
tated by Haskell-like type classes as in α :: order or α :: bot) or type constructors
(like bool or nat). Type constructors may have arguments (as in α list or α set).
The type constructor for the function space ⇒ is written infix: α ⇒ β; multi-
ple applications like τ1 ⇒ (. . . ⇒ (τn ⇒ τn+1) . . .) have the alternative syntax
[τ1, . . . , τn] ⇒ τn+1. HOL is centered around the extensional logical equality
_ = _ with type [α, α]⇒ bool, where bool is the fundamental logical type. We
use infix notation: instead of (_ = _) E1 E2 we write E1 = E2. The logical con-
nectives _∧_, _∨_, _⇒ _ of HOL have type [bool,bool]⇒ bool, ¬_ has type
bool ⇒ bool. The quantifiers ∀_._ and ∃_._ have type [α ⇒ bool] ⇒ bool.
The quantifiers may range over types of higher order, i. e., functions or sets.
Sets of type α set can be defined isomorphic to functions of type α⇒ bool; the
definition of the element-hood _ ∈ _, the set comprehension {_._}, as well as
_ ∪_ and _ ∩_ are standard.

The entire Isabelle/HOL library, including typed set theory, well-founded re-
cursion theory, number theory and theories for data-structures like Cartesian
products α × β and disjoint type sums α + β is built on top of the HOL core-
language. The library also includes the type constructor τ⊥ that assigns to each
type τ a type lifted by the exceptional element ⊥. The function x_y : α ⇒ α⊥
denotes the injection, the function p_q : α⊥ ⇒ α its inverse for defined values.
On this basis, partial functions α ⇀ β are just defined as functions α ⇒ β⊥
over which the usual concepts of domain dom f and range ran f are introduced.
The library is built entirely by logically safe, conservative definitions and derived
rules. This methodology is also applied to HOL-OCL.

2.2 A Brief Introduction to the HOL-OCL System

HOL-OCL [6, 4] is integrated into a framework [3] supporting a formal, model-
driven software engineering process. Technically, HOL-OCL is based on a reposi-
tory for UML/OCL models, called su4sml, and on Isabelle/HOL; both are written
in SML. HOL-OCL also reuses and extends the existing Isabelle front-end called
Proof General as well as the Isabelle documentation generator. Figure 1 gives
an architecture overview of the main system components of HOL-OCL, namely:
– the data repository, called su4sml, providing XMI import facilities,
– the datatype package, or encoder, which encodes UML/OCL models into HOL;

from a user’s perspective, it yields a semantic interface to the model,
– the HOL-OCL library which provides the definitions of the semantics dis-

cussed here and the derived core theorems needed for verification, and
– a suite of proof procedures based on rewriting and tableaux techniques.

Dra
ft4 Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff

sml (Standard ml)

su4sml Isabelle/hol

Datatype Package hol-ocl Library Theory Morpher

hol-ocl User Interface (based on Proof General)

HOL-OCL

uml/ocl
Specification

import

Proof
Document

(Theory Files)

import

Figure 1. Overview of the HOL-OCL architecture.

3 An Overview over OCL Semantics

In this section, we will briefly introduce to OCL semantics from the HOL-OCL
perspective. The main differences between the OCL 2.0 formal semantics de-
scription [16, Annex A] and HOL-OCL is 1) that the latter is a machine-checked,
“strong” formal semantics which is itself based 2) on a typed meta-language (i. e.,
HOL) instead of an untyped one (i. e., naïve set theory), and 3) various technical
simplifications: instead of three different semantic interpretation functions I(x),
IJeKτ , IAttJeKτ , we use only one. The first difference enables us to give a semantic
consistency guarantee: Since all definitions of our formal semantics are logically
safe extensions, i. e., conservative [12] and since all rules are derived, the consis-
tency of HOL-OCL is reduced to the consistency of HOL, i. e., a widely accepted
small system of seven axioms. The second difference dramatically reduces the
number of rules necessary for formal reasoning.

In this presentation we will avoid to show the key-definitions used inside
HOL-OCL; rather, for the sake of making this work amenable to a wider audience,
we will use a “textbook-style” presentation of the semantics which is formally
shown to be equivalent (see also [6]).

3.1 Validity and evaluations

The topmost goal of the formal semantics is to define the validity statement:

(σ, σ′) � P ,

where σ is the pre-state and σ′ the post-state of the underlying system and P is
a Boolean expression (a formula). The assertion language of P is composed of
1. operators on built-in data structures such as Boolean or set,
2. operators of the user-defined data-model such as accessors, type-casts and

tests, and
3. user-defined, side-effect-free methods.
Informally, a formula P is valid if and only if its evaluation in the context (σ, σ′)
yields true. As all types in HOL-OCL are extended by the special element ⊥

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ftExtending OCL with Null-References 5

denoting undefinedness, we define formally:

(σ, σ′) � P ≡
(
P (σ, σ′) = xtruey

)
.

