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Abstract

While Isabelle is mostly known as part of Isabelle/HOL (an interactive theorem prover),
it actually provides a system framework for developing a wide spectrum of applications.
A particular strength of the Isabelle framework is the combination of text editing, formal
verification, and code generation.
This is a programming-tutorial of Isabelle and Isabelle/HOL, a complementary text

to the unfortunately somewhat outdated "The Isabelle Cookbook" in https://nms.kcl.
ac.uk/christian.urban/Cookbook/. The reader is encouraged not only to consider the
generated .pdf, but also consult the loadable version in Isabelle/jEdit [5]in order to make
experiments on the running code.
This text is written itself in Isabelle/Isar using a specific document ontology for techni-

cal reports. It is intended to be a "living document", i.e. it is not only used for generating
a static, conventional .pdf, but also for direct interactive exploration in Isabelle/jedit.
This way, types, intermediate results of computations and checks can be repeated by the
reader who is invited to interact with this document. Moreover, the textual parts have
been enriched with a maximum of formal content which makes this text re-checkable at
each load and easier maintainable.

Keywords: LCF-Architecture, Isabelle, SML, PIDE, Programming Guide, Tactic Pro-
gramming

https://nms.kcl.ac.uk/christian.urban/Cookbook/
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1 Introduction

While Isabelle [3] is mostly known as part of Isabelle/HOL (an interactive theorem
prover), it actually provides a system framework for developing a wide spectrum of ap-
plications. A particular strength of the Isabelle framework is the combination of text edit-
ing, formal verification, and code generation. This is a programming-tutorial of Isabelle
and Isabelle/HOL, a complementary text to the unfortunately somewhat outdated "The
Isabelle Cookbook" in https://nms.kcl.ac.uk/christian.urban/Cookbook/. The reader is
encouraged not only to consider the generated .pdf, but also consult the loadable ver-
sion in Isabelle/jedit in order to make experiments on the running code. This text is
written itself in Isabelle/Isar using a specific document ontology for technical reports. It
is intended to be a "living document", i.e. it is not only used for generating a static,
conventional .pdf, but also for direct interactive exploration in Isabelle/jedit. This way,
types, intermediate results of computations and checks can be repeated by the reader
who is invited to interact with this document. Moreover, the textual parts have been
enriched with a maximum of formal content which makes this text re-checkable at each
load and easier maintainable.

This cookbook roughly follows the Isabelle system architecture shown in Figure 1.1,
and, to be more precise, more or less in the bottom-up order.
We start from the basic underlying SML platform over the Kernels to the tactical layer

and end with a discussion over the front-end technologies.
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Figure 1.1: The system architecture of Isabelle (left-hand side) and the asynchronous
communication between the Isabelle system and the IDE (right-hand side).
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2 SML and Fundamental SML libraries

2.1 ML, Text and Antiquotations

Isabelle is written in SML, the "Standard Meta-Language", which is is an impure func-
tional programming language allowing, in principle, mutable variables and side-effects.
The following Isabelle/Isar commands allow for accessing the underlying SML interpreter
of Isabelle directly. In the example, a mutable variable X is declared, defined to 0 and
updated; and finally re-evaluated leading to output:

ML〈 val X = Unsynchronized .ref 0 ;
X := !X + 1 ;
X

〉

However, since Isabelle is a platform involving parallel execution, concurrent comput-
ing, and, as an interactive environment, involves backtracking / re-evaluation as a conse-
quence of user- interaction, imperative programming is discouraged and nearly never used
in the entire Isabelle code-base [1]. The preferred programming style is purely functional:

ML〈 fun fac x = if x = 0 then 1 else x ∗ fac(x−1 ) ;
fac 10 ;

〉

ML〈 type state = { a : int , b : string}
fun incr-state ({a, b}:state) = {a=a+1 , b=b}

〉

The faculty function is defined and executed; the (sub)-interpreter in Isar works in
the conventional read-execute-print loop for each statement separated by a ";". Func-
tions, types, data-types etc. can be grouped to modules (called structures) which can be
constrained to interfaces (called signatures) and even be parametric structures (called
functors).

The Isabelle/Isar interpreter (called toplevel ) is extensible; by a mixture of SML and
Isar-commands, domain-specific components can be developed and integrated into the
system on the fly. Actually, the Isabelle system code-base consists mainly of SML and
.thy-files containing such mixtures of Isar commands and SML.

