
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Proving Fairness and Implementation Correctness of a
Microkernel Scheduler

Matthias Daum · Jan Dörrenbächer ·
Burkhart Wolff

Received: date / Accepted: date

Abstract We report on the formal proof of a microkernel’s key property, namely that its
multi-priority process scheduler guarantees progress, i. e., strong fairness. The proof archi-
tecture links a layer of behavioral reasoning over system-trace sets with a concrete, fairly
realistic implementation written in C.

Our microkernel provides an infrastructure for memory virtualization, for communica-
tion with hardware devices, for processes (represented as a sequence of assembly instruc-
tions, which are executed concurrently over an underlying, formally defined processor), and
for inter-process communication (IPC) via synchronous message passing. The kernel es-
tablishes process switches according to IPCs and timer-events; the scheduling of process
switches, however, follows a hierarchy of priorities, favoring, e. g., system processes over
application processes over maintenance processes.

Besides the quite substantial models developed in Isabelle/HOL and the formal clar-
ification of their relationship, we provide a detailed analysis what formal requirements a
microkernel imposes on the key ingredients (hardware, timers, machine-dependent code) in
order to establish the correct operation of the overall system. On the methodological side,
we show how early modeling with foresight to the later verification has substantially helped
our project.

Keywords Microkernel · Formal Verification · Interactive Theorem Proving · Isabelle/HOL

1 Introduction

“Real system code” has recently been recognized as a fruitful target for formal verification.
By this term, we refer to code actually found in typical operating systems, which implement

Work partially funded by the German Federal Ministry of Education and Research (BMBF) in the framework
of the Verisoft project under grant 01 IS C38.

M. Daum · J. Dörrenbächer
Saarland University, Computer Science Dept.
E-mail: {md11,jandb}@wjpserver.cs.uni-sb.de

B. Wolff
Université Paris/Orsay, LRI
E-mail: wolff@lri.fr

2

preemptive multi-tasking, are written in a mix of C and assembly, are compiled with opti-
mizing compilers, and run on modern processors with architecturally visible caches and in-
coherent memory. Since “real” C code characteristically relies on an architecture-dependent
execution model, it has long been considered to be “dirty” and out of the reach of formal ver-
ification in academia. With the availability of realistic models for hardware processors [11,
9,21,37] in interactive theorem provers, and with the advent of more powerful automated
theorem-proving techniques, this global picture has changed: Real system code verifica-
tion is meanwhile at the brink of feasibility, albeit still representing a grand challenge. At
the same time, verification efforts of system-level programs meet a growing demand by
software-engineers, which are confronted by both, the rising complexity of computer archi-
tectures as well as higher reliability requirements of their code.

We call real system-code verification a grand challenge because, at present, all current
approaches — including ours — compromise in one way or the other: the logical founda-
tions are quite problematic, the computer architectures are simpler than industral-strength
processors, the code size is fairly small, or the underlying execution model of C and assem-
bly makes severe simplifications (see Sect. 8.1).

The availability of a hardware-processor model also represents the foundational layer of
our work. This model describes, at gate level, the transitions of the RISC processor VAMP.
A small piece of software executed on the VAMP, called CVM, provides an abstract layer
running concurrently a system process as well as a number of user processes, i. e., lists of
assembly sequences assuming separate, linear memory. We implemented the microkernel
VAMOS, which is executed as this system process. Our implementation uses the C fragment
C0, which can be translated into assembly code by a verified compiler [32,31]. VAMOS pro-
vides a process scheduler, an infrastructure for communication with hardware devices, and
message passing between processes. All software layers are formally specified; refinement
relations correlate the adjacent layers such that eventually, all specification layers can be
mapped down to our hardware-processor model. The whole model stack is formalized in the
theorem prover Isabelle/HOL [39].

s

σ σ ′

s′

abs rel abs rel

δ

kernel step

Fig. 1 Kernel step refinement (simplified)

In more detail, CVM and VAMOS to-
gether realize an abstract transition δ by
an implementation function kernel step

as shown in Fig. 1. The transition function
δ represents the execution of a non-empty
portion of a user process including a possi-
ble process switch. Consequently, we need
a refinement proof establishing that the im-
plementation with its underlying state σ in-
deed realizes the high-level state transistion
δ over the corresponding abstract state s,
where abstract and concrete states are linked
via a formally defined abstraction relation.

s s′ s′′ s′′′δ δ δ

Fig. 2 Kernel traces (simplified)

On top of the VAMOS layer, we put a
further theory layer for reasoning over the
temporal behaviour of the kernel executions.
This layer arranges consecutive δ steps (see
Fig. 2) and provides the necessary infras-
tructure for the proof of a fairness property
of the scheduler. In particular, we define key-

3

notions like the set of all possible traces of VAMOS and formulate an invariant of the states
in a trace.

We formulate the fairness property of the scheduler in terms of liveness. More specifi-
cally, it is a strong fairness property as classified by Francez [22]. In principle: If a certain
process is infinitely often ready to compute, it will always eventually compute. Technically,
the matter is complicated by the fact that the scheduling policy supports static priorities. It
is the nature of static-priority scheduling that it limits fairness to processes of the same pri-
ority level. Switches to processes of a lower priority occur only if all processes of the higher
priorities are not ready to compute. As a consequence of this form of prioritization, a (group
of) high-level processes might diverge and low-level processes will never be executed. Our
notion of prioritized fairness reflects this phenomenon.

Based on prior work stemming from the Verisoft Project [26,2] (in particular VAMP [9],
CVM [27,48,49], C0 [31,32] and the proof environment Isabelle/Simpl [45,44]), we have
built our key contribution of this paper: It consists of the VAMOS layer, both specification
as well as implementation, and a theory layer culminating in the fairness theorem of the
VAMOS scheduler.1 To our knowledge, such a theorem has been shown over a realistic ker-
nel for the first time. One might object that VAMP, C0 and VAMOS are built with foresight
for verification and rather academic components than industral-strength processors or mi-
crokernel code. The VAMP, however, comprises all essential features of a RISC architecture
including translation lookaside buffers and memory management units, and VAMOS, with
its 3000 lines of C0 (excluding CVM), is not too far away from industrially developed mi-
crokernels (see discussion Sect. 8.1).

This paper proceeds essentially by following the proof architecture as outlined above:
after a background section explaining the context of this work as well as logical and tech-
nical preliminaries related to the used verification technique, we present the model and the
implementation of the kernel, the refinement proof linking these two, and the temporal the-
ory over kernel execution traces leading to our final result: the proof of prioritized fairness
for the process scheduler.

2 Background

2.1 The Verisoft Project

Although not inherently necessary, it is perhaps instructive to outline the context of this
work: It is actually an extract of a stack of system models developed in the Verisoft project
(funded by the German Federal Ministry of Education and Research, it was finished in 2007;
currently, its successor Verisoft XT2 is under way with a slightly different focus). The project
adheres to the very idea of pervasive verification [8,36]: Each abstraction layer is justified
by simulation theorems that permit transferring the results to the low-level models. All the
development is mechanized in the uniform logical framework of the interactive theorem
prover Isabelle/HOL and hence it is rigorously checked that all the results fit together.

Our microkernel belongs to Verisoft’s so-called Academic System (as opposed to sys-
tems in subprojects with partners from industry), which is a distributed computer system for
the exchange and management of signed and encrypted e-mails. While the system is able to
receive external e-mails, each computer within the system uses identical hardware and the

1 The theory files are soon available at http://www.verisoft.de/VerisoftRepository.html.
2 The project’s homepage is http://www.verisoftxt.de/.

http://www.verisoft.de/VerisoftRepository.html
http://www.verisoftxt.de/

4

same operating-system software. In Verisoft, we implemented and verified an e-mail client,
an e-mail server, and a cryptography server that run on top of this operating system.

Hardware

CVM

kdispatch primitives

VAMOS

Sy
st

em
m

od
e

App
OS

kcalls kcalls

App

U
se

rm
od

e

Fig. 3 System stack

Fig. 3 depicts the hard- and software lay-
ers of a single computer in the system. The
lowest software layer is called communicat-
ing virtual machines (CVM). This layer en-
capsulates all the hardware-specific low-level
kernel functionality, which uses inline as-
sembly. Technically, this software constitutes
the interrupt-service routine of the proces-
sor. CVM’s major task, however, is memory
virtualization and process separation. Hence,
CVM includes a page-fault handler with a
simple memory swapping facility [3]. The
remaining functionality of our microkernel
is implemented by the hardware-independent
kernel part. CVM exports an interface of so-
called primitives for the access to and manip-
ulation of user processes to this kernel part.
We have thereby established a solid frame-
work for microkernel construction.

Using this framework, we have implemented our microkernel VAMOS in the C variant
C0 without inline assembly. When an interrupt occurs, CVM preserves the old processor
context, establishes a suitable C0 environment and calls the function kdispatch of VA-
MOS. For the manipulation of the user memory or registers, VAMOS may call the primitives
of CVM. The return value of kdispatch determines which process resumes when the kernel
execution finishes.

While CVM and VAMOS run in the privileged system mode of the processor, processes
run in the unprivileged user mode. In the figure, we labelled one process “OS” for the op-
erating system and the others “App” as abbreviation for application (e. g., e-mail client or
server). The OS process constitutes the highest layer of our operating system. It features an
advanced rights management with different users, implements a sophisticated access con-
trol to kernel services like process creation and provides further services like file-system and
network access. All processes interact with the kernel via kernel calls. The special instruc-
tion trap causes an exception, which is handled in VAMOS. VAMOS can examine and alter
the state of the process using CVM primitives, thus identifying the process’s specific request
and storing the kernel’s corresponding response.

2.2 Isabelle/HOL

HOL [12,4] is a classical logic based on the typed λ -calculus, where types can be built by
type variables α ,β ,γ , etc, type constructors like bool,int, α set, α list, and α⇒β , where the
latter is used to denote total functions. Further, there is the universal equality = of type
α⇒α⇒bool.

The logic HOL has been implemented as instance in the generic proof-assistant Is-
abelle [39]; nowadays, Isabelle/HOL is that instance of Isabelle, which is mostly used
and developed. A few axioms describe the logical core system based on the logical type
bool with the logical connectives ¬ , ∧ , ∨ and → , which are constants of type

5

bool⇒bool or [bool,bool]⇒bool. Moreover, there are the quantifiers ∀x .P x and ∃x .P x
which can range over arbitrary types in HOL. In the literature on Isabelle, it is common
to distinguish the built-in (“meta-level”) implication =⇒ and equality ≡ from their
HOL-counterparts → and = ; throughout this paper, these two operators can be con-
sidered equivalent. We also use the notation [[A1; . . . ;An]] =⇒ A as abbreviation for A1 =⇒
(. . . =⇒ (An =⇒ A) . . .).

This core language can be extended via axiomatic (“conservative”) definitions to large
libraries comprising Cartesian product types × with the usual projections fst and snd as
well as type sums + , with the injections inl and inr. The set type α set can be introduced
isomorphic to the function space α⇒bool, i. e., to characteristic functions, and a typed set
theory is introduced with the usual operators, e. g., ∈ , ∪ , ∩ .

The HOL type constructor τ⊥ assigns to each type τ a type lifted by ⊥. The function
b c : α⇒α⊥ denotes the injection, the function d e : α⊥⇒α its inverse for defined values;
for undefined values the function is left unspecified (though it is technically defined). Partial
functions α⇀β are just functions α⇒β⊥, over which the usual concepts like partial function
update f (a 7→b) are defined.

Isabelle/HOL supports record notation, which we use extensively. Record types are de-
noted, for example, by:

record T = a :: T1 b :: T2

which implicitly introduces the record constructor (|a :=e1,b :=e2|) and the update of record
r in field a, written as r(|a := x|).

2.3 The Verification Environment Isabelle/Simpl for C0

For the verification of C0, we use a general program-verification framework for sequential
imperative programming languages: Isabelle/Simpl [44,45]. It is build as a conservative
extension on top of Isabelle/HOL. The key feature of Isabelle/Simpl is the notion of a Hoare-
Triple:

G` P c Q

In a procedure environment G, this statement claims that under the assertion P on the original
program state, the assertion Q will hold after the execution of the code c given in the Simpl
language. The assertions P and Q are simply sets of states. In principle, Isabelle/Simpl is
polymorphic over the state space; we use records but hide the details by an Isabelle syntax,
such that {sv. svvar = 5} denotes the assertion that the value of program variable var in state
sv is five.

Expressions in Simpl are HOL expressions. In addition to the HOL operations, we have
defined bitwise conjunction ∧u and disjunction ∨u over natural numbers. In contrast
to expressions, statements are represented by an abstract datatype. The statement syntax is
highly abstract, e. g., Basic f represents a state update using function f . In order to present
programs in conventional terms, we employ Isabelle’s powerful syntax translation machin-
ery and denote a program variable by ′var, an assignment by ′var :== 5, a conditional by
IF b THEN s1 ELSE s2 FI, a procedure call by ′var :== CALL update(5), etc. The
index g is used to instruct the parser to generate guards that protect against runtime faults
like overflows.