Since all operators of the assertion language depend on the context (σ, σ′) and
result in values that can be ⊥, all expressions can be viewed as evaluations from
(σ, σ′) to a type τ⊥. Consequently, all types of expressions have a form captured
by the following type abbreviation

V(α) := state× state⇒ α⊥ ,

where state stands for the system state and state× state describes the pair of
pre-state and post-state and _ := _ denotes the type abbreviation.

The OCL semantics [16, Annex A] uses different interpretation functions for
invariants and pre-conditions; we achieve their semantic effect by a syntactic
transformation _pre which replaces all accessor functions _. a by their counter-
parts _. a @pre. For example, (self . a > 5)pre is just (self . a @pre > 5).

3.2 Strict operations

Following common terminology, an operation that returns ⊥ if one of its argu-
ments is ⊥ is called strict. The majority of the operations is strict, e. g., the
Boolean negation is formally presented as:

IJnot XKτ ≡

{
xp¬IJXKτqy if JXKτ 6= ⊥,
⊥ otherwise .

where τ = (σ, σ′) and IJ_K is a notation marking the HOL-OCL constructs to be
defined. This notation is motivated by the definitions in the OCL standard [16]. In
our case, IJ_K is just the identity, i. e., IJXK ≡ X. These operators can be viewed
as transformers on evaluations; the HOL type of not _ is V(bool)⇒ V(bool).

The binary case of the integer addition is analogous:

IJX + Y K τ ≡

{
xpIJXK τq+ pIJY K τqy if IJXK τ 6= ⊥ and IJY K τ 6= ⊥,
⊥ otherwise .

Here, the operator _ + _ on the right refers to the integer HOL operation with
type [int, int] ⇒ int. The type of the corresponding strict HOL-OCL operator
_ + _ is [V(int), V(int)]⇒ V(int).

A slight variation of this definition scheme is used for the operators on col-
lection types such as HOL-OCL sets, sequences or bags:

IJX->union(Y)Kτ ≡

{
SxpIJXKτq ∪ pIJY Kτqy if IJXKτ 6= ⊥ and IJY Kτ 6= ⊥,
⊥ otherwise.

Here, S (“smash”) is a function that maps a lifted set xXy to ⊥ if and only if
⊥ ∈ X and to the identity otherwise. Smashedness of collection types is the
natural extension of the strictness principle for data structures.

Dra
ft6 Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff

Intuitively, the type expression V(τ) is a representation of the type that cor-
responds to the HOL-OCL type τ . We introduce the following type abbreviations:

Boolean := V(bool) , Set(α) := V(α set) ,
Integer := V(int) , and Sequence(α) := V(α list) .

The mapping of an expression E of HOL-OCL type T to a HOL expression E of
HOL type T is injective and preserves well-typedness.

3.3 Boolean Operators

There is a small number of explicitly stated exceptions from the general rule
that HOL-OCL operators are strict: the strong equality, the definedness operator
and the logical connectives. As a prerequisite, we define the logical constants for
truth, absurdity and undefinedness. We write these definitions as follows:

IJtrueKτ ≡ xtruey , IJfalseKτ ≡ xfalsey , and IJinvalidKτ ≡ ⊥ .

HOL-OCL has a strict equality _ .= _. On the primitive types, it is defined
similarly to the integer addition; the case for objects is discussed later. For logical
purposes, we introduce also a strong equality _ , _ which is defined as follows:

IJX , Y K τ ≡ (IJXK τ = IJY K τ) ,

where the _ = _ operator on the right denotes the logical equality of HOL. The
undefinedness test is defined by X .IsDefined() ≡ not (X , invalid). The
strong equality can be used to state reduction rules like: τ � (invalid .= X) ,
invalid. The OCL standard requires a Strong Kleene Logic. In particular:

IJX and Y Kτ ≡


xpxq ∧ pyqy if x 6= ⊥ and y 6= ⊥,
xfalsey if x = xfalsey or y = xfalsey,
⊥ otherwise .

where x = IJXKτ and y = IJY Kτ . The other Boolean connectives were just short-
cuts: X or Y ≡ not (not X and not Y) and X implies Y ≡ not X or Y .
The logical quantifiers are viewed as special operations on the collection types
Set(α) or Sequence(α). Their definition in the OCL standard is very operational
and restricted to the finite case; instead, we define the universal quantification
as generalization of the conjunction:

IJX->forall(x|P (x)Kτ ≡
⊥ if IJXKτ = ⊥,
x∀x ∈ pIJXKτq. pIJP (λ τ. x)Kτqy if ∀x ∈ pIJXKτq. IJP (λ τ. x)Kτ 6= ⊥,
xfalsey if ∃x ∈ pIJXKτq. IJP (λ τ. x)Kτ = xfalsey,
⊥ otherwise.