Besides the ML-command used in the above examples, there are a number of commands
representing text-elements in Isabelle/Isar; text commands can be interleaved arbitraryly
with other commands. Text in text-commands may use LaTeX and is used for type-
setting documentations in a kind of literate programming style.

So: the text command for:
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This is a text.

... is represented in an .thy file by:

text\isa{\isactrlemph {\isasymopen}This\ is\ a\ text{\isachardot}{\isasymclose}}

and desplayed in the Isabelle/jedit front-end at the sceen by:

text-commands, ML- commands (and in principle any other command) can be seen as
quotations over the underlying SML environment (similar to OCaml or Haskell). Linking
these different sorts of quotations with each other and the underlying SML-envirnment
is supported via antiquotations’s. Generally speaking, antiquotations are a programming
technique to specify expressions or patterns in a quotation, parsed in the context of the
enclosing expression or pattern where the quotation is. Another way to understand this
concept: anti-quotations are "semantic macros" that produce a value for the surrounding
context (ML, text, HOL, whatever) depending on local arguments and the underlying
logical context.
The way an antiquotation is specified depends on the quotation expander: typically a

specific character and an identifier, or specific parentheses and a complete expression or
pattern.

In Isabelle documentations, antiquotation’s were heavily used to enrich literate expla-
nations and documentations by "formal content", i.e. machine-checked, typed references
to all sorts of entities in the context of the interpreting environment. Formal content al-
lows for coping with sources that rapidly evolve and were developed by distributed teams
as is typical in open-source developments. A paradigmatic example for antiquotation in
Texts and Program snippets is here:

1, $ISABELLE_HOME/src/Pure/ROOT.ML

ML〈 val x = @{thm refl};
val y = @{term A −→ B}
val y = @{typ ′a list}

〉

... which we will describe in more detail later.

In a way, literate specification attempting to maximize its formal content is a way
to ensure "Agile Development" in a (theory)-document development, at least for its
objectives, albeit not for its popular methods and processes like SCRUM.

A maximum of formal content inside text documentation also ensures the consistency
of this present text with the underlying Isabelle version.

2.2 The Isabelle/Pure bootstrap

It is instructive to study the fundamental bootstrapping sequence of the Isabelle system;
it is written in the Isar format and gives an idea of the global module dependencies:
$ISABELLE_HOME/src/Pure/ROOT.ML. Loading this file (for example by hovering over

1sdf
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Figure 2.1: A text-element as presented in Isabelle/jedit.
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this hyperlink in the antiquotation holding control or command key in Isabelle/jedit and
activating it) allows the Isabelle IDE to support hyperlinking inside the Isabelle source.

The bootstrapping sequence is also reflected in the following diagram Figure 1.1.

2.3 Elements of the SML library
;

Elements of the $ISABELLE_HOME/src/Pure/General/basics.ML SML library are ba-
sic exceptions. Note that exceptions should be catched individually, uncatched excep-
tions except those generated by the specific "error" function are discouraged in Isabelle
source programming since they might produce races. Finally, a number of commonly
used "squigglish" combinators is listed:

ML〈 Bind : exn;
Chr : exn;
Div : exn;
Domain : exn;
Fail : string −> exn;
Match : exn;
Overflow : exn;
Size : exn;
Span : exn;
Subscript : exn;

exnName : exn −> string ; (∗ −− very interesting to query an unknown exception ∗)
exnMessage : exn −> string ;〉

ML〈

op ! : ′a Unsynchronized .ref −> ′a;
op := : ( ′a Unsynchronized .ref ∗ ′a) −> unit ;

op #> : ( ′a −> ′b) ∗ ( ′b −> ′c) −> ′a −> ′c; (∗ reversed function composition ∗)
op o : (( ′b −> ′c) ∗ ( ′a −> ′b)) −> ′a −> ′c;
op |−− : ( ′a −> ′b ∗ ′c) ∗ ( ′c −> ′d ∗ ′e) −> ′a −> ′d ∗ ′e;
op −−| : ( ′a −> ′b ∗ ′c) ∗ ( ′c −> ′d ∗ ′e) −> ′a −> ′b ∗ ′e;
op −− : ( ′a −> ′b ∗ ′c) ∗ ( ′c −> ′d ∗ ′e) −> ′a −> ( ′b ∗ ′d) ∗ ′e;
op ? : bool ∗ ( ′a −> ′a) −> ′a −> ′a;
ignore: ′a −> unit ;
op before : ( ′a ∗ unit) −> ′a;
I : ′a −> ′a;
K : ′a −> ′b −> ′a
〉

Some basic examples for the programming style using these combinators can be found
in the "The Isabelle Cookbook" section 2.3.