The procedure environment G is a partial function from procedure names to statements.
These statements constitute the procedure body and are defined by the Isabelle/Simpl com-
mand procedures. The following command, for instance, defines the procedure update:

6

procedures update(var | res nat) =
′res nat :==g

′var

It has one formal parameter called var and the result to return to the calling function is
held in variable res nat, i. e., the bar separates input and output parameters. When formally
specifying the functionality of the procedure, we write ′res nat :== PROC update(′var)
as shorthand for the code of procedure update:

G` {sv. svvar = x}
′res nat :== PROC update(′var)
{t. tres nat = x}

states that procedure update assigns the value of its argument to the return variable.
The framework includes a big-step semantics, a Hoare logics for partial as well as total

correctness and an automated verification-condition generator for Simpl. Within this se-
quential core language, assembly fragments as well as the C fragment C0 are embedded
— thus, Isabelle/Simpl plays a similar role as Boogie for the Spec#/VCC environment [5]
or the WHY-tool for Caduceus [19]. The embedding is based on a compiler converting
C0-constructs in terms of operations provided by the small-step semantics of the VAMP ma-
chine. A correctness proof for this compiler, that links the small-step semantics to the Simpl
big-step semantics, is also provided [1]. This correctness theorem about the embedding of
C0 into Simpl allows for mapping low-level properties to more abstract ones formulated on
the big-step semantics of C0. Throughout this paper, we will present all algorithms in Simpl
(so that we can rely on a uniform Isabelle/HOL foundation); note, however, that this Simpl
code is the result of an automatic translation from the C0 code that is actually compiled and
runs on the machine. Alkassar et al. have dedicated a separate article [2] on the semantics
stack in Verisoft.

C0 is a well-typed language comprising compound values, i.e., structures and arrays.
We employ the HOL type system to model C0 programming language types. Isabelle’s type
inference then takes care of typing constraints that would otherwise have to be explicitly
maintained in the assertions. Propositions, however, that explicitly refer to the memory lay-
out or to hardware device registers cannot be proven on the C0-Hoare-Logic level; in these
situations, the verification necessarily descends down to the VAMP level. Our approach is
to abstract the effect of those low-level computations into atomic XCalls (extended calls) in
all our semantic layers. In particular, the state-space of C0 is augmented with an additional
component that represents the state of the external component, e. g., a device. An XCall is
a procedure call that performs a transition on this external state and communicates with C0
via parameter passing and return values. With this model, it is straightforward to integrate
XCalls into the semantics and into Hoare logic reasoning. XCalls are typically implemented
in assembly.

2.4 Code Verification in Isabelle/Simpl

The introduction presents a bird’s eye view on the refinement as depicted in Fig. 1. In prin-
ciple, we can reformulate the depicted claim in Isabelle/Simpl as follows:

G` {sv. abs rel sv s}
PROC kernel step()
{t. abs rel t (d s)}

Assuming an abstraction relation abs rel that holds for a concrete state sv and an abstract
state s , the relation is preserved by the transitions kernel step on the concrete level and d

7

on the abstract level. Just like the figure, this statement is an over-simplification. We post-
pone the details to Sect. 6.

Our approach to code verification combines refinement and code correctness, i. e., con-
tracts are specified in terms of the abstract states. As a simple example, we assume a library
function append, which appends an element to a singly-linked list. In the implementation,
the list is represented as a pointer structure described by the variables ′head and ′next. In
order to prove that a specific pointer structure in the state t after a function invocation indeed
denotes a list, it is useful to know that the original pointer structure in state sv already de-
noted a list. We encapsulate the list property in a predicate invlist over the pointer variables
and formulate correctness of append(′head, ′elem) as follows:

G` {sv. invl ist
svhead svnext ∧ abs rell ist

svhead svnext xs}
PROC append(′head, ′elem)
{t. invl ist

thead tnext ∧ abs rell ist
thead tnext (xs @ [svelem])}

i. e., we express the effect of the function in terms of its abstract representation, which is a
concatenation of lists.

Note that our approach to abstract representations of memory coincides with the idea of
“ghost fields” attached to C structures in Spec#/VCC [5]. In the pragmatics for Spec#/VCC,
one would provide a ghost field to each list-node attaching to it what the node and the pointer
structure it points to represent.

3 Microkernel Design

The kernel of an operating system is the code that runs in the privileged mode of a processor,
i. e., this and only this code has unrestricted access to all hardware resources. Traditionally,
kernels provided an abstraction from the hardware processor and the external devices. When
kernels grew in size over the years because of a rising variety of hardware, and especially
external devices, the traditional systems were called monolithic and the idea of smaller mi-
crokernels was born.

The motivation for microkernels, however, is manyfold. Microkernels became a popular
research topic in the late 1980s together with the idea of multi-personality operating systems,
which demanded a more general hardware abstraction than the traditional approach. This
first generation of microkernels such as Mach [41] or IBM’s Workplace OS [20] suffered
from a poor performance. When Jochen Liedtke analysed these systems [35], he pinned the
problem down to a feature-overloaded mechanism for inter-process communication (IPC).
Together with a light-weight, flexible IPC mechanism [33], he proposed the minimality of
hardware abstractions [34] in the kernel and suggested that servers implement the traditional
services of operating systems. Engler et al. [17] took the idea of minimality a step further
and banned (nearly) all abstractions from the kernel. Instead of resource management, the
kernel was restricted to resource protection. Abstractions were implemented in operating-
system libraries and directly linked to the user processes.

Our microkernel design is not as minimal as Engler or Liedtke proposed. We host all
functionality in the kernel that would be hard to verify if implemented in user processes.
Obeying this principle, the memory management, support for finite IPC timeouts, and the
scheduler live in our microkernel. Device drivers, which constitute the largest part of today’s
monolithic kernels, are implemented outside our microkernel. In the remainder of this sec-
tion, we describe the basic functionality of our kernel in more detail. Moreover, we regard
the design aspect of correctness, and finally, we explain our scheduling policy.

8

Functionality. Our microkernel VAMOS performs the following tasks: (a) enforcement of
a minimal access control, (b) process management, (c) memory management, (d) priority-
based round-robin scheduling, (e) support for user-mode device drivers, and (f) inter-process
communication (IPC). Processes can control these tasks via the kernel’s application binary
interface (ABI). Table 1 lists the kernel calls that constitute the ABI.

A minimal access-control mechanism reserves most kernel calls for so-called privileged
processes. Thus, only a privileged process can bring up new processes or kill existing ones,
alter the memory consumption of processes, change their scheduling parameters, or control
the registration of device drivers. Any process, however, might use the IPC mechanism. We
presume that the privileged processes constitute the user-mode parts of the operating system
and implement a more sophisticated access-control mechanism. Non-privileged processes
may then communicate with the privileged processes in order to request kernel services on
their behalf.

When VAMOS boots, it launches one single process, the init process. This process is
privileged and has to set up the required servers of the operating system, start and register
the device drivers, and possibly run initial applications.

A device driver is a user process, which is designated for the communication with certain
devices. Only if a process is registered as a driver for a particular device, it may place read
or write requests from or to that device, respectively. Moreover, the device driver is notified
of interrupts from that device.

Design of a Correct Microkernel. Modern microkernels are strictly evaluated by their per-
formance. While efficiency is clearly essential for the applicability of a microkernel, many
implementations even sacrifice perdurability for performance and declare, e. g., a finite range
of numbers as “sufficiently large” such that overflows should not occur during the expected
lifetime of the kernel. An old but even ABI-visible example is Liedtke’s [33] generation

Table 1 Application binary interface of the VAMOS kernel

Kernel Call Description
Access Control
SET PRIVILEGED p add a process to the set of privileged processes
Process Management
PROCESS CREATE p create a new process from a memory image
PROCESS CLONE p copy an already existing process
PROCESS KILL p kill a process
Memory Management
MEMORY ADD p increase the amount of virtual memory for a process
MEMORY FREE p decrease the amount of virtual memory for a process
Scheduling Mechanism
CHG SCHED PARAMS p change scheduling parameters
Device Driver Support
CHANGE DRIVER p (un)register a process as a driver for a set of devices
ENABLE INTERRUPTS d re-enable a set of interrupts after their successful handling
DEV READ d / DEV WRITE d communicate with a certain device
Inter-Process Communication
IPC SEND / IPC RECEIVE unidirectionally communicate with another process
IPC REQUEST send a message and immediately wait for a reply
CHANGE RIGHTS manipulate IPC rights
READ KERNEL INFO receive information from the kernel

p call is reserved for privileged processes d call is reserved for device drivers

9

counter: In order to ensure a thread’s identity, the fixed internal format of thread identi-
fiers reserves some bits for a counter, which is incremented on reincarnation. A possible
overflow, however, is just neglected. Although such an approach might be accepted for non-
critical systems, it does certainly not suit a critical, verified system; moreover, a restriction
on the lifetime contradicts the formal notion of liveness.

As a consequence, our kernel has no such “expiration date”. For this to work, we main-
tain a solely relative notion of time within the kernel. Furthermore, a capability-like man-
agement of process identifiers allows for a conceptually infinite name space for identifiers.

Another design decision is related to provable correctness as well: the absence of a
so-called idle process. In some microkernels, this distinguished process is scheduled with
lowest priority and should implement a busy wait. We circumvent assumptions on user-
level processes if possible and have thus implemented the idle loop (which solely waits for
incoming interrupts) directly in the kernel.

Process Scheduling. The basic policy underlying the scheduler in VAMOS is round-robin
process selection. This basic policy, however, can be adjusted by two regulators: priorities
and time slices. Our scheduler supports three different priority levels. Only processes in the
highest, non-empty priority class will be scheduled. Processes in a lower class wait until no
processes are ready to compute in any higher priority class. Within one priority class, the
time slice determines how long a certain process may compute until it is preempted in favor
of another process of the same priority class. Thus, time slices determine the relative weight
of process runtimes while priorities lead to the preemption of lower process classes.

4 The Implementation Layer

This section is devoted to the implementation of our microkernel. Recall that VAMOS is im-
plemented to run as CVM’s kernel machine. Certainly, we have to represent this framework
in our programming model. Hence, we describe in the first subsection, how we model the
effects of CVM in Simpl as seen by a VAMOS programmer. The second subsection briefly
introduces the top-level function kdispatch of VAMOS, which is called by CVM. Finally,
we present the code of the timer-interrupt handler, which constitutes the core component of
the VAMOS scheduler.

4.1 Representation of the Framework CVM

Though the CVM layer itself is not implemented in C, we can express its effects in terms of
Simpl code. Two CVM components are visible in our programming model: (a) a processor
abstraction containing the user processes with separate registers and linear, virtual memory
and (b) a device subsystem, which communicates with the processor via memory-mapped
I/O. Both components are combined in the global variable ′cvmX.

The processor abstraction cvm ups ′cvmX comprises not only the actual user machines
userprocesses, but additionally a current-process identifier currentp and a status register
statusreg storing the currently enabled interrupts. The function exceptvec p computes the
vector of the exceptions that occur during the next step of a process p . Some exceptions
write an exception-data register; its content is computed by edata nat p . We call the device
component cvm devs ′cvmX and define the function intvec, which computes the interrupt
vector from a state of the device subsystem.

10

procedures kernel step() =
′up :==g cvm ups ′cvmX;
IFg currentp ′up = ⊥ THEN (∗ CVM is idle ∗)
′eca :==g statusreg ′up ∧u intvec (cvm devs ′cvmX);
′edata :==g 0

ELSE
′proc :==g (userprocesses ′up) dcurrentp ′upe;
′eca :==g statusreg ′up ∧u (exceptvec ′proc ∨u intvec (cvm devs ′cvmX));
′edata :==g edata nat ′proc;
′cvmX :==g (′up (|userprocesses := dup (userprocesses ′up) dcurrentp ′upe|),

cvm devs ′cvmX)
FI;
IFg

′eca > 0 THEN (∗ has an enabled interrupt been raised? −− Then call kdispatch ∗)
′cp :== CALLg kdispatch (′eca, ′edata);
′cvmX :==g ((cvm ups ′cvmX)(|currentp := if ′cp ∈ procnumT

then bAbs procnumT ′cpc
else ⊥|),

cvm devs ′cvmX)
FI

Fig. 4 Simpl function kernel step, which represents a combined step of CVM and VAMOS

The pseudo-code of a CVM transition is shown in Fig. 4. This transition consists of up to
two phases: First, the current process executes one (assembly) step if existing.3 Second, the
CVM layer computes the vector of enabled interrupts and invokes the kernel’s kdispatch
function if an enabled interrupt has been raised. There are two possible sources of inter-
rupts: The current process may cause an exception, and external devices may raise their in-
terrupt line. Interrupts are ignored when not enabled in the status register. The return value
of kdispatch describes the process to be run next: If the value is a valid process number,
this process is elected, otherwise, the system idles until the next device interrupt occurs.