The existential quantification X->exists(x|P (x)) is defined as the usual abbre-
viation: X->exists(x|P (x))≡ not X->forall(x| not P (x)).

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ftExtending OCL with Null-References 7

3.4 Object-oriented Data Structures
In the previous sections, we described various built-in operations on datatypes
and the logic. Now we turn to several families of operations that the user implic-
itly defines when stating a class model as logical context of a specification. This
is the part of the language where object-oriented features such as type casts,
accessor functions, and tests for dynamic types come into play. Syntactically, a
class model provides a collection of classes C, an inheritance relation _ < _
on classes and a collection of attributes A associated to classes. Semantically, a
class model means a collection of accessor functions (denoted _.a :: A→ B and
_. a @pre :: A → B for a ∈ A and A,B ∈ C), type casts that can change the
static type of an object of a class (denoted _.oclAsType(C) of type A→ C) and
dynamic type tests (denoted _.oclIsTypeOf(C)). A precise formal definition of
the syntactic side of a class system can be found in [6].

Class models: A simplified semantics In this section, we will have to clarify
the notions of object identifiers, object representations, class types and state. We
will give a formal model for this, that will satisfy all properties discussed in
the subsequent section except one; the reader interested in a complete model is
referred to (for details, see [5]).

First, object identifiers are captured by just an abstract type oid comprising
countably many elements and a special element nullid.

Second, object representations model “a piece of typed memory,” i. e. a kind
of record comprising some administration information and the information for
all the attributes of an object; here, the basic types Booleanτ , Integerτ , etc.
as well as collections over them are stored directly in the object representations,
class types and collections over them are represented by oid’s (respectively lifted
collections over them; such collections may be ⊥).

Third, the class type C will be the type of such an object representation. It
is a Cartesian product:

C := (oid× Ct ×A1 × · · · ×Ak)

where a unique tag-type Ct (ensuring type-safety) is created for each class type,
and where the types A1, . . . , Ak are the attribute types (including all inherited
attributes) with class types substituted by type oid. The function OidOf projects
the first component, the oid, out of an object representation.

For a class model M with the classes C1, . . . , Cn, we define states as partial
functions from oid’s to object representations satisfying a state invariant invσ:

state := {f :: oid ⇀ (C1 + . . .+ Cn) | invσ(f)}

where invσ(f) states two conditions:
1. there is no object representation for nullid: nullid /∈ (dom f).
2. there is a“one-to-one” correspondence between object representations and

oid’s: ∀oid ∈ dom f. oid = OidOf pf(oid)q
The latter condition is also mentioned in [16, Annex A] and goes back to Mark
Richters [19].

Dra
ft8 Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff

3.5 The Accessors

On states built over object universes, we can now define accessors, casts, and
type tests of an object model. We consider the case of an attribute a of class C
which has the simple class type D (not a basic type, not a collection):

IJself . aK(σ, σ′) ≡


⊥ if IJself K(σ, σ′) = ⊥ ∨OidOf pOq /∈ dom σ′

getD u if σ′(getCpσ′(OidOf pOq)q. a(0)) = xuy,
⊥ otherwise.

IJself . a@preK(σ, σ′) ≡


⊥ if IJself K(σ, σ′) = ⊥ ∨OidOf pOq /∈ dom σ

getD u if σ(getCpσ(OidOf pOq)q. a) = xuy,
⊥ otherwise.

Here, getD is the projection function from the object universe to D⊥, and x. a
is the projection of the attribute from the class type (the Cartesian product).
In the case of simple class type, we have to evaluate expression self , get an
object representation (or undefined if the evaluation is not possible), project the
attribute, de-reference it in the pre or post state, respectively, and project the
class object from the object universe (getD may yield ⊥ if the element in the
universe does not correspond to a D object representation.) In the case for a
basic type attribute, the de-referentiation step is left out, and in the case of a
collection over class types, the elements of the collection have to be point-wise
de-referenced and smashed.