An omnipresent data-structure in the Isabelle SML sources are tables implemented
in $ISABELLE_HOME/src/Pure/General/table.ML. These generic tables are presented in
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an efficient purely functional implementation using balanced 2-3 trees. Key operations
are:

ML〈

signature TABLE-reduced =
sig
type key
type ′a table
exception DUP of key
exception SAME
exception UNDEF of key
val empty : ′a table
val dest : ′a table −> (key ∗ ′a) list
val keys: ′a table −> key list
val lookup-key : ′a table −> key −> (key ∗ ′a) option
val lookup: ′a table −> key −> ′a option
val defined : ′a table −> key −> bool
val update: key ∗ ′a −> ′a table −> ′a table
(∗ ... ∗)

end
〉

... where key is usually just a synonym for string.
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3 Prover Architecture

3.1 The Nano-Kernel: Contexts, (Theory)-Contexts,
(Proof)-Contexts

What I call the ’Nano-Kernel’ in Isabelle can also be seen as an acyclic theory graph.
The meat of it can be found in the file $ISABELLE_HOME/src/Pure/context.ML. My
notion is a bit criticisable since this component, which provides the type of theory
and Proof.context, is not that Nano after all. However, these type are pretty empty
place-holders at that level and the content of $ISABELLE_HOME/src/Pure/theory.ML is
registered much later. The sources themselves mention it as "Fundamental Structure".
In principle, theories and proof contexts could be REGISTERED as user data inside
contexts. The chosen specialization is therefore an acceptable meddling of the abstraction
"Nano-Kernel" and its application context: Isabelle.
Makarius himself says about this structure:
"Generic theory contexts with unique identity, arbitrarily typed data, monotonic de-

velopment graph and history support. Generic proof contexts with arbitrarily typed
data."
In my words: a context is essentially a container with
• an id

• a list of parents (so: the graph structure)

• a time stamp and

• a sub-context relation (which uses a combination of the id and the time-stamp to
establish this relation very fast whenever needed; it plays a crucial role for the
context transfer in the kernel.

A context comes in form of three ’flavours’:

• theories : theory’s, containing a syntax and axioms, but also user-defined data and
configuration information.

• Proof-Contexts: Proof.context containing theories but also additional information
if Isar goes into prove-mode. In general a richer structure than theories coping also
with fixes, facts, goals, in order to support the structured Isar proof-style.

• Generic: Context.generic, i.e. the sum of both.

All context have to be seen as mutable; so there are usually transformations defined
on them which are possible as long as a particular protocol (begin_thy - end_thy
etc) are respected.
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Contexts come with type user-defined data which is mutable through the entire
lifetime of a context.

3.1.1 Mechanism 1 : Core Interface.

To be found in $ISABELLE_HOME/src/Pure/context.ML:

ML〈

Context .parents-of : theory −> theory list ;
Context .ancestors-of : theory −> theory list ;
Context .proper-subthy : theory ∗ theory −> bool ;
Context .Proof : Proof .context −> Context .generic; (∗constructor∗)
Context .proof-of : Context .generic −> Proof .context ;
Context .certificate-theory-id : Context .certificate −> Context .theory-id ;
Context .theory-name : theory −> string ;
Context .map-theory : (theory −> theory) −> Context .generic −> Context .generic;
〉

ML structure Proof_Context:

ML〈

Proof-Context .init-global : theory −> Proof .context ;
Context .Proof : Proof .context −> Context .generic; (∗ the path to a generic Context ∗)
Proof-Context .get-global : theory −> string −> Proof .context

〉

3.1.2 Mechanism 2 : Extending the Global Context θ by User Data

A central mechanism for constructing user-defined data is by the Generic_Data SML
functor. A plugin needing some data T and providing it with implementations for an
empty, and operations merge and extend, can construct a lense with operations get and
put that attach this data into the generic system context. Rather than using unsyn-
chronized SML mutable variables, this is the mechanism to introduce component local
data in Isabelle, which allows to manage this data for the necessary backtrack- and syn-
chronization features in the pervasively parallel evaluation framework that Isabelle as a
system represents.