4.2 The top-level function of VAMOS

Upon kernel entry, the CVM routine calls the function kdispatch of VAMOS. Fig. 5 shows
the implementation of the function kdispatch of our microkernel. This function handles
the incoming interrupts that could not be taken care of by CVM. The function takes two
parameters: The exception cause eca, which is a bit vector of occured interrupts, and the
exception data edata, which contains the trap number if a trap has occured.

As the name kdispatch suggests, the function is characterized by a number of case
distinctions. We distinguish:

Initialization. After power-up, the processor generates a reset interrupt. In this case, the
CVM framework sets up its internal data structures (not shown in kernel step) and
then passes the interrupt on to the kdispatch function. If called with the reset-interrupt
bit set, kdispatch calls the function vamos init, which initializes the data structures
of VAMOS. The remaining interrupt vector is ignored.

Process Exceptions. The current process may cause a number of exceptions during its exe-
cution. From the kernel’s perspective, there are only two alternatives: a fatal exception
like an illegal page fault or a trap. In the former case, there is no reasonable recover
procedure, and thus, the process is simply killed by VAMOS. The semantics of a fatal

3 Recall that we do not rely on the existence of an idle process. Hence, there might be no current process.

11

procedures kdispatch (eca, edata | res nat) =
IFg (′eca ∧u 1) 6= 0 THEN

′dummy i :== CALLg vamos init()
ELSE

′old cup :==g
′current process;

IFg (′eca ∧u UEXCEPT MASK) 6= 0 THEN
′dummy i :== CALLg process kill(HANDLE SELF)

ELSE
IFg (′eca ∧u EXCEPT TRAP) 6= 0 THEN

′dummy i :== CALLg handle trap(′edata)
FI

FI;
IFg (′eca ∧u DEVICE TIMER BIT) 6= 0 THEN

′dummy i :== CALLg handle timer(′old cup)
FI;
IFg (′eca ∧u UEXT INT MASK) 6= 0 THEN

′dummy i :== CALLg int delivery(′eca)
FI

FI;
IFg

′current process 6= Null THEN
′res nat :==g

′current process → ′pid
ELSE

′res nat :==g 0
FI

Fig. 5 The kernel-dispatcher function of VAMOS

exception is exactly the same as if the process had requested to be killed via the ker-
nel call process kill. Hence, we reuse this function. In case of a trap, the function
trap handler is called. This function is essentially a huge case distinction over trap
numbers.

Timer Interrupt. Independently from the process exceptions, we check for the timer inter-
rupt, which is passed on to the function handle timer. This function implements the
scheduler (see Sect. 4.3).

Device Interrupts. If external devices have raised their interrupts, the function int delivery

is invoked in order to disable the interrupts and then either immediately deliver the inter-
rupts, if the corresponding device-driver processes are waiting, or schedule the interrupts
for later delivery.

The function kdispatch determines its return value using the global variable ′current
process, which is a pointer into the process information block (PIB) of the current process.
If there is no current process, the pointer is NULL and we return 0 (meaning “wait for inter-
rupts”). Otherwise, we retrieve the process identifier (PID) of the current process from the
PIB. Once, the function kdispatch returns, the CVM framework transfers the CPU to the
process identified by the return value.

4.3 The Timer-Interrupt Handler

When a timer interrupt occurs, kdispatch calls the function handle timer (see Fig. 6).
This function constitutes the heart of our scheduler and performes the following tasks:

– acknowledge the timer interrupt by reading a word from the timer device such that the
latter may lower its interrupt line.

12

procedures handle timer(old cup | res int) =
(∗ acknowledge the timer interrupt ∗)
′dummy :== CALLg cvm in word(DEVICE TIMER, 0);

(∗ detect and handle elapsed IPC timeouts ∗)
IFg

′next timeout 6= INFINITE TIMEOUT THEN
′current time :==g

′current time + 1
FI;
IFg

′current time ≥ ′next timeout THEN
′dummy i :== CALLg check elapsed timeouts()

FI;

(∗ charge the process that computed in the last step ∗)
IFg

′old cup 6= Null ∧ ′old cup → ′state = READY STATE THEN
IFg

′old cup→ ′consumed time ≥ ′old cup→ ′timeslice THEN
′ready lists ! (′old cup→ ′priority) :==

CALLg queueDelete(′ready lists ! (′old cup→ ′priority), ′old cup);
′ready lists ! (′old cup→ ′priority) :==

CALLg queueAppend(′ready lists ! (′old cup→ ′priority), ′old cup);
′old cup→ ′consumed time :==g 0

ELSE
′old cup→ ′consumed time :==g

′old cup→ ′consumed time + 1
FI

FI;

(∗ select the process that runs in the next step ∗)
′dummy i :== CALLg search next process();
′res int :==g 0

Fig. 6 Function handle timer

– increase the current time and check for elapsed timeouts. This check is encapsulated
in function check elapsed timeouts, which traverses the wait queue, wakes up all
processes with elapsed timeouts, and subtracts the current time from all other time-
outs. Finally, the current time is set to zero. This approach avoids the overflow of the
′current time variable at relatively low cost.4

– charge the process ′old cup that computed in the last step if it is still ready. If the so
far consumed time of ′old cup is greater than or equal to its timeslice, the process is
moved to the end of its ready queue and the consumed time is set to zero. Otherwise, the
consumed time is increased by one.

– select the process that runs in the next step by invoking function search next process,
which returns the first element in the ready queue with the current maximum priority.

5 The Abstract System Layer

At the abstract layer, we describe our computer system by a number of communicating
automata. Fig. 7 depicts the situation: Automaton AV+D specifies the overall system and is
composed of the device automaton AD and the VAMOS automaton AV. The former describes

4 We have compared the decribed timeout adjustment with an overflow-aware implementation. The latter
does not prevent overflows but the check for elapsed timeouts takes overflows into account. To our surprise,
the overflow-aware implementation comprises 122 instructions more than the timeout adjustment. This over-
head is caused by the more involved comparison between the current time and the timeouts. Apparently, the
expression evaluation for lazy operators is comparatively costly.

13

AD AV

AV+D

SvV

WV

SvD

WD

SvV+D

WV+D

Fig. 7 The input/output automata of the abstract system layer and their relationship

the behavior of the external devices like the keyboard, the timer or the network card while the
latter formalizes the behavior of the processor with VAMOS running on it. The automata AD

and AV communicate using the alphabet SvV (from the device subsystem to the processor)
and the alphabet WV (from the processor to the devices). Our kernel uses memory-mapped
I/O for device communication. Hence, the output alphabet WV comprises read and write
accesses to device addresses whereas the input alphabet SvV consists of interrupt lines and
optionally incoming data.

In addition, the devices may interact by an external interface with the environment in
order to receive keystrokes, for example, or send network packages. We define this interface
by the alphabets SvD and WD. This external device interface is exposed by the overall system
(alphabets SvV+D and WV+D).

Conceptually, the model of VAMOS running on the VAMP is specified by the sextuple
AV = (SV, S 0

V , SvV, WV, wV, dV) with the state space SV, the set of initial states S 0
V

⊂ SV, the input alphabet SvV, the output alphabet WV, the output function wV, and the
transition function dV. Likewise, we define AD and AV+D. In this article, we focus on AV

and AV+D. Hillebrand et al. [25] describe the device model in detail.
The states SV+D of the overall system are simply pairs (sV, sD) with sV ∈ SV, sD ∈

SD. The input alphabet SvV+D extends the one of the external device interface by a value
⊥ indicating that the processor will compute in the next step. The output alphabets are the
same, i. e., WV+D = WD. The device subsystem does not feature a separate output function
because the output depends on the transition, i. e., dD returns pairs (sD, w) of the successor
state sD and an output w. Consequently, there is no separate output function for AV+D.

Transitions dV+D of the overall system inspect the input and distinguish two cases: If the
input contains an external input for the device system, the input is passed on to the devices
and the VAMOS component remains constant. If the input is ⊥, it is the processor’s turn.
In spite of that, devices might still perform a transition because the kernel can initiate a
communication with a device, indicated by an output wV sV = readWV device port count
or wV sV = writeWV device port data . In this case, dV+D passes the VAMOS output to the
device system by applying dD. In response, the device system delivers an output w, which
contains the read data if requested. With this data, dV+D calls the transition function dV of
VAMOS.

In the remainder, we describe the VAMOS automaton in more detail. This automaton
specifies the interaction between the kernel and the user processes. User processes are mod-
eled as assembly machines interacting with the kernel via a well-defined interface, the kernel
ABI. In analogy to AV, we specify a process by a self-contained input/output automaton.

The following tuple represents a user process:

Aasm = (Sasm, initasm, Svasm, Wasm, wasm, dasm)

with the state space Sasm, the initialization function initasm, the input alphabet Svasm, the
output alphabet Wasm, the output function wasm, and the transition function dasm.

A state sasm ∈ Sasm contains a normal and a delayed program counter (implementing
the delayed branch mechanism), a file of general-purpose registers, and a byte-addressable

14

[[current instr sasm = trap 13; ¬ fatal excpt sasm]]
=⇒ wasm sasm =

dev read (reg2devnum (sasm.gprs ! 11)) (reg2port (sasm.gprs ! 12)) (regs2buffer sasm 13 14)

dasm err unprivileged sasm = sasm

(|gprs := sasm.gprs[22 := −4], dpc := sasm.pcp, pcp := (sasm.pcp + 4) mod 232|)

Fig. 8 Formal definition of output and transition function of assembly processes for the call dev read

linear memory. The initialization function initasm takes a binary program as parameter and
determines the according initial process state. The output alphabet Wasm enumerates all pos-
sible kernel calls. Additionally, it allows to signal runtime errors or undefined traps. Finally,
the output eW denotes the intention to perform a local computation. The input alphabet Svasm
reflects all kernel-initiated changes of a process. In order to perform a local transition, we
pass the input eSv to the transition function dasm.

Fig. 8 depicts the formal definition of the output function wasm and the transition func-
tion dasm, for the case of a dev read call. We assume, that sasm is the state of an assembly
process. If current instruction decodes to trap 13 and no fatal exception (e. g., an illegal
page fault) occured, the output function returns dev read with the specified device num-
ber (register 11), port number (register 12), and the buffer (registers 12 and 13).

Let us now assume that the kernel recognizes this output but the process is not privileged.
The kernel then signals this error condition by passing the value err unprivileged on
to the process via the transition function. In this case, the transition function updates the
result register 22 with the corresponding error code and increases the program counters.
The delayed programm counter is set to the former value of pcp, whereas pcp is increased
by 4 modulo 232.

Having introduced the user processes we now turn towards the actual VAMOS specifi-
cation. In the next sections we describe the components of AV in more detail. Finally, we
formally specifiy the VAMOS scheduler.

The State Space. The VAMOS state space contains all information required to realize the
different kernel functionalities. Besides the states of the user processes it stores information
regarding scheduling, rights management as well as device communication.

A state sV ∈ SV comprises the following components:

sV.procs is a partial function mapping process identifiers (PIDs) to their assembly states
sasm ∈ Sasm.

sV.priodb is a partial function mapping PIDs to their priorities.
sV.schedds contains the scheduling datastructures like wait and ready queues as well as

process-specific accounting information like the length of the timeslice.
sV.rightsdb contains information for the IPC rights management and the set of privileged

processes.
sV.sndstatdb are the remains of the process status in the implementation. Usually, the mem-

bership in a ready or wait queue determines the current process status—except for one
case: An IPC REQUEST call has a send and a receive phase, which might both require
waiting. The send status database sV.sndstatdb keeps track of the phase.

sV.devds contains data for device communication

Note, that the partial functions are only defined for the PIDs of the currently active
processes.

15

[[wasm dsV.procs dv cup sV.scheddsee = dev read devid port buffer;
¬ is error (vamos result dev read sV.devds dv cup sV.scheddse devid port buffer)]]

=⇒ wV sV = readWV ddevide dporte (bufLength buffer)

Fig. 9 Formal definition of the output function for the call dev read

The Output Function. The function wV determines the output in a certain VAMOS state
and is used, for instance, in the function dV+D to figure out whether a device interaction is
desired or not. VAMOS can interact with devices by either read or write requests. A device
interaction is initiated, if the output of the currently running process dv cup sV.scheddse
insists on this and all error cases can be excluded. In this case, wV converts the process
output into device input.

The formal definition of the output function wV for the call dev read depicts Fig. 9.
We assume that sV is the current state of the VAMOS model and the current process triggers
a read request. The predicate is error holds iff the result of the aspired operation reports any
error. In case of an error no output will be produced, i. e., wV sV = idleWV. Otherwise, wV

sV assembles a message consisting of the request type, the device number, the port number
and the number of words to be read, indicated by bufLength buffer .

The Transition Function. The transition function dV takes two parameters: (a) an input d
from the device subsystem, which contains data read from a device, and (b) a VAMOS state
sV. It returns a successor state s ′V. Within a transition, we distinguish up to three phases:

1. If the current process cp = dv cup sV.scheddse is defined, we consult its output wasm

dsV.procs cpe ∈ Wasm and compute the response according to the current VAMOS state.
For instance, if a process calls dev read, we check for sufficient privileges and choose
the corresponding response res ∈ Svasm for success or failure. With this response, we
advance the current process by calling its transition function: sV(|procs := sV.procs(cp
7→ dasm res dsV.procs cpe)|). In case of a success, res comprises the device data d ,
otherwise, only an error code is reported to the process.