In our model accessors always yield (type-safe) object representations; not
oid’s. This has the consequence that a reference, that is not in dom σ, i. e., that is
a “dangling reference,” immediately results in invalid (this is a subtle difference
to [16, Annex A] where the undefinedness is detected one de-referentiation step
later). The strict equality _ .= _ must be defined via OidOf when applied to
objects. It satisfies (invalid .= X) , invalid.

The definitions of casts and type tests can be found in [5], together with
other details of the construction above and its automation in HOL-OCL.

4 A Proposal for an OCL 2.1 Semantics

In this section, we describe our OCL 2.1 semantics proposal as an increment to
the OCL 2.0 semantics (currently underlying HOL-OCL and essentially formaliz-
ing [16, Annex A]). In later versions of the standard [17] the formal semantics
appendix textually reappears although being inherently incompatible with the
mandatory parts of the standard.

4.1 Revised Operations on Basic Types

In the UML standard, and since [17] also in the OCL standard, all basic types
comprise also the null-element, modeling the possibility to be non-existent. Seen

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ftExtending OCL with Null-References 9

from a functional language perspective, this corresponds to the view that each
basic value is a type like int option as in SML. Technically, this means that
any basic type is doubly lifted:

Integer := V(int⊥) , etc.

and basic operations have to take the null elements into account. The distin-
guishable undefined and null-elements were defined as follows:

IJinvalidKτ ≡ ⊥ and IJnullIntegerKτ ≡ x⊥y .

An interpretation (consistent with [17]) is that nullInteger + 3 = invalid,
and due to commutativity, we postulate 3 + nullInteger = invalid, too. The
necessary modification of the semantic interpretation looks as follows:

IJX + Y K τ ≡

{
xxppxqq+ ppxqqyy if x 6= ⊥, y 6= ⊥, pxq 6= ⊥ and pyq 6= ⊥
⊥ otherwise .

where x = IJXKτ and y = IJY Kτ . The resulting principle here is that operations
on the primitive types Boolean, Integer, Real, and String treat null as invalid
(except _ .= _, _ .oclIsInvalid(), _ .oclIsUndefined(), casts between the
different representations of null, and type-tests).

This principle is motivated by our intuition that invalid represents known
errors, and null-arguments of operations for Boolean, Integer, Real, and String
belong to this class. Thus, we must also modify the logical operators such that
nullBoolean and false , false and nullBoolean and true , ⊥.

With respect to definedness reasoning, there is a price to pay. For most basic
operations we have the rule:

not (X + Y) .oclIsInvalid() , (not X .oclIsUndefined())
and (not Y .oclIsUndefined())

where the test x .oclIsUndefined() covers in fact two cases: x .oclIsInvalid()
and x .= null (i. e., x is invalid or null). As a consequence, for the inverse case
(X+Y) .oclIsInvalid()3 there are four possible cases for the failure instead of
two in the semantics described in [16]: each expression can be an erroneous null,
or report an error. However, since all built-in OCL operations yield non-null el-
ements (e. g., we have the rule not (X + Y

.= nullInteger)), a pre-computation
can drastically reduce the number of cases occurring in expressions except for
the base case of variables (e. g., parameters of operations and self in invariants).
For these cases, it is desirable that implicit pre-conditions were generated as de-
fault, ruling out the null case. A convenient place for this are the multiplicities,
which can be set to 1 (i. e., 1..1) and will be interpreted as being non-null (see
discussion in Section 5 for more details).

Besides, the case for collection types is analogously: besides an invalid col-
lection, there is a nullSet(T) collection as well as collections that contain null
values (such as Set{nullT}) but never invalid.
3 The same holds for (X + Y) .oclIsUndefined().

Dra
ft10 Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff

4.2 Null in Class Types

Of course, it is a viable option to rule out undefinedness in object-graphs as
such. The essential source for such undefinedness are oid’s which do not occur in
the state, i. e., which represent “dangling references.” Ruling out undefinedness as
result of object accessors would correspond to a world where an accessor is either
set explicitly to null or to a defined object; pragmatically, this corresponds to
a discipline of constructors that initialize their arguments and the absence of an
explicit deletion operation assuming a garbage collector as part of the underlying
memory model (as, for instance, in Spec# [2]). Technically, this can be enforced
by strengthening the state invariant invσ by adding clauses that state that in
each object representation all oid’s are either nullid or element of the domain
of the state.