ML 〈

datatype X = mt
val init = mt ;
val ext = I
fun merge (X ,Y ) = mt

structure Data = Generic-Data
(
type T = X
val empty = init
val extend = ext
val merge = merge

);

16



Data.get : Context .generic −> Data.T ;
Data.put : Data.T −> Context .generic −> Context .generic;
Data.map : (Data.T −> Data.T ) −> Context .generic −> Context .generic;
(∗ there are variants to do this on theories ... ∗)

〉

3.2 The LCF-Kernel: terms, types, theories,
proof_contexts, thms

The classical LCF-style kernel is about
1. Types and terms of a typed λ-Calculus including constant symbols, free variables,
λ-binder and application,

2. An infrastructure to define types and terms, a signature, that also assigns to con-
stant symbols types

3. An abstract type of theorem and logical operations on them

4. (Isabelle specific): a notion of theory, i.e. a container providing a signature and set
(list) of theorems.

3.2.1 Terms and Types

A basic data-structure of the kernel is $ISABELLE_HOME/src/Pure/term.ML

ML〈 (∗ open Term; ∗)
signature TERM ′ = sig

(∗ ... ∗)
type indexname = string ∗ int
type class = string
type sort = class list
type arity = string ∗ sort list ∗ sort
datatype typ =
Type of string ∗ typ list |
TFree of string ∗ sort |
TVar of indexname ∗ sort

datatype term =
Const of string ∗ typ |
Free of string ∗ typ |
Var of indexname ∗ typ |
Bound of int |
Abs of string ∗ typ ∗ term |
$ of term ∗ term

exception TYPE of string ∗ typ list ∗ term list
exception TERM of string ∗ term list
(∗ ... ∗)
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end
〉

This core-data structure of the Isabelle Kernel is accessible in the Isabelle/ML environ-
ment and serves as basis for programmed extensions concerning syntax, type-checking,
and advanced tactic programming over kernel primitives and higher API’s. There are
a number of anti-quotations giving support for this task; since Const-names are long-
names revealing information of the potentially evolving library structure, the use of anti-
quotations leads to a safer programming style of tactics and became therefore standard
in the entire Isabelle code-base.

The following examples show how term- and type-level antiquotations are used and
that they can both be used for term-construction as well as term-destruction (pattern-
matching):
ML〈 val Const (HOL.implies, @{typ bool ⇒ bool ⇒ bool})

$ Free (A, @{typ bool})
$ Free (B , @{typ bool})

= @{term A −→ B};

val HOL.bool = @{type-name bool};

(∗ three ways to write type bool :@ ∗)
val Type(fun,[s,Type(fun,[@{typ bool},Type(@{type-name bool},[])])]) = @{typ bool ⇒ bool ⇒
bool};

〉

Note that the SML interpreter is configured that he will actually print a type
Type("HOL.bool",[]) just as "bool": typ, so a compact notation looking pretty much
like a string. This can be confusing at times.

Note, furthermore, that there is a programming API for the HOL-instance of Isabelle:
it is contained in $ISABELLE_HOME/src/HOL/Tools/hologic.ML. It offers for many op-
erators of the HOL logic specific constructors and destructors:
ML〈

HOLogic.boolT : typ;
HOLogic.mk-Trueprop : term −> term; (∗ the embedder of bool to prop fundamenyal for

HOL ∗)
HOLogic.dest-Trueprop : term −> term;
HOLogic.Trueprop-conv : conv −> conv ;
HOLogic.mk-setT : typ −> typ; (∗ ML level type constructor set ∗)
HOLogic.dest-setT : typ −> typ;
HOLogic.Collect-const : typ −> term;
HOLogic.mk-Collect : string ∗ typ ∗ term −> term;
HOLogic.mk-mem : term ∗ term −> term;
HOLogic.dest-mem : term −> term ∗ term;
HOLogic.mk-set : typ −> term list −> term;
HOLogic.conj-intr : Proof .context −> thm −> thm −> thm; (∗ some HOL−level de-

rived−inferences ∗)
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HOLogic.conj-elim : Proof .context −> thm −> thm ∗ thm;
HOLogic.conj-elims : Proof .context −> thm −> thm list ;
HOLogic.conj : term; (∗ some ML level logical constructors ∗)
HOLogic.disj : term;
HOLogic.imp : term;
HOLogic.Not : term;
HOLogic.mk-not : term −> term;
HOLogic.mk-conj : term ∗ term −> term;
HOLogic.dest-conj : term −> term list ;
HOLogic.conjuncts : term −> term list ;
(∗ ... ∗)