2. If the timer-interrupt line is raised, the timer-interrupt handler is invoked (see Sect. 4.3).
3. Finally, VAMOS delivers the occured interrupts to the according drivers (assuming that

the latter are waiting; otherwise, the interrupts are saved in sV.devds for a later delivery).

Each phase is encapsulated in its own specification function. For space restrictions, we
cannot present all of them but content ourselves with the specification of the timer-interrupt
handler handleTimer. We formally define this function in the following section.

5.1 The Scheduler

On the abstract level, the scheduler is defined by its data structures, i. e., component schedds
of the VAMOS state space, and the transition function of VAMOS. We describe the data
structures below but certainly, we cannot present the whole transition function. Hence, we
confine ourselves to the core of the scheduler: the timer-interrupt handler.

Data Structures. A central part of the VAMOS specification are the scheduling data struc-
tures. The component sV.schedds is divided into sub components. The current time time∈N
is a counter for clock ticks. Process-specific scheduling information for active processes is

16

collected in the partial function procdb that maps PIDs to a record of (a) the time slice tsl,
(b) the amount of consumed time ctsl, and (c) the absolute timeout timeout. If a process is
found to be computing when a timer interrupt raises, the component ctsl is increased until
the process has finally run for tsl ticks. In this case, another process is scheduled. If a pro-
cess calls the kernel for IPC and no partner is ready for communication, the absolute timeout
timeout is computed from the current time and the relative timeout that has been specified
with the call.

Moreover, the scheduler maintains different queues for scheduling. They are represented
as finite sequences in the VAMOS specification. Namely, there is a ready queue prio.ready
of schedulable processes for each priority prio ∈ prioT. The processes that cannot currently
be scheduled (because they are waiting for an IPC partner) are held in a queue named wait.
Inactive ones are stored in inactive.

In VAMOS, the current process is the first process in the highest, non-empty ready queue.
If all ready queues are empty, the current process is undefined. Or more technically, we
concatenate the ready queues from the highest to the lowest and specify the first process in
this list as current:
v cup schedds ≡

case concat (map schedds.ready [high prio, med prio, low prio]) of [] ⇒ ⊥ | x · xs ⇒ bxc

Handling Timer-Interrupts. The abstract function handleTimer specifies the semantics of
the timer-interrupt handling in VAMOS. It increases the current time whereby timeouts of
waiting processes might elapse. All processes with elapsed timeouts are woken up and no-
tified about the timeout. Furthermore, the handler charges the current process in order to
ensure prioritized fairness in our scheduling algorithm: If the current process has consumed
its whole timeslice, it is moved to the end of its ready queue; otherwise, the value of the
consumed timeslice is increased. Most notably, all changes only regard the user processes
and the scheduling data structures.

Following the implementation, we specify handleTimer as composite of two functions
checkTimeouts and reschedule, i. e.,
handleTimer sV cp ≡
reschedule (checkTimeouts (sV(|schedds := sV.schedds(|time := sV.schedds.time + 1|)|))) cp

As suggested by the name, the former describes the handling of elapsed timeouts, i. e., it
awakes waiting processes with an elapsed timeout and notices the affected processes. The
latter describes the actual algorithm of our scheduling policy.

The formal definition of checkTimeouts is given in Fig. 10. Updating the user processes
is rather straightforward. The predicate expiredTimeout holds for processes waiting for an
IPC operation with expired timeouts. Affected processes are noticed about the timeout with
the according error value: The message is determined by the predicate is process sending,
which holds for processes residing in an IPC send operation. An expired send timeout is
acknowledged by the message err snd timeout whereas a receive timeout leads to
err rcv timeout. The application of the step function dasm transfers the error notifica-
tion to the process.

Apart from the delivery of the error notification, the processes with elapsed timeout have
to be woken up. Consequently, the processes are appended to the ready queue according to
their priority and removed from the wait queue. They again retrieve their full timeslice which
is realized by setting their consumed time ctsl to 0. Finally, the send status of processes with
expired timeout is set to False, because they are not longer performing any IPC operation.

Relying on the resulting state, the function reschedule realizes the scheduling policy.
As further information it gets the identifier cp of the current process at kernel entry. This

17

checkTimeouts sV ≡ sV
(|procs := λx . if expiredTimeout sV.schedds x

then if is process sending sV.procs sV.sndstatdb x
then bdasm err snd timeout dsV.procs xec
else bdasm err rcv timeout dsV.procs xec

else sV.procs x ,
schedds := sV.schedds

(|ready := λp. sV.schedds.ready p @
[x∈sV.schedds.wait . expiredTimeout sV.schedds x ∧ dsV.priodb xe = p],

wait := [x∈sV.schedds.wait . ¬ expiredTimeout sV.schedds x],
procdb := λx . if expiredTimeout sV.schedds x then bdsV.schedds.procdb xe(|ctsl := 0|)c

else sV.schedds.procdb x |),
sndstatdb := λx . if expiredTimeout sV.schedds x then bFalsec else sV.sndstatdb x |)

Fig. 10 Specification of checkTimeouts

reschedule sV cp ≡
let procdb = sV.schedds.procdb dcpe; ready = sV.schedds.ready dsV.priodb dcpee
in sV(|schedds := if cp = ⊥ ∨ dcpe /∈ set ready then sV.schedds

else if dprocdbe.tsl ≤ dprocdbe.ctsl
then sV.schedds

(|ready := sV.schedds.ready
(dsV.priodb dcpee := [x∈ready . x 6= dcpe] @ [dcpe]),
procdb := sV.schedds.procdb(dcpe 7→ dprocdbe(|ctsl := 0|))|)

else sV.schedds
(|procdb := sV.schedds.procdb(dcpe 7→ dprocdbe

(|ctsl := dprocdbe.ctsl + 1|))|)|)

Fig. 11 Specification of reschedule

parameter is necessary because the current process might change while handling kernel
calls. Recall that the VAMOS model does not save the current process but rather generates
it out of the current state. Since (possible) kernel calls are handled before the invocation of
the timer handler, the state and with it the current process might change. Nevertheless, the
current process at kernel entry has consumed computation time and should pay this time in
form of an increase of its consumed time ctsl.

The formal definition of reschedule is given in Fig. 11. Three situations are determined
while updating the scheduling data structures.

The first is described by the fact that either no current process existed at kernel entry,
i. e., cp = ⊥ or that the “old” current process cp is no longer ready. In both cases, the current
process has “paid” in the sense that it is not computing anymore. Thus, there is nothing to
do but increasing the current time.

The second situation assumes a current process cp at kernel entry which is still ready
to perform. To preserve the fairness of the scheduling, we check whether cp consumed all
of its assigned timeslice. If this is true for cp , we shift cp to the end of its ready queue.
Technically, we first remove it from the according queue and then append it again. Thus, we
ensure, that process cp is not scheduled again until all other processes in the queue had a
chance to compute. For the next computation phase, cp should again get its full timeslice.
Hence, we set its consumed time to 0.

The third situation is based on the same assumptions as the former, but the timeslice
of the running process is not yet consumed. In this case, cp is allowed to proceed with its
computation. Solely its consumed time is increased by 1.

18

6 Refinement

sV+D

sv t

s ′V+D

abs relV+D abs relV+D

dV+D

kernel step

Fig. 12 Kernel step refinement

In the last sections, we have introduced
the VAMOS implementation and the abstract
system model. In this section, we formally
relate both layers by a proof of functional
correctness. As mentioned in the introduc-
tion, the function kernel step of the CVM

layer implements together with the VAMOS

code a transition dV+D of the abstract system
model. For the refinement proof, we link the
abstract states sV+D, s ′V+D and the imple-
mentation states sv, t via the formally defined
abstraction relation abs relV+D. In addition
to abs relV+D, there is also an implemen-
tation invariant invi stating properties of an
implementation state. Both, the abstraction relation as well as the implementation invariant
are introduced in the next sections.

Note, the scope of this paper does not require to argue about the overall system, where
device steps occur without any involvement of the kernel, e. g., if a network card receives a
package. We are only concerned with the kernel and device steps initiated by the kernel. This
is reflected in setting the input from the external device system of dV+D to ⊥, subsequently.
If an external input for the device system occurs, the VAMOS component remains constant,
anyway.

Fig. 12 visualizes the kernel step refinement whereas the following theorem gives a
formal statement:

Theorem 1 (Kernel Correctness) If the invariant invi holds for an implementation state
sv, the abstraction relation abs relV+D correlates sv and the abstract state sV+D, and the
function kernel step is executed, then abs relV+D again correlates the resulting imple-
mentation state t and the abstract state obtained by dV+D ⊥ sV+D, and the invariant invi

holds for t.

G` {sv. abs relV+D sv sV+D ∧ invi sv}
PROC kernel step()
{t. abs relV+D t (fst (dV+D ⊥ sV+D)) ∧ invi t}

Recall that the transition function dV+D returns a tuple consisting of the updated state
and the output to the external environment. In this context we are only interested in the
updated state, and thus take the first component of the tuple, i. e., s ′V+D = fst (dV+D ⊥
sV+D)

Proof (Idea) The correctness of this statement is based on the correctness of all functions
applied in the scope of kernel step. Thus, for all functions we have to define and prove
lemmata stating their correctness. Eventually, we connect these lemmata in order to prove
the correctness of the overall system.

The proof of Theorem 1 mainly relies on the correctness of the function kdispatch

representing the main function of the VAMOS implementation. As described in Sect. 4 this
function splits up into four different parts: the initialization, the handling of process excep-
tions, the timer-interrupt handler and the delivery of device interrupts. ut

19

Due to complexity, we cannot give deap insights on the correctness of all these parts.
We rather confine ourselves in the remaining section to the timer-interrupt handler as an ex-
ample. Stating the correctness of the function handle timer relies on both the abstraction
relation and the implementation invariant. Thus, we first sketch both, before we deal with
the actual correctness of the handler.

6.1 Abstraction Relation

In this section we are concerned with the abstraction relation abs relV+D. Together with the
state invariant invi, which we present in Sect. 6.2, it constitutes a crucial part throughout
the complete functional verification. A wrong or insufficient formulation would query the
significance of our overall correctness stated in Theorem 1.

The abstraction relation abs relV+D relates an implementation state sv with an according
abstract state sV+D, where sV+D = (sV, sD) and sV denotes a VAMOS state and sD a state
of the device system. Formally, the relation is defined as follows:
abs relV+D sv (sV, sD) ≡ abs relv sv sV ∧ sD = cvm devs svcvmX

The right part of the conjunction is quite simple, because both the implementation and
the model use the same representation for devices.

Much more effort is involved to relate the implementation to the abstract VAMOS state
sV. The definition of abs relv is a bunch of conjunctions, reflecting the structure of a VA-
MOS state. Each conjunction is dedicated to a certain component of sV, relating relevant
implementation variables with their abstract counterparts:
abs relv sv sV ≡

rel procsv sv sV.schedds.inactive sV.schedds.wait sV.procs ∧
rel scheddsv sv sV.schedds ∧
rel priodbv sv sV.schedds.inactive sV.priodb ∧
rel sndstatdbv sv sV.procs sV.sndstatdb ∧
rel rightsdbv sv sV.schedds.inactive sV.rightsdb ∧ rel devdsv sv sV.devds

For space restrictions, we cannot describe all parts of the relation, but only present ex-
emplary excerpts to communicate the fashion of abstraction.

At first, we introduce some basic abstractions bridging the implementation and the spec-
ification regarding the process identifiers and the priorities.

The implementation represents process identifiers and priorities as unsigned 32-bit in-
tegers, whereas the specification uses finite subtypes of natural numbers, i. e., procnumT
and prioT. The function Abs procnumT computes for an unsigned 32-bit integer value the
corresponding abstract process number. The inverse function is called Rep procnumT. For
priorities, we have the functions Abs prioT and Rep prioT, respectively.

With these basic abstractions at hand, we proceed with the actual abstraction relations.
Remember, sv means the implementation state where, for instance, svcurrent time denotes
the value of the current time in state sv. The abstract state is given by sV.

Actually, the relations for the device datastructures and the databases for the send status,
the rights and the priorities, hide functional abstractions. As an example, we pick rel priodbv:
rel priodbv sv sV.schedds.inactive sV.priodb ≡

sV.priodb =
(λp. if p ∈ set sV.schedds.inactive then ⊥

else bAbs prioT (svpriority (svpib ! Rep procnumT p))c)

The component sV.priodb defines a partial mapping between process identifiers and priori-
ties. Inactive processes are not assigned with any priority but with ⊥. Processes are inactive

20

iff they are in the inactive queue sV.schedds.inactive. For active processes we have to ex-
plore the priority as assigned in the implementation. Thereby, the crucial point is to obtain
the pointer corresponding to process p . Pointers to the process information blocks of all user
processes are collected in the list svpib. By design we know, that the corresponding pointer
to process p is stored at the index, which we get by converting the process number p to a
natural number. Based on the pointer, the heap function svpriority delivers the priority, which
finally is abstracted by Abs prioT.