We deliberately decided against this option for the following reasons:
1. methodologically we do not like to constrain the semantics of OCL without

clear reason; in particular, “dangling references” exist in C and C++ pro-
grams and it might be necessary to write contracts for them, and

2. semantically, the condition “no dangling references” can only be formulated
with the complete knowledge over all classes and their layout in form of
object representations. This restricts the OCL semantics to a closed world
model.4

We can model null-elements as object-representations with nullid as their oid:

Definition 1 (Representation of null-Elements). Let Ci be a class type
with the attributes A1, . . . , An. Then we define its null object representation by:

IJnullCiKτ ≡ x(nullid, arbt, a1, . . . , an)y

where the ai are ⊥ for primitive types and collection types, and nullid for simple
class types. arbt is an arbitrary underspecified constant of the tag-type.

Due to the outermost lifting, the null object representation is a defined value,
and due to its special reference nullid and the state invariant, it is a typed
value not “living” in the state. The nullT-elements are not equal, but isomor-
phic: Each type, has its own unique nullT-element; consequently, they can be
mapped, i. e., casted, isomorphic to each other. In HOL-OCL, we can overload
constants by parametrized polymorphism which allows us to drop the index in
this environment.

The referential strict equality works as follows: we can now write self .=
null in OCL. Recall that _ .= _ is based on the projection OidOf from object-
representations.
4 In our presentation, the definition of state in Section 3 is also closed world. However,
this limitation can be easily overcome by leaving “polymorphic holes” in our object
representation universe, i. e., by extending the type sum in the state definition to C1+
· · ·+Cn+α. The details of the management of universe extensions are involved, but
implemented in HOL-OCL and described in [5] in detail. However, these constructions
exclude knowing the set of sub-oid’s in advance.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ftExtending OCL with Null-References 11

4.3 Revised Accessors

Having introduced null-elements, the modification of the accessor functions is
now straight-forward:

IJobj . aK(σ, σ′) ≡


⊥ if IJobjK(σ, σ′) = ⊥ ∨OidOfpIJobjK(σ, σ′)q /∈ dom σ′

nullD if getCpσ′(OidOfpIJobjK(σ, σ′)q)q. a(0) = nullid
getD u if σ′(getCpσ′(OidOfpIJobjK(σ, σ′)q)q. a(0)) = xuy,
⊥ otherwise.

The definitions for type-cast and dynamic type test—which are not explicitly
shown in this paper, see [5] for details—can be generalized accordingly. In the
sequel, we will discuss the resulting properties of these modified accessors.

First of all, all functions of the induced signature are strict. This means that
this holds for accessors, casts and tests, too:

invalid. a , invalid invalid.oclAsType(C) , invalid

invalid.oclIsTypeOf(C) , invalid

Casts on null are always valid, since they have an individual dynamic type and
can be casted to any other null-element due to their isomorphism.

nullA. a , invalid nullA.oclAsType(B) , nullB

nullA.oclIsTypeOf(A) , true

for all attributes a and classes A, B, C where C < B < A. These rules are
further exceptions from the standard’s general rule that null may never passed
as first (“self ”) argument.

4.4 Other Operations on States

Defining _ ::allInstances() is straight-forward; the only difference is the
property T ::allInstances()->excludes(null) which is a consequence of the
fact that null’s are values and do not “live” in the state. In our semantics which
admits states with “dangling references,” it is possible to define a counterpart to
_.oclIsNew() called _.oclIsDeleted() which asks if an objectid (represented
by an object representation) is contained in the pre-state, but not the post-state.

OCL does not guarantee that an operation only modifies the path-expressions
mentioned in the postcondition, i. e., it allows arbitrary relations from pre-states
to post-states. This framing problem is well-known (one of the suggested solu-
tions is [13]). We define:

(S:Set(OclAny))-> modifiedOnly (): Boolean

where S is a set of object representations, encoding a set of oid’s. The semantics
of this operator is defined that any object whose oid is not represented in S

Dra
ft12 Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff

the corresponding object representation will not change in the transition from
pre-state to post-state:

IJX->modifiedOnly()K(σ, σ′) ≡

{
⊥ if X ′ = ⊥
x∀ i ∈M. σ i = σ′ iy otherwise .

where X ′ = IJXK(σ, σ′) andM = (dom σ∩dom σ′)−{OidOf x| x ∈ pX ′q}. Thus,
if we require in a postcondition Set{}->modifiedOnly(), this means that an op-
eration is a query in the sense of the OCL standard, i. e., the isQuery property is
true. So, whenever we have τ �X->modifiedOnly() and τ �X->excludes(s.a),
we can infer that τ �s.a = s.a@pre (provided they are valid).

5 Attribute Values

The evaluation of an attribute for an object can yield a value or a collection of
values. The type of the evaluation result depends on the multiplicity specified for
the attribute. A multiplicity defines a lower bound as well as a possibly infinite
upper bound on the cardinality of the attribute’s values.

5.1 Single-Valued Attributes

If the upper bound specified by the attribute’s multiplicity is one, then an eval-
uation of the attribute yields a single value. Thus, the evaluation result is not
a collection. If the lower bound specified by the multiplicity is zero, the evalu-
ation is not required to yield a non-null value. In this case an evaluation of the
attribute can return null to indicate an absence of value.

To facilitate accessing attributes with multiplicity 0..1, the OCL standard
states that single values can be used as sets by calling collection operations on
them. However, the implicit conversion of a value to a Set is not defined by
the standard. We argue that the resulting set cannot be constructed the same
way as when evaluating a Set literal. Otherwise, null would be mapped to the
singleton set containing null, but the standard demands that the resulting set
is empty in this case. The conversion should instead be defined as follows:

context OclAny :: asSet ():T
post: if self

.= null then result
.= Set {}

else result
.= Set{self} endif

5.2 Collection-Valued Attributes

If the upper bound specified by the attribute’s multiplicity is larger than one,
then an evaluation of the attribute yields a collection of values. This raises the
question whether null can belong to this collection. The OCL standard states
that null can be owned by collections. However, if an attribute can evaluate to

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ftExtending OCL with Null-References 13

a collection containing null, it is not clear how multiplicity constraints should
be interpreted for this attribute. The question arises whether the null element
should be counted or not when determining the cardinality of the collection.
Recall that null denotes the absence of value in the case of a cardinality upper
bound of one, so we would assume that null is not counted. On the other hand,
the operation size defined for collections in OCL does count null.

We propose to resolve this dilemma by regarding multiplicities as optional.
This point of view complies with the UML standard, that does not require lower
and upper bounds to be defined for multiplicities.5 In case a multiplicity is spec-
ified for an attribute, i. e., a lower and an upper bound are provided, we require
any collection the attribute evaluates to not contain null. This allows for a
straightforward interpretation of the multiplicity constraint. If bounds are not
provided for an attribute, we consider the attribute values to not be restricted
in any way. Because in particular the cardinality of the attribute’s values is not
bounded, the result of an evaluation of the attribute is of collection type. As
the range of values that the attribute can assume is not restricted, the attribute
can evaluate to a collection containing null. The attribute can also evaluate to
invalid. Allowing multiplicities to be optional in this way gives the modeler
the freedom to define attributes that can assume the full ranges of values pro-
vided by their types. However, we do not permit the omission of multiplicities
for association ends, since the values of association ends are not only restricted
by multiplicities, but also by other constraints enforcing the semantics of associ-
ations. Hence, the values of association ends cannot be completely unrestricted.

5.3 The Precise Meaning of Multiplicity Constraints

We are now ready to define the meaning of multiplicity constraints by giving
equivalent invariants written in OCL. Let a be an attribute of a class C with a
multiplicity specifying a lower bound m and an upper bound n. Then we can
define the multiplicity constraint on the values of attribute a to be equivalent to
the following invariants written in OCL:

context C
inv lowerBound : a->size () >= m
inv upperBound : a->size () <= n
inv notNull : not a-> includes (null)

If the upper bound n is infinite, the second invariant is omitted. For the
definition of these invariants we are making use of the conversion of single values
to sets described in Section 5.1. If n ≤ 1, the attribute a evaluates to a single
value, which is then converted to a Set on which the size operation is called.

If a value of the attribute a includes a reference to a non-existent object, the
attribute call evaluates to invalid. As a result, the entire expressions evaluate
to invalid, and the invariants are not satisfied. Thus, references to non-existent
5 We are however aware that a well-formedness rule of the UML standard does define
a default bound of one in case a lower or upper bound is not specified.

Dra
ft14 Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff

package rbt
context RBT

inv wf: not left. oclIsInvalid () and not right . oclIsInvalid ()
inv redinv : color implies ((left

.= null or not left. color)
and (right

.= null or not right . color))
inv ordinv : (left

.= null or left.max () < key) and
(right

.= null or right .min () > key)
inv balinv : black_depth (left)

.= black_depth (right)

context RBT :: min (): Integer
post: if left

.=null then key else left.max () endif

context RBT :: max (): Integer
post: if right

.=null then key else right .max () endif

-- Only count black nodes in left branch
context RBT :: black_depth (tree: RBT): Integer

post: (tree
.= null and result , 0)

or (tree.left. color and result
.= black_depth (tree.left))

or (not tree.left. color and result , black_depth (tree.left) + 1)

context RBT :: isMember (tree: RBT , a: Integer): Boolean
post: result , tree <> null and (a