The relation rel priodbv relies on the inactive queue, which is obtained by abstracting
the inactive list in the implementation. The implementation describes a list by a pointer
head to the first element of the list. A list can be traversed by means of the previous and
next pointers provided by the functions prev and next . In contrast, the model solely talks
about lists of process numbers. We base our abstraction of these process queues on predicate
Queue:
Queue head next prev pid Ls ≡
∃Rs lst.

(Path head next Null Rs ∧ Path lst prev Null (rev Rs)) ∧
map (Abs procnumT ◦ pid) Rs = Ls

where Path h n e l tests whether the list l can be constructed starting with element h and
collecting further elements by recursively applying function n until element e is reached.
The formal definition of Path is:
Path x h y [] = (x = y)
Path x h y (p · ps) = (x = p ∧ x 6= Null ∧ Path (h x) h y ps)

The first two conjunctions of Queue specify a doubly-linked list Rs of references using
predicate Path. The last conjunction states that the list Ls of process numbers can be con-
structed from list Rs by applying the function Abs procnumT ◦ pid to each element. Using
this predicate, we abstract the inactive list from the implementation variables svinactive list,
svqueue next, svqueue prev, and svpid. By design we know, that the variables specify a
doubly-linked list of references representing the list of waiting processes. Thus, in conjunc-
tion with the abstraction relation we can formulate the following statement::
[[rel scheddsv sv sV.schedds; Path svinactive list svqueue next Null Ps;
Path lst svqueue prev Null (rev Ps)]]

=⇒ Queue svinactive list svqueue next svqueue prev svpid sV.schedds.inactive

In an analogous way, we can abstract the other lists, which cover big parts of the schedul-
ing datastructures. Nevertheless, abstracting the remaining parts – the time and the process-
specific scheduling data – is slightly more interesting, caused by the diverse notion of time.

On the abstract level we specify points in time as unbounded natural numbers while the
implementation uses unsigned 32-bit integers to represent those times.

Thus, the specification reflects the abstract idea of a monotonic increasing time while
the implementation employs the fact that only a finite range of time points is relevant at a
certain execution step. Consequently, there is a growing offset between the implementation
time and the abstract time. We formulate this fact in the following statement:

rel scheddsv sv sV.schedds =⇒
∃n. svcurrent time + n = sV.schedds.time ∧

(∀p. p /∈ set sV.schedds.inactive ∧ p ∈ set sV.schedds.wait −→
abs timeout (svtimeout (svpib ! Rep procnumT p)) += n =
dsV.schedds.procdb pe.timeout)

A natural number n defines the offset of the implementation variable svcurrent time and
the component time in the scheduling datastructures of the model. This same number is the
offset between the (absolute) timeouts of the non-inactive waiting processes.

21

The implementation stores timeouts as unsigned 32-bit integers, where the maximal
value represents an infinite timeout. In the specification, we defined datatype timeoutT =
Infinity | Timeout nat. We use the function abs timeout to convert the implementation
value into the abstract one. For the abstract timeouts, we defined the operation += in order
to increment a timeout by a natural number.

The processes are also connected via an abstraction relation. We remember, that the
implemented system stores the interrupt information in the exception-cause and exception-
data registers and performs a step of the current process, by applying dup, before entering the
kernel (cf. Sect. 4). In contrast, the model does not save the information regarding interrupts,
but rather computes it indirectly via wasm, if needed. Thus, in order to get the proper output,
the process in the model must be kept in the original state until (possible) interrupts are
completely handled. If the occured interrupts, e. g., a trap, can be handled within one kernel
phase, the user step in the model is performed within dV+D, and when leaving the kernel,
both machines are synchronous again. A different situation occurs, if processes have to wait
while performing an IPC operation with no suited partner at hand. In this case, they wait
until a partner appears or the timeout for the operation expires. Thus, while the process in
the implementation already performed a step, the model keeps the original state and thereby
has the possibility to explore the pending operation. Consequently, it might happen, that the
states of waiting processes in the implementation and in the model differ over several kernel
phases.

For clarification: We know about waiting processes, that they eventually have been the
current process performing a trap instruction without fatal errors. Otherwise, no IPC opera-
tion would be possible.

The semantics of dup in case of a trap instruction without fatal errors is given by solely
increasing the program counters. Thus, the relation between waiting processes in the imple-
mentation and the ones in the model is defined as follows:

[[rel procsv sv sV.schedds.inactive sV.schedds.wait sV.procs;
x /∈ set sV.schedds.inactive;
x ∈ set sV.schedds.wait;
∃i . current instr dsV.procs xe = trap i]]

=⇒ dsV.procs xe(|dpc := dsV.procs xe.pcp, pcp := (dsV.procs xe.pcp + 4) mod 232|) =
(cvm ups svcvmX).userprocesses x

Waiting processes x are performing an IPC operation which was triggered by a trap instruc-
tion of type trap i . In the model, the state of a non-inactive but waiting process x is that
one, that, after increasing the program counters, again corresponds with the implementation
state of process x.

States of waiting processes have to be abstracted in a relational manner because the
increasing of the counters is not invertible.

In contrast, for non-waiting processes the functional abstraction is possible. Inactive
ones are assigned with ⊥ whereas all others are mapped one-to-one.

6.2 Implementation Invariant

This section deals with the second main ingredient of the correctness theorem: the state
invariant.

Encapsulated in the predicate invi, it establishes validity requirements on implementa-
tion states. These requirements reach from ordinary range restrictions of values to those
affecting the concrete implementation design. Previous statements like ”we know by de-

22

sign” must be discharged by the invariant. Thus, similar to abs relV+D a careful and well-
considered formulation of invi is essential.

Formally, the invariant is defined as:
invi sv ≡

validProcs sv ∧ validRanges sv ∧ validRights sv ∧ validPIB sv ∧ validLists sv ∧ validDevds sv

where sv represents an implementation state. With some exemplary excerpts, we communi-
cate the flavour of the invariant. Space restrictions and complexity do not allow the complete
presentation.

Predicate validProcs states the validity of the user processes. It ensures, for instance,
that each process has 32 general purpose registers and that register values fit into 32 bits.
Ranges of the kernel variables are fixed through validRanges. Thus, the process identifiers in
the implementation are restricted to the range between 0 and PID MAX. Furthermore, the
length of the list keeping the pointers to the process information blocks equals the number
of processes, i. e., PID MAX, and the time value is smaller than MAX TIME.
validRanges sv =⇒
(∀p∈set svpib. 0 < svpid p < PID MAX) ∧
length svpib = PID MAX ∧ svcurrent time < MAX TIME

Recall that in the abstraction relation rel priodbv, we knew by design, that the corre-
sponding pointer to process p is stored at the index of svpib, which we get by converting the
process number p to a natural number. This fact can be derived from predicate validPIB and
the properties derived above:
[[validPIB sv; ∀p∈set svpib. 0 < svpid p < PID MAX; length svpib = PID MAX]]
=⇒ ∀p. ∃x∈set svpib. svpib ! Rep procnumT p = x

To be right with rel priodbv, let us consider the validity statements regarding the inac-
tive list and lists in general. Statements regarding the lists are subsumed by the predicate
validLists. Mainly, they are characterized through the relation between the state of a process
and its list membership. Hence, for the inactive list this means, that processes are only in the
inactive list iff their state is also set to inactive:
[[validLists sv; Path svinactive list svqueue next Null Inact ;
Path lst svqueue prev Null (rev Inact)]]

=⇒ ∀p∈set svpib. (svstate p = INACTIVE STATE) = (p ∈ set Inact)

We can derive similar statements for the wait and ready queues.
The predicates validRights and validDevds tie down the design regarding the rights and

device datastructures. Both datastructures are not relevant for this paper, thus, we leave out
any further details.

6.3 Implementation Correctness of the Timer-Interrupt Handler

Stating the correctness of the timer-interrupt handler does not rely on the complete abstrac-
tion relation abs relV+D, due to the fact that occuring device steps can be moved to the
overall step function dV+D. To reflect the situation before calling the timer-interrupt handler,
we even have to adjust abs relv regarding the user processes. If a timer interrupt occurs, the
timer-interrupt handler is either called after the trap handler or directly after entering the
kernel. Both situations have different impact on the user processes, especially regarding the
one of the current process. To deal with this, we define a relation rel procsT as a more fine-
grained process abstraction than provided by rel procsv. The resulting abstraction relation
abs relT is equal to abs relv with rel procsT replacing rel procsv.

23

In order to show the functional correctness of the timer-interrupt handler, we start with
the formal correctness of the function check elapsed timeouts.

Theorem 2 (Correctness of the check elapsed timeouts routine) The semantic effects
of the function check elapsed timeouts are described by the abstract function check-
Timeouts.

G` {sv. abs relT sv s ∧ invi
′
sv ∧ pre sv}

′res int :== PROC check elapsed timeouts()
{t. abs relT t (checkTimeouts s) ∧ invi

′
t ∧ post sv}

Note, the function check elapsed timeouts is applied after increasing the time in func-
tion handle timer. This may lead to a situation where, e. g., the time is no longer smaller
than MAX TIME. Thus, in the precondition we can only assume a weaker state invariant
invi

′, where among others, the time-related properties of invi are extracted. However, the
predicate pre keeps track of such extracted and adjusted properties as well as of properties
implicitely given by the implementation.

In the postcondtion this part is taken over by the predicate post. For instance, invi
′

does not fulfill the complete validity requirements for ready queues. Actually, the head
of the ready list of the highest priority determines the current process. Waking up pro-
cesses, as it happens in check elapsed timeouts, could violate this property, because
the highest priority might change. This violation is not resolved to the point where function
search next process is called in handle timer. In the meantime, predicate post keeps
track on this situation.

Proof The main ingredience for this proof is the formulation of the loop-invariant for the
iteration over the wait queue, which resembles the filter function over the abstract lists. The
invariant itself is a rather technical detail, which we do not elaborate on in this paper. Once
we found this invariant, the proof was straight forward. ut

Using the correctness result of this routine, we can finally prove the correctness of the
function handle timer:

Theorem 3 (Correctness of the Timer-Interrupt Handler) The semantic effects of the
function handle timer are described by the abstract function handleTimer.

G` {sv. abs relT sv s ∧ invi sv}
′res int :== PROC handle timer(′old cup)
{t. let pid = if svold cup = Null then ⊥ else bAbs procnumT (svpid svold cup)c

in abs relT t (handleTimer s pid) ∧ invi t}

Proof The proof of this function involves at the one hand, a distinction over the three cases
distinguished in the implementation. Hence, we show that the scheduling policy is correctly
implemented with regard to the specification function reschedule. At the other hand, we
have to establish the precondition for check elapsed timeouts. With this prerequisite
in place, we use its specification checkTimeouts to establish the claim of our theorem.
Additionally, the state invariant invi is again recovered. ut

Together with the remaining steps of kdispatch and dV+D we derive abs relV+D and fi-
nally prove Theorem 1.

24

readyhigh

readymed

readylow

wait

1 2
3 4
5
−

2

3 4
5
1

2

3 4
5
1

 −

3 4
5
1 2

 −

3 4
5
1 2

2

4 3
5
1

2

4 3
5
1

2

4 3
5
1

 −

4 3
5
1 2

 −

4 3
5
1 2

2

4 3
5
1

step 1 2 3 4 5 6 7 8 9 10 11

1 2 2

3 3

2 2 2

4 4

2 2high

med

low

Fig. 13 An examplary execution trace of VAMOS together with its scheduling data structures

7 A Temporal Property: Scheduler Fairness

In this section, we extend the formal VAMOS model for the reasoning about temporal be-
havior, we develop the notion of prioritized fairness and finally prove that our scheduler
conforms with this definition.

At first, however, let us consider an example trace as shown in Fig. 13. The matrices
at the top represent the ready queues and the wait queue of VAMOS. Our scheduler elects
always the first process in the highest, non-empty ready queue for computation. In the first
shown step, two processes are in the highest priority class, and process 1 is computing (as
shown at the bottom) because it is the first in the highest ready qeue. The elected process runs
until it generates an exception or an external interrupt occurs. In the example, we assume
that process 1 issues an IPC call and then has to wait for a suitable partner such that process
2 is computing in the second step.

A timer interrupt occurs (indicated by) and process 2 is charged for its computation in
step 2, i. e., the counter ds.schedds.procdb (Abs procnumT 2)e.ctsl is increased. Process
2, however, is the only one in its ready queue and continues to compute in step 3. Now,
we assume that process 2 issues an open IPC receive and is found waiting in step 4 while
process 3 computes. In step 5, a timer interrupt occurs, which charges process 3. For this
example, we assume that all processes have a single timeslice—hence, process 3 will be
preempted as its time slice ran out. Morover, we assume that a timeout wakes up process
2. Now, process 2 continues to compute until, e. g., it issues again an IPC call and starts
waiting in step 8. We will later return to this example.