.= tree.key or isMember (tree.left , a)
or isMember (tree.right , a))

context RBT :: subtrees (): Set(RBT)
post: result , left -> collect (subtrees ())

->union (right -> collect (subtrees ())) - > asSet ()

context RBT :: insert (k : Integer):
post: subtrees ()-> modifiedOnly () and

subtrees (). key -> asSet ()
.= subtrees@pre (). key -> asSet ()-> including (k)

endpackage

Listing 1.1. OCL specification of Red-black Trees.

objects are ruled out by these invariants. We believe that this result is appro-
priate, since we argue that the presence of such references in a system state is
usually not intended and likely to be the result of an error. If the modeler wishes
to allow references to non-existent objects, she can make use of the possibility
described above to omit the multiplicity.

6 Example: Red-Black Trees

We give a small example to demonstrate how the semantics we presented for
undefined values facilitates specification. In Figure 2 and Listing 1.1 describes
a class for representing red-black trees. A red-black tree is a binary tree that
satisfies an additional balancing invariant to ensure fast lookups. Each node of
the tree is associated with a color (i. e., red or black) to allow for balancing.

Every instance of the tree class represents a red-black tree. The empty tree
is represented by null. A tree object is connected to its left and right subtrees
via associations. The class also has the attribute key for storing the data and
the attribute color for indicating the node color.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ftExtending OCL with Null-References 15

RBT
key:Integer[1]
color:Boolean[1]
min():Integer[1]
max():Integer[1]
black_depth(tree:RBT[0..1]):Integer[1]
isMember(tree:RBT[0..1], a:Integer[1]):Boolean[1]
subtrees():Set(RBT)
insert(k:Integer[1]):OclVoid[0..1]

0..*

0..1
right

0..*

0..1
left

Figure 2. A class representing red-black trees.

The availability of the
null value for representing
the empty tree clearly sim-
plifies the specification. Con-
structing a dummy tree to de-
note the empty tree would
certainly be a burden, and it
would also be necessary to as-
sign dummy data to the key

field. The only other alternative would be to represent the empty tree by the
other undefined value invalid. However, it is easy to see that this choice would
also obscure the specification substantially. Recall that every operation call with
an invalid argument evaluates to invalid, so the tree operations could not be
called for the empty tree. Instead, the case of an empty tree would always have
to be considered additionally. In the postcondition of the operation isMember,
for example, the two recursive calls to isMember would require two tests for the
empty tree, which would increase the size of the postcondition considerably.

For the postcondition of insert we make use of _->modifiedOnly() that we
introduced in Section 4. We use this construct to state that the only objects the
operation may modify are the subtrees of the tree that the operation is called for.
Without this constraint it would not be guaranteed that the operation does not
modify other unrelated trees or even other objects of a completely different type.
Thus, _->modifiedOnly() allows us to express properties that are essential for
the completeness of the specification.

Another advantage of our semantics is that references to non-existent objects
can easily be ruled out a priori by the invariant wf.6 Hence, it is guaranteed that
every non-null tree object encountered during a search is a valid subtree and not
a dangling reference. This property is essential for the specification correctness.

7 Discussion

We have presented a formal semantics for OCL 2.1 as an increment to the
machine-checked HOL-OCL semantics presented in textbook format. The achieve-
ment is a proposal how to handle null-elements in the specification language
which result from the current attempt to align the UML infrastructure [18] with
the OCL standard; an attempt that has great impact on both the semantics of
UML and, to an even larger extent, OCL. Inconsistencies on the current stan-
dardization documents as result of an ad-hoc integration have been identified
as a major obstacle in OCL tool development. We discussed the consequences
of the integrated semantics by presenting the derived rules, their implications
for multiplicities, and their pragmatics in a non-trivial example, which shows
how null elements can help to write concise, natural, design-level contracts for
6 In fact, the invariant wf is redundant since it is implied by the multiplicity constraints
(see Section 5). The multiplicity constraints of the attributes key and color ensure
that these attributes are neither null nor invalid.

Dra
ft16 Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff

object-oriented code in a programming like style. Adding a basic mechanism
to express framing conditions gives the resulting language a similar expressive
power as, for example, JML or Spec#.

7.1 Related Work

While null elements are a common concept, e. g., in programming languages or
database design, there are, to our knowledge, no proposals at all for a formal
semantics of null elements in the context of OCL. Albeit, there are object-oriented
specification languages that support null elements, namely JML [15] or Spec# [2].
Notably, both languages limit null elements to class types and provide a type
system supporting non-null types. In the case of JML, the non-null types are
even chosen as the default types [7]. Supporting non-null types simplifies the
analysis of specifications drastically, as many cases resulting in potential invalid
states (e. g., de-referencing a null) are already ruled out by the type system.