There are various notions of fairness. In the operating-system community, fairness of
static-priority scheduling is typically measured by the ratio of the CPU usage among equally
prioritized tasks. Fagin and Williams [18] have illustrated this quantitative fairness notion
by the carpool problem. We, in contrast, formalize the liveness property of strong fairness
according to the taxonomy of Francez [22]. Certainly, it would be desirable to predict at
least the waiting time of a certain process until it finally computes but this task is hard to
achieve.

In principle, the waiting time of the most prioritized processes is linear and an upper
bound for the waiting time could be given. In general, however, the waiting time of the pro-
cesses necessarily depends on the computations of all more prioritized processes. In theory,
this problem might be solvable by static program analysis [23], which reliably predicts an
upper bound for the worst-case execution time of programs in real-time operating systems
[30] with static scheduling. In practice, the predicted time bound or the complexity of the
predicting computation would be farcically high in our setting.

25

Recall, for example, that the paging mechanism is built into our kernel. The execution
of a single instruction on the VAMP can involve up to two memory accesses at independent
addresses, namely, an instruction fetch and a data load or store. Each memory access in the
user mode might trigger a page fault, which is handled in more than 14,000 instructions.
Similarly, a cache access in hardware is by orders of magnitude faster than the direct access
of the physical memory in case of a cache miss.

A static analysis can either assume that every user-mode instruction involves about
28,000 instructions in system mode, or it has to regard the whole computer system from the
hardware including caches and the timer device via the kernel implementation up to the user
processes at once in all its detail. Measurements [47,40] produce considerably lower time
bounds but are not exhaustive and might thus miss an unlikely worst case. Our approach,
on the contrary, abstracts from the implementation, focusses on the kernel behaviour and is
thus limited to a liveness property.

Besides the difficulty to prove a quantitative fairness property, the temporal property
simply suffices for our original motivation: The here presented work is part of a larger proof
effort that establishes the formal foundation of a verification environment for concurrent
programs [15]. In this context, it is only relevant that a single process under concern will
eventually progress in the concurrent environment. Even total correctness in the concurrent
environment can be established without a detailed timing analysis.

Liveness properties are defined over infinite transition sequences, or traces. We regard
only the VAMOS processor model AV, here, because the kernel does not rely on a specific
device system AD. We represent the traces as two functions states and inputs that map
the step number to the current state sV ∈ SV and to the input i ∈ SvV for the next step,
respectively.

Definition 1 (Trace) Two functions states and inputs describe a trace iff they meet the
following conditions:

states 0 ∈ S 0
V

∀n. states (n + 1) = dV (inputs n) (states n)

In order to reason about the behavior of a trace, we need an invariant inva over the
abstract-state sequences. The complete invariant is quite elaborate, hence, we only sketch
two queue-related properties, which we will refer to later on in the fairness proof:

– An active process is either in the wait or in the ready queue, and an inactive process is
in neither queue. Formally:
inva s =⇒
if s.procs p = ⊥ then p /∈ set s.schedds.wait ∧ (∀i . p /∈ set (s.schedds.ready i))
else (p ∈ set s.schedds.wait) 6= (p ∈ set (s.schedds.ready ds.priodb pe))

– A waiting process pid is in the process of an IPC operation, i. e.,
[[inva s; pid ∈ set s.schedds.wait]] =⇒ is ipc (wasm ds.procs pide)

We show that the constant inva is indeed an invariant over the abstract traces:

Theorem 4 (Abstract invariant) Predicate inva is an invariant over traces, formally:
inva (states m) holds for arbitrary m .

Proof We prove this statement by induction. At first, we establish inva for the initial states:
sV ∈ S 0

V =⇒ inva sV. At second, we show that inva is maintained by the transition function,
i. e., inva sV =⇒ inva (dV i sV). Finally, we derive our claim inva (states m) by the
definition of traces. ut

26

Based on Definition 1, an unconditioned fairness property is:

∃l≥k . progress ((states l).procs pid) ((states (l + 1)).procs pid)

where the predicate progress p q holds iff q can be produced by a transition from p , i. e.,
q = dasm i p .5 This statement, however, is too strong for the VAMOS scheduler because it
neglects several aspects of our system:

– Processes are dynamic entities and PIDs may be reused. Thus, the process pid in step l
might not be the same as the one in step k .

– A process pid might start an IPC operation with an infinite timeout. If there is never
another process willing to communicate with process pid , the latter starves.

– Prioritization leads to the preemption of less prioritized process classes – without any
time bound (according to our scheduling policy as described in Sect. 3).

– The implementation relies on a live timer device because the scheduler is activated only
by the timer interrupt (see Sect. 4.3).

Consequently, we have to weaken our notion of fairness in this context. At first, we
recall that liveness conditions are formulated over infinite traces. Hence, we exclude all
terminating processes, i. e., ∀n≥k . (states n).procs pid 6= ⊥, where pid is an arbitrary,
fixed process ID.

At second, we assume a predicate pending infinite ipc s pid , which examines a state
s and holds iff the process pid is pending in an IPC operation with an infinite timeout. If
a process forever remains pending in this state, it is certainly not the fault of the scheduler
but a programming or protocol error. Thus, we do not consider such starving processes, i. e.,
∀n≥k . ∃m. n ≤ m ∧ ¬ pending infinite ipc (states m) pid .

At third, the priority of a process is runtime-configurable by the kernel call CHG SCHED

PARAMS. Upon a priority change, the process will be removed from its old priority’s ready
queue and appended to the new one. As long as the priority is only configured at the be-
ginning (or more precisely: changed only a finite number of times), we can find an infinite
subtrace without a priority change. If, however, there are infinitely many changes, the pro-
cess may starve. We exclude this case because it contradicts the concept of static-priority
scheduling, and state: ∀n≥k . (states (n + 1)).priodb pid = (states n).priodb pid .

At fourth, we assume that the timer device produces infinitely often timer interrupts as
part of the inputs, i. e., ∀n≥k . ∃m≥n. is timer on (inputs m). Note that this condition is
our only assumption about the device system AD.

So far, our restrictions have been evident adjustments to the considered system. The
remaining problem, which regards priorities, is somewhat more involved. Let us consider a
process pid in the highest priority class, i. e., (states k).priodb pid = bhigh prioc. From
the assumptions above, we can show that this process pid will eventually make progress,
i. e.,

∃l≥k . progress ((states l).procs pid) ((states (l + 1)).procs pid)

This formulation of fairness, however, states nothing about the processes residing in
lower priority classes. A statement over fairness for the latter necessarily depends on the
(intermittent) absence of a process in a higher priority class, which is ready to compute.
All processes, which are willing to compute, are enqueued in the ready queue of its prior-
ity. Thus, we can determine the absence of a prioritized, ready process by examining the
according ready queues, i. e., process pid has the maximal priority in state s if

5 Technically, the matter is complicated by the fact that the amount of process memory is held with the
processes. Transitions changing only this amount, are certainly not considered as progress.

27

∀prio>ds.priodb pide. s.schedds.ready prio = []

We encapsulate this property in a predicate has maxprio s pid .
In order to extend our fairness statement to all processes, we examine our exact schedul-

ing mechanism more carefully: The currently computing process cup is charged by increas-
ing its consumed time ds.schedds.procdb cupe.ctsl (and eventually preempted) if and only
if the timer interrupt occurs. In other words, a process must have the maximal priority in-
finitely often while the timer interrupt occurs, i. e.,

∀n≥k . ∃m≥n. has maxprio (states m) pid ∧ is timer on (inputs m)

Note that this assumption implies timer liveness.

readyhigh

readymed

readylow

wait

2
4 3
5
1

 −

4 3
5
1 2

 −

4 3
5
1 2

2

4 3
5
1

step 8 9 10 11

2
4 4

2 2high

med
low

Fig. 14 A VAMOS trace with a race condition

The execution trace shown in Fig. 14 il-
lustrates this problem: In step 8, process 2
computes and issues, say, an IPC receive.
When the timer interrupt occurs, the sched-
uler recognizes that process 2 has been com-
puting at the last step. Process 4 starts to com-
pute in step 9 and sends a message to process
2 in step 10, which causes the latter to wake
up. Thus, process 2 is found computing when
the timer arrives in step 11. If the sequence of
events between step 8 and 11 continues, pro-
cess 4 will never get charged and process 3
starves although it has frequently the maxi-
mal priority.

Of course, it is possible to change the scheduling mechanism such that all processes
found running in between two timer interrupts will be charged. This code change, however,
would require extra bookkeeping during the IPC path, which is the most critical one for
system performance. Most L4 kernels even completely skip the scheduler for performance
reasons after some IPC operations [42,16]. Hence, we favoured the shorter path over an
optimized scheduling.

It is crucial to understand the implications of this design choice, in particular, the pos-
sible exploits by malicous processes and the mechanisms to its prevention by prioritized
processes. For an active exploit, the user process needs a clock of higher precision than the
timer tick, which can only be achieved by another external timer device. If we exclude this
unlikely setting, the process cannot predict the time when the tick arrives and the consistent
recurrence of the race condition becomes exponentially unlikely.

An informal statement of likeliness, however, is not satisfactory to an assumption of a
formal proof. Hence, we examine the necessary preconditions for the race condition. There
are three possibilities for a switch to higher priority between timer ticks: (a) A process of
higher priority might be created, (b) the scheduling priority of an existing process might
be raised, or (c) an IPC call might resume a prioritized, waiting process. The former two
are caused by kernel calls reserved for privileged processes. These processes are typically
most prioritized and have to be trusted anyways. The latter requires the collaboration of the
prioritized process. We regard this situation as a special form of priority inheritance [42].

Concluding, we state:

Corollary 1 (Prioritized Fairness) The VAMOS scheduler is fair with respect to priority
classes, i. e., at all suffixes of an infinite trace, all processes will eventually make progress,
iff they (a) never terminate, (b) remain forever at the same priority class, (c) do not starve in

28

an IPC operation with an infinite timeout, and (d) have infinitely often the maximal priority
while the timer interrupt is raised.

We formalize this fact as:

[[(∗ trace ∗) states 0 ∈ S 0
V ; ∀n. states (n + 1) = dV (inputs n) (states n);

(∗ a ∗) ∀n≥k . (states n).procs pid 6= ⊥;
(∗ b ∗) ∀n≥k . (states (n + 1)).priodb pid = (states n).priodb pid ;
(∗ c ∗) ∀n≥k . ∃m≥n. ¬ pending infinite ipc (states m) pid ;
(∗ d ∗) ∀n≥k . ∃m≥n. has maxprio (states m) pid ∧ is timer on (inputs m)]]

=⇒ ∃l≥k . progress ((states l).procs pid) ((states (l + 1)).procs pid)

Proof We prove the theorem by case distinction. From the invariant inva we know that a
process pid can either be inactive, waiting, or ready. The first case immediately contradicts
Assumption (a).

If a process is waiting, we can infer from the invariant inva that this process is in the
process of an IPC operation, i. e., is ipc (wasm ds.procs pide) and that there is no suitable
partner ready for communication.

Let us assume that the process forever remains in the wait queue. If the process has
issued an infinite IPC call, we have a contradition with Assumption (c). If, however, a finite
timeout was specified with the call, the timeout will eventually elapse. We know this because
of timer liveness and the fact that handle timer is invoked whenever the timer interrupt
occurs (by kdispatch, see Fig. 5). Upon each method invocation, handle timer increases
the variable current time and checks for elapsed timeouts (as specified in handleTimer,
see Sect. 5.1). Once, the timeout is elapsed, the process is dequeued from the wait queue (as
specified in checkTimeouts, see Fig. 10).

Thus, we know that the process cannot remain forever in the wait queue. The transition
function dV specifies exactly two cases, where a process is dequeued from the wait queue:
(a) there is a partner issuing a kernel call for IPC or (b) the operation times out. In both
cases, VAMOS responds to the process with a result value that indicates success or failure.
Formally: The transition function dV involves an update of the process s.procs pid by dasm
res ds.procs pide with the result value res—our definition of progress.

The remaining case is that process pid is ready at step k . We know that ready processes
reside in the ready queue corresponding to their priority. When examining dV, we can ob-
serve that a process will be dequeued from a ready queue only if (a) it becomes inactive,
(b) its priority changes, or (c) it has been computing. The first two cases lead to a contradic-
tion with our assumptions (a) and (b)).

Computing usually means that the process makes progress immediately. Most notably,
our implementation guarantees liveness, i. e., a started user process performs at least one step
between two subsequent kernel entries (first phase in dV). Still, there might be no immediate
progress if a computing process calls the kernel for an IPC operation. In this case, however,
the kernel will enqueue the process in the wait queue, and we have shown fairness for all
processes in this queue.

Finally, we regard the case that a process forever remains in the ready queue. Together
with Assumption (d), we can infer that the process will move forward in the ready queue
until it is the first one: The assumption ensures that the process has the current maximum
priority infinitely often while the timer interrupt is active. When the timer interrupt occurs,
the scheduler function handle timer is invoked, and it charges the current process cup ,
i. e., the first process in pid ’s ready queue (see Fig. 11). Charging a process means increasing
the consumed time ds.schedds.procdb cupe.ctsl unless it exceeds the timeslice, and moving
the process to the end of its ready queue if the timeslice is exceeded. Thus, the consumed
time value of cup increases strictly monotonic as long as the current process remains the first

29

in its ready queue. Moreover, timeslices are bound by a fixed value because they are stored
in a 32-bit number in the implementation. Hence, the consumed time eventually exceeds the
timeslice, and cup is moved to the end of its ready queue. That means, cup appears after pid
in the ready queue. By induction, we can infer that process pid will eventually be the first
in its ready queue and thus, when it eventually has the maximum priority, it is the current
process. The current process computes in the next step and we have already shown that a
computing process eventually makes progress. ut

Temporal properties like our prioritized fairness are often described in temporal logics.
The advantage of such a logic is succintness while the Isabelle/HOL formalization (Corol-
lary 1) is crucial for the property transfer. We have combined the best of both worlds by
an embedding of future-time linear temporal logic (LTL) into Isabelle/HOL. Thus, we can
finally present our main result in LTL:

Theorem 5 (Prioritized Fairness) The VAMOS scheduler is fair with respect to priority
classes, i. e., if a process pid (a) finally never terminates, (b) finally remains forever at the
same priority class, (c) does infinitely often not pend in an IPC operation with an infinite
timeout, and (d) has infinitely often the maximal priority while the timer interrupt is raised,
it will always eventually progress.

Formally:

〈S 0
V , SvV, dV〉A |=(∗ a ∗) ♦� (λ (i , s, n). s.procs pid 6= ⊥) −→

(∗ b ∗) ♦� (λ (i , s, n). n.priodb pid = s.priodb pid) −→
(∗ c ∗) �♦ (λ (i , s, n). ¬ pending infinite ipc s pid) −→
(∗ d ∗) �♦ (λ (i , s, n). has maxprio s pid ∧ is timer on i) −→
�♦ (λ (i , s, n). progress (s.procs pid) (n.procs pid))

The term 〈S 0
V , SvV, dV〉A describes an action Kripke structure. This structure defines the set

of all infinite traces that can be produced by the set of initial states S 0
V , the input alphabet

SvV, and the transition function dV. Each trace in this set is a function from natural numbers
to triples (s, i , n), where s is the current state, i is the input for the transition, and n is the
next state.

Proof We deduce the theorem from Corollary 1 mainly by the expansion of the LTL defini-
tions. An LTL formula f is valid for a Kripke structure K , i. e., K |=f, iff f is valid for all
its traces:

K |=f ≡ ∀t∈K . (t,0) |=f

whereas the validity (t ,j) |=f of a formula f for trace t at position j is defined by cases, i. e.,

(t ,j) |= P ≡ P (t j)
(t ,j) |=�f ≡ ∀k≥j . (t ,k) |=f

(t ,j) |=♦f ≡ ∃k≥j . (t ,k) |=f

Ultimately, Corollary 1 all-quantifies over a single suffix while in LTL, Assumption (a),
Assumption (b), and the conclusion might hold for different suffixes. We instanciate the
position k in the corollary with the maximal position of the tree suffixes and derive our
claim. ut

According to Francez [22], the classic definition of stong fairness is formalized in LTL
as: �♦enabled −→ �♦selected , i. e., if a certain process is infinitely often ready to com-
pute (LTL-predicate enabled), it will always eventually compute (selected). Technically, our
theorem has a different structure.

30

If we examine the Assumptions (a) and (b), however, we observe that these assumptions
are of a very basic kind: It is certainly impossible to prove temporal fairness for a termi-
nating process, and a changed priority contradicts the notion of static-priority scheduling.
We maintain that any real system has similar basic assumptions and do not consider these
conditions as part of the enabledness.

We may confine our consideration to a system with a static number of processes and
without priority changes, i. e., after a time of system set up, the kernel calls process kill
and chg sched params are no longer used. In this scenario, the Assumptions (a) and (b)
become set up conditions and we just consider the state after set up as the initial state. In this
system, we have only two enabledness assumptions of the kind �♦enabled . This artifact is
important because the conjunction of both enabledness assumptions would be considerably
weaker.

8 Conclusion

We provide a formal proof of a microkernel’s key property, namely the temporal fairness
property of its multi-priority process scheduler. The proof architecture links a layer of be-
havioral reasoning over system-trace sets over a concrete, fairly realistic implementation of
the VAMOS kernel written in C down to a formal, foundational model of a RISC processor
called VAMP. To our knowledge, such a proof based on a model stack of this concrete level
of detail and with such a clean, seamless logical foundation has been undertaken for the first
time.

We believe that our work represents a significant step towards the grand challenge of
“real code verification”, although we compromised in a number of ways in order to achieve
our goal:

– the VAMP is not a “real”, i. e., industral-strength processor,
– C0 is a typed, simplified fragment of C; this forces to shift more low-level computations

into assembly programs as necessary in a more powerful C execution model,
– the compiler of C0 is not optimizing, and
– the VAMOS code has been written by the verification engineers themselves, and often

with foresight to the tool-chain and the verification task.

Despite these simplifications, which were partly applied for project-pragmatic reasons, we
maintain that our models are still not too far away from industral-strength processors, C code
and microkernel implementations such as the PikeOS kernel. Whether it is ever possible to
verify system-level programming code of a substantial size written without any foresight to
verification is a fully open question at present.

We would like to argue that the possibility of adapting specifications, code, and tool-
chain to each other greatly simplified the task of achieving our goal. Besides the obvious
foresight that all code was written in C0 and had to live with the restrictions imposed by our
tool-chain, we see the following (incomplete) list of mutual influences:

– The abstract model uses infinite data-types to model key entities like time, processes,
etc., while the concrete implementation of these entities is bound to bitvector represen-
tations of numbers. We ensured the refinement relation by using a solely relative notion
of time within the kernel. Furthermore, a capability-like management of process identi-
fiers allows for a conceptually infinite name space of identifiers.

– The function kernel_step assures that at least one assembly step of a user process is
executed (actually, an earlier version of the CVM layer contained a flaw in this respect).
Without this property of kernel_step, our global theorem breaks.

31

– The fairly simple refinement scheme between kernel_step and δV+D required a lot of
experimenting within the definition of the abstraction relation, which has to cope with
the fact that parts of the concrete computations “overtake” their abstract counterparts
and vice versa.

– The precise form of the contracts and the invariants in the implementation certainly
needed the foresight on what was actually required in the proofs at higher levels.

It turned out that a major obstacle of our work was the lack of early, systematic validation
of the specification; at the end, we found substantially more errors there than in the (fairly
well-tested) implementation, although some intricate bugs could only be revealed by the
verification. One of the bugs revealed during the verification was a race condition involving
the coincidence of four special cases at the same time: If (a) a process issued an IPC call,
(b) the IPC partner was not yet waiting, and in the same processor cycle, (c) the timer
interrupt was raised, and (d) the timeslice of the process was used up, then, the process was
erroneously re-added to the ready queue.

In conclusion, we point out that there is a fundamental difference between our pervasive
approach and the idea of an incremental verification focussing at one layer at a time. In
the course of our work, we detected several flaws in the kernel design, in its specification,
and in its implementation. Most notably, we found the above mentioned flaw in the CVM

layer during the verification of the fairness property, which demonstrates that bugs are not
necessarily revealed during the verification of a single layer. It has been crucial for our
success that we thought pervasive right from the beginning.

Furthermore, we experienced that pervasiveness entails more than just cumulative ver-
ification efforts on several (isolated) layers. In fact, it was a challenging task to integrate
models and proofs into a uniform, coherent theory. The effort for the actual fairness proof
on the abstract level is a small fraction (about ten person months) compared to the whole
verification effort establishing its foundation, the abstract kernel model (more than two per-
son years for VAMOS excluding CVM). Besides that, there was a considerable effort for the
management of change throughout the different abstraction layers. Apart from the neces-
sary effort, however, we are confident that our methodology can be adapted and reapplied in
similar contexts.

The formal verification work of this paper is complete with the exception of the con-
tracts for the CVM operations, which have been shown by Tsyban et al. [27,48,49] but on
a substantially lower abstraction level than the form used in this paper. The missing link is
a transfer lemma similar to the one shown by Alkassar et al. [3]. Moreover, for some of the
kernel subroutines, the implementation correctness has not yet been shown.

8.1 Related Work

The Kit Project [7,8,36] can only be referred as groundbreaking to the area of pervasive
operating-system verification. The main difference to more recent verification attempts of
“real software” is that it relies on a LISP execution model that is nowadays considered
fairly abstract. Moreover, the corner stone theorem of this work is on memory separation of
processes.

Since then, a number of smaller and larger operating system verification projects have
been started. In the former category fall projects like the FLINT project [38], the MASK

project, the AAMP7 project, the EMBEDDED DEVICE project and EROS/Coyotos [46], for
all of which we refer the interested reader to the excellent and comprehensive overview by
Klein [29].

32

Larger verification projects currently aim at the complete code-level verification of the
following operating system kernels:

PikeOS kernel [28]. This 6,000 loc L4-derivative is part of a commercial product available
for Intel’s x86, PowerPC, and ARM. At the time of writing, the verification just started
as part of the Verisoft XT project. The proofs are carried out by the VCC verification
environment (a descendant of the Spec# program-verification environment of Microsoft
Research), which uses a trusted tool chain comprising the C translator VCC, the verifica-
tion condition generator Boogie, and the automated theorem prover Z3. The supported C
fragment is a large fragment of ANSI C. It is too early to make estimates on the portion
of verified code.

seL4 [24]. The 10,000 loc kernel is at the brink of becoming a commercial product and
based on the ARM11 platform. The verification project L4.verified links a “Formal
Low-Level Design” (i. e., a model mechanically derived from a Haskell Prototype) to the
efficient C implementation. At the time of writing, this effort is claimed to be to 70%
complete. The approach uses a trusted compiler to the verified Isabelle/Simpl frame-
work. The supported C fragment is a large fragment of ANSI C.

HYPER-V [43]. The 50,000 loc kernel is part of a commercial virtualization environment
based on Intel’s x86 (plus additional hardware for MMU virtualization). The verification
is realized by the VCC verification environment (see above); proofs are performed by
Z3 and Isabelle/HOL-Boogie [10] using the axiomatization of the VCC memory model
as foundation. The supported C fragment is a large fragment of ANSI C. While the 30
person year project is well under way, is too early to make estimates on the portion of
verified code.

Summing up, we have to state a trade-off between the code size, the supported C fragment,
the complexity of the underlying machine model, and the trustworthiness of the logical foun-
dations of the used tool chain. With respect to the latter, the L4.verified approach comes
closest to our work. Still, the approach requires trust on the abstraction of the architecture
(whose informal description comprises about 800 pages of natural text) into a C execution
model and its compilation into Isabelle/Simpl: this is not exactly easy to swallow for the
sceptic and the paranoid. The VCC technology [14] demands an even higher level of trust:
The current VCC version uses a partially architecture dependent axiomatization of the exe-
cution model consisting of ca. 200 axioms, which introduce some rather abstract concepts
like concurrency and ownership of references. Though critical subproblems of the founda-
tion are tackled by informal as well as formal proof methods, the integration into a uniform
foundational theory is significantly less prioritized.

In this respect, the Verisoft XT approach is fundamentally post-hoc; tool chains, method-
ologies etc. are driven by the need to deal with the existing code that can only be changed
if errors have been revealed. In contrast, we based our work on a model stack covering the
processor architecture formally, consequently we wrote our code in a restricted C subset and
developed our kernel implementation with foresight to our tool chain. While the post-hoc
approach has the advantage to complement the conventional development workflow and to
focus the verification efforts on well-established code, we maintain that our methodology in
adapting all three — specifications, tools, implementations — to each other can be pursued
with a substantially higher effectivity and with a cleaner semantic foundation.

With respect to the proof architecture — separating a refinement proof relating abstact
and concrete system steps from a proof establishing behavioral properties on the abstract
level — our work is rather typical: Cock et al. [13] have applied this architecture to estab-
lish security properties (e. g., termination of the kernel calls and well-typedness of kernel

33

objects) on the behavioral level over an abstraction of the L4 Microkernel. The range of ab-
straction levels and the involved models resembles our work; the target property, however, is
from a completely different domain. Another application of the architecture is the DARMA
case study [6], where a client-server system for the digital signature of critical documents
is proven to establish a number of high-level security properties (e. g., no client will ever
get a digital signature without having a valid session with the server). Again this work is
different in that it targets a temporal top-level property stemming from the security domain;
in contrast to our work, however, the abstraction level of the “concrete level” in DARMA is
fairly coarse.

8.2 Future Work

We foresee various possible extensions of our work with widely varying realization efforts.
An apparent and less expensive extension is a detailed analysis of the effective runtime costs
for the bookkeeping of process switches between timer interrupts. An accompanying study
on the possible consequences of priority inversion for the programming model of prioritized
processes would permit a well-balanced choice for either a simpler programming model at
additional runtime IPC costs or the current, faster solution.