Our concept for modeling frame properties is essentially identical (but sim-
pler) to [13], where query-methods were required to produce no observable change
of the state (i. e., internally, some objects may have been created, but must be
inaccessible at the end; an idea motivated by the presence of a garbage collector).

7.2 Future Work

Of course, there are numerous other concepts in the current OCL definition
that deserve formal analysis; for example, the precise notion of signals, method
overriding, overload-resolution, recursive definitions, and the precise form of in-
teraction between class models, state machines and sequence charts.

However, from the more narrower perspective of this work on integrating
null elements, adding non-null types and a non-null type inference to OCL
(similar to [9, 10]) seems to be the most rewarding target.

References

[1] P. B. Andrews. Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Kluwer Academic Publishers, 2002.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
eds., Construction and Analysis of Safe, Secure, and Interoperable Smart Devices
(CASSIS), LNCS, vol. 3362, pp. 49–69. Springer-Verlag, 2005.

[3] A. D. Brucker, J. Doser, and B. Wolff. An MDA framework supporting OCL.
Electronic Communications of the EASST, 5, 2006.

[4] A. D. Brucker and B. Wolff. The HOL-OCL book. Tech. Rep. 525, ETH Zurich,
2006.

[5] A. D. Brucker and B. Wolff. An extensible encoding of object-oriented data models
in HOL. Journal of Automated Reasoning, 41, 2008.

[6] A. D. Brucker and B. Wolff. Semantics, calculi, and analysis for object-oriented
specifications. Acta Informatica, 2009. Accepted for publication.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ftExtending OCL with Null-References 17

[7] P. Chalin and F. Rioux. Non-null references by default in the java modeling
language. In Proceedings of the conference on Specification and verification of
component-based systems, p. 9. ACM Press, 2005.

[8] A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5(2):56–68, 1940.

[9] T. Ekman and G. Hedin. Pluggable checking and inferencing of nonnull types for
Java. Journal of Object Technology, 6(9):455–475, 2007.

[10] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an
object-oriented language. In R. Crocker and G.L. Steele Jr., eds., OOPSLA, pp.
302–312. ACM, 2003.

[11] M. Gogolla, M. Kuhlmann, and F. Büttner. A benchmark for OCL engine accuracy,
determinateness, and efficiency. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and
M. Völter, eds., MoDELS, LNCS, vol. 5301, pp. 446–459. Springer-Verlag, 2008.

[12] M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

[13] P. Kosiuczenko. Specification of invariability in OCL. In O. Nierstrasz, J. Whittle,
D. Harel, and G. Reggio, eds., Model Driven Engineering Languages and Systems
(MoDELS), LNCS, vol. 4199, pp. 676–691. Springer-Verlag, 2006.

[14] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed de-
sign. In H. Kilov, B. Rumpe, and I. Simmonds, eds., Behavioral Specifications of
Businesses and Systems, pp. 175–188. Kluwer Academic Publishers, 1999.

[15] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller,
J. Kiniry, and P. Chalin. JML reference manual (revision 1.2). 2007.

[16] UML 2.0 OCL specification. 2003. Available as ptc/03-10-14.
[17] UML 2.0 OCL specification. 2006. Available as formal/06-05-01.
[18] UML 2.2 infrastructure specification. 2009. Available as formal/2009-02-04.
[19] M. Richters. A Precise Approach to Validating UML Models and OCL Constraints.

Ph.D. thesis, Universität Bremen, Logos Verlag, BISS Monographs, No. 14, 2002.

http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?formal/06-05-01
http://www.omg.org/cgi-bin/doc?formal/2009-02-04

	Extending OCL with Null-References
	Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff
	1 Introduction
	2 Formal and Technical Background
	2.1 Higher-order Logic
	2.2 A Brief Introduction to the HOL-OCL System

	3 An Overview over ocl Semantics
	3.1 Validity and evaluations
	3.2 Strict operations
	3.3 Boolean Operators
	3.4 Object-oriented Data Structures
	3.5 The Accessors

	4 A Proposal for an OCL 2.1 Semantics
	4.1 Revised Operations on Basic Types
	4.2 Null in Class Types
	4.3 Revised Accessors
	4.4 Other Operations on States

	5 Attribute Values
	5.1 Single-Valued Attributes
	5.2 Collection-Valued Attributes
	5.3 The Precise Meaning of Multiplicity Constraints

	6 Example: Red-Black Trees
	7 Discussion
	7.1 Related Work
	7.2 Future Work