Certainly, additional microkernel features could extend our work. As an example, we
could introduce multi-threading generalizing the multi-processing of VAMOS. This feature
amounts to sharable address spaces (possibly including user-level paging) and is primarily
an extension of the CVM framework. We assume only a small impact on the code verification
because VAMOS alters processes only via CVM primitives. Certainly, the progress predicate
needs to be adjusted but we do not foresee any complications because the progress of a
process necessarily implies altered registers, not only memory changes.

A similar extension is the mapping of device addresses directly into user memory. This
change would abandon the kernel calls DEV READ and DEV WRITE for device communica-
tion, and thus substancially improve the system performance by reducing both, the size of
the kernel and the frequency of kernel calls. Despite these benefits, we complicate the ab-
stract kernel model with respect to device communication because we need a more sophisti-
cated detection of device accesses. For that reason, we did not implement this optimization
right from the beginning. From our experience today, however, we do not foresee substantial
obstacles in this change.

Following the last two arguments, we could even strive for the direct memory access
(DMA) by devices. Admittedly, this feature requires a more elaborate reorganization of
the abstract kernel models and prevents the clean isolation of processor and devices as we
currently maintain it for the fairness proof.

Another direction of further research is a port of the CVM framework to a mass-market
processor such as an embedded PowerPC core or to an optimizing compiler supporting a
larger subset of C. In contrast to additional microkernel features, this change would not
necessarily require changes to the implementation of VAMOS (apart from CVM). Provided
that the port maintains the same CVM specification, we could hence draw on the current
proofs of code correctness and fairness.

Acknowledgements We thank Andrew Baumann, Sebastian Bogan, Christian Hennrich, Sarah Hoffmann,
and the anonymous reviewers during the publication process for reviewing, constructive criticism and helpful
suggestions, as well as Norbert Schirmer for taming the Isabelle document-generation system.

34

References

1. Alkassar, E., Hillebrand, M.A., Leinenbach, D., Schirmer, N.W., Starostin, A.: The Verisoft approach
to systems verification. In: N. Shankar, J. Woodcock (eds.) Verified Software: Theories, Tools, and
Experiments, LNCS, vol. 5295, pp. 209–224. Springer (2008)

2. Alkassar, E., Hillebrand, M.A., Leinenbach, D.C., Schirmer, N.W., Starostin, A., Tsyban, A.: Balancing
the load – leveraging a semantics stack for systems verification. J. Autom. Reasoning, Special Issue on
Operating System Verification (2009). To appear in this volume.

3. Alkassar, E., Schirmer, N., Starostin, A.: Formal pervasive verification of a paging mechanism. In:
TACAS, LNCS, vol. 4963, pp. 109–123. Springer (2008)

4. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof.
Kluwer Academic Publishers (2002)

5. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular reusable verifier
for object-oriented programs. In: F.S. de Boer, M.M. Bonsangue, S. Graf, W.P. de Roever (eds.) Formal
Methods for Components and Objects: 4th International Symposium, FMCO 2005, LNCS, vol. 4111, pp.
364–387. Springer (2006)

6. Basin, D.A., Kuruma, H., Miyazaki, K., Takaragi, K., Wolff, B.: Verifying a signature architecture: a
comparative case study. Formal Asp. Comput. 19(1), 63–91 (2007)

7. Bevier, W.R.: Kit and the short stack. J. Autom. Reasoning 5(4), 519–530 (1989)
8. Bevier, W.R., Hunt, Jr., W.A., Moore, J.S., Young, W.D.: An approach to systems verification. J. Autom.

Reasoning 5(4), 411–428 (1989)
9. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.J.: Putting it all together: Formal verification

of the VAMP. STTT 8(4-5), 411–430 (2006)
10. Böhme, S., Leino, K.R.M., Wolff, B.: HOL-Boogie - an interactive prover for the Boogie program-

verifier. In: O.A. Mohamed, C. Muñoz, S. Tahar (eds.) TPHOLs, LNCS, vol. 5170, pp. 150–166. Springer
(2008)

11. Brock, B., Kaufmann, M., Moore, J.S.: ACL2 theorems about commercial microprocessors. In: FMCAD,
pp. 275–293 (1996)

12. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68 (1940)
13. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refinement. In: TPHOLs,

LNCS. Springer (2008). To appear
14. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A precise yet efficient memory model for C. In: ECOOP

’09, LNCS. Springer (2009). Submitted; availabe via http://research.microsoft.com/apps/
pubs/default.aspx?id=77174

15. Daum, M., Dörrenbächer, J., Wolff, B., Schmidt, M.: A verification approach for system-level concurrent
programs. In: J. Woodcock, N. Shankar (eds.) VSTTE, LNCS, vol. 5295, pp. 161–176. Springer, Toronto,
Canada (2008)

16. Elphinstone, K., Greenaway, D., Ruocco, S.: Lazy scheduling and direct process switch – merit or
myths? In: Workshop on Operating System Platforms for Embedded Real-Time Applications. Pisa, Italy
(2007). Availabe at http://www.ertos.nicta.com.au/publications/papers/Elphinstone
GR 07.pdf

17. Engler, D.R., Kaashoek, M.F., O’Toole, J.: Exokernel: An operating system architecture for application-
level resource management. In: SOSP, pp. 251–266. ACM (1995)

18. Fagin, R., Williams, J.H.: A fair carpool scheduling algorithm. IBM Journal of Research and Develop-
ment 27(2), 133–139 (1983)

19. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive program verification. In:
CAV, pp. 173–177 (2007)

20. Fleisch, B.D., Co, M.A.A.: Workplace microkernel and OS: a case study. Softw. Pract. Exper. 28(6),
569–591 (1998)

21. Fox, A.C.J.: Formal specification and verification of ARM6. In: TPHOLs, pp. 25–40 (2003)
22. Francez, N.: Fairness. Springer (1986)
23. Heckmann, R., Ferdinand, C.: Worst-case execution time prediction by static program analysis. White

paper, AbsInt Angewandte Informatik GmbH (2004). Availabe via http://www.absint.com/wcet.
htm

24. Heiser, G., Elphinstone, K., Kuz, I., Klein, G., Petters, S.M.: Towards trustworthy computing systems:
taking microkernels to the next level. Operating Systems Review 41(4), 3–11 (2007)

25. Hillebrand, M.A., In der Rieden, T., Paul, W.J.: Dealing with I/O devices in the context of pervasive
system verification. In: ICCD, pp. 309–316. IEEE Computer Society (2005)

26. Hillebrand, M.A., Paul, W.J.: On the architecture of system verification environments. In: Haifa Verifi-
cation Conference, pp. 153–168. Springer (2007)

http://research.microsoft.com/apps/pubs/default.aspx?id=77174
http://research.microsoft.com/apps/pubs/default.aspx?id=77174
http://www.ertos.nicta.com.au/publications/papers/Elphinstone_GR_07.pdf
http://www.ertos.nicta.com.au/publications/papers/Elphinstone_GR_07.pdf
http://www.absint.com/wcet.htm
http://www.absint.com/wcet.htm

35

27. In der Rieden, T., Tsyban, A.: CVM – a verified framework for microkernel programmers. In: Systems
Software Verification, ENTCS, vol. 217, pp. 151–168. Elsevier Science B.V. (2008)

28. Kaiser, R.: Combining partitioning and virtualization for safety-critical systems. White Paper
WP CPV 10 A4 R10, SYSGO AG (2007). Availabe via http://www.sysgo.com/news-events/
whitepapers/

29. Klein, G.: Operating system verification — an overview. Tech. Rep. NRL-955, NICTA, Sydney, Australia
(2008)

30. Knapp, S., Paul, W.: Realistic worst case execution time analysis in the context of pervasive system
verification. In: T. Reps, M. Sagiv, J. Bauer (eds.) Program Analysis and Compilation, Theory and
Practice: Essays Dedicated to Reinhard Wilhelm on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science, vol. 4444, pp. 53–81. Springer (2007). URL http://www.verisoft.de/.rsrc/
PublikationSeite/KP06.pdf

31. Leinenbach, D.: Compiler verification in the context of pervasive system verification. Ph.D. thesis,
Saarland University, Saarbrücken (2008). URL http://www-wjp.cs.uni-sb.de/publikationen/
Lei08.pdf

32. Leinenbach, D., Paul, W.J., Petrova, E.: Towards the formal verification of a C0 compiler: Code genera-
tion and implementation correctness. In: SEFM, pp. 2–12. IEEE Computer Society (2005)

33. Liedtke, J.: Improving IPC by kernel design. In: SOSP, pp. 175–188. ACM (1993)
34. Liedtke, J.: On µ-kernel construction. In: SOSP, pp. 237–250. ACM (1995)
35. Liedtke, J.: Towards real microkernels. Commun. ACM 39(9), 70–77 (1996)
36. Moore, J.S.: A grand challenge proposal for formal methods: A verified stack. In: 10th Anniversary

Colloquium of UNU/IIST, pp. 161–172. Springer (2002)
37. Moore, J.S., Lynch, T.W., Kaufmann, M.: A mechanically checked proof of the AMD5K86TM floating

point division program. IEEE Trans. Computers 47(9), 913–926 (1998)
38. Ni, Z., Yu, D., Shao, Z.: Using XCAP to certify realistic systems code: Machine context management.

In: TPHOLs, LNCS, vol. 4732, pp. 189–206. Springer (2007)
39. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic, LNCS,

vol. 2283. Springer (2002)
40. Petters, S.M., Zadarnowski, P., Heiser, G.: Measurements or static analysis or both? In: C. Rochange (ed.)

WCET, Dagstuhl Seminar Proceedings, vol. 07002. Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Schloss Dagstuhl, Germany (2007)

41. Rashid, R., Avadis Tevanin, J., Young, M., Golub, D., Baron, R.: Machine-independent virtual memory
management for paged uniprocessor and multiprocessor architectures. IEEE Trans. Comput. 37(8), 896–
908 (1988)

42. Ruocco, S.: Real-time programming and L4 microkernels. In: Workshop on Operating System Platforms
for Embedded Real-Time Applications. Dresden, Germany (2006). Availabe at http://www.ertos.
nicta.com.au/publications/papers/Ruocco 06.pdf

43. Samman, T.: Verifying 50,000 lines of C code. Futures, Microsoft’s European Innovation Magazine (21)
(2008)

44. Schirmer, N.: A verification environment for sequential imperative programs in Isabelle/HOL. In:
LPAR, LNCS, pp. 398–414. Springer (2005). URL http://isabelle.in.tum.de/∼schirmer/
pub/hoare-lpar04.html

45. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL. Ph.D. thesis, TU Munich
(2006)

46. Shapiro, J., Doerrie, M.S., Northup, E., Sridhar, S., Miller, M.: Towards a verified, general-purpose op-
erating system kernel. In: FM Workshop on OS Verification, Tech. Rep. 0401005T-1, pp. 1–19. Na-
tional ICT Australia (2004). URL http://www.coyotos.org/docs/osverify-2004/osverify-
2004.pdf

47. Singal, M., Petters, S.M.: Issues in analysing L4 for its WCET. In: Workshop on Microkernels for
Embedded Systems. Sydney, Australia (2007). Availabe at http://www.ertos.nicta.com.au/
publications/papers/Singal Petters 07.pdf

48. Starostin, A., Tsyban, A.: Correct microkernel primitives. In: Systems Software Verification, ENTCS,
vol. 217, pp. 169–185. Elsevier Science B.V. (2008)

49. Starostin, A., Tsyban, A.: Verified process-context switch for C-programmed kernels. In: N. Shankar,
J. Woodcock (eds.) Verified Software: Theories, Tools, and Experiments, LNCS, vol. 5295, pp. 240–254.
Springer (2008)

http://www.sysgo.com/news-events/whitepapers/
http://www.sysgo.com/news-events/whitepapers/
http://www.verisoft.de/.rsrc/PublikationSeite/KP06.pdf
http://www.verisoft.de/.rsrc/PublikationSeite/KP06.pdf
http://www-wjp.cs.uni-sb.de/publikationen/Lei08.pdf
http://www-wjp.cs.uni-sb.de/publikationen/Lei08.pdf
http://www.ertos.nicta.com.au/publications/papers/Ruocco_06.pdf
http://www.ertos.nicta.com.au/publications/papers/Ruocco_06.pdf
http://isabelle.in.tum.de/~schirmer/pub/hoare-lpar04.html
http://isabelle.in.tum.de/~schirmer/pub/hoare-lpar04.html
http://www.coyotos.org/docs/osverify-2004/osverify-2004.pdf
http://www.coyotos.org/docs/osverify-2004/osverify-2004.pdf
http://www.ertos.nicta.com.au/publications/papers/Singal_Petters_07.pdf
http://www.ertos.nicta.com.au/publications/papers/Singal_Petters_07.pdf

	Introduction
	Background
	Microkernel Design
	The Implementation Layer
	The Abstract System Layer
	Refinement
	A Temporal Property: Scheduler Fairness
	Conclusion