〉

3.2.2 Type-Certification (=checking that a type annotation is consistent)
ML〈 Type.typ-instance: Type.tsig −> typ ∗ typ −> bool (∗ raises TYPE-MATCH ∗) 〉

there is a joker type that can be added as place-holder during term construction. Jokers
can be eliminated by the type inference.
ML〈 Term.dummyT : typ 〉

ML〈

Sign.typ-instance: theory −> typ ∗ typ −> bool ;
Sign.typ-match: theory −> typ ∗ typ −> Type.tyenv −> Type.tyenv ;
Sign.typ-unify : theory −> typ ∗ typ −> Type.tyenv ∗ int −> Type.tyenv ∗ int ;
Sign.const-type: theory −> string −> typ option;
Sign.certify-term: theory −> term −> term ∗ typ ∗ int ; (∗ core routine for CERTIFICATION

of types∗)
Sign.cert-term: theory −> term −> term; (∗ short−cut for the latter ∗)
Sign.tsig-of : theory −> Type.tsig (∗ projects the type signature ∗)

〉

Sign.typ_match etc. is actually an abstract wrapper on the structure Type which
contains the heart of the type inference. It also contains the type substitution type
Type.tyenv which is is actually a type synonym for (sort * typ) Vartab.table which
in itself is a synonym for ’a Symtab.table, so possesses the usual Symtab.empty and
Symtab.dest operations.

Note that polymorphic variables are treated like constant symbols in the type inference;
thus, the following test, that one type is an instance of the other, yields false:
ML〈

val ty = @{typ ′a option};
val ty ′ = @{typ int option};

val Type(List .list ,[S ]) = @{typ ( ′a) list}; (∗ decomposition example ∗)

val false = Sign.typ-instance @{theory}(ty ′, ty);
〉

In order to make the type inference work, one has to consider schematic type vari-
ables, which are more and more hidden from the Isar interface. Consequently, the typ
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antiquotation above will not work for schematic type variables and we have to construct
them by hand on the SML level:

ML〈 val t-schematic = Type(List .list ,[TVar(( ′a,0 ),@{sort HOL.type})]); 〉

MIND THE "’" !!!

On this basis, the following Type.tyenv is constructed:

ML〈

val tyenv = Sign.typ-match ( @{theory})
(t-schematic, @{typ int list})
(Vartab.empty);

val [(( ′a, 0 ), ([HOL.type], @{typ int}))] = Vartab.dest tyenv ;
〉

Type generalization — the conversion between free type variables and schematic type
variables — is apparently no longer part of the standard API (there is a slightly more
general replacement in Term_Subst.generalizeT_same, however). Here is a way to over-
come this by a self-baked generalization function:

ML〈

val generalize-typ = Term.map-type-tfree (fn (str ,sort)=> Term.TVar((str ,0 ),sort));
val generalize-term = Term.map-types generalize-typ;
val true = Sign.typ-instance @{theory} (ty ′, generalize-typ ty)
〉

... or more general variants thereof that are parameterized by the indexes for schematic
type variables instead of assuming just 0.

Example:

ML〈val t = generalize-term @{term []}〉

Now we turn to the crucial issue of type-instantiation and with a given type environ-
ment tyenv. For this purpose, one has to switch to the low-level interface Term_Subst.

ML〈

Term-Subst .map-types-same : (typ −> typ) −> term −> term;
Term-Subst .map-aterms-same : (term −> term) −> term −> term;
Term-Subst .instantiate: ((indexname ∗ sort) ∗ typ) list ∗ ((indexname ∗ typ) ∗ term) list −>
term −> term;
Term-Subst .instantiateT : ((indexname ∗ sort) ∗ typ) list −> typ −> typ;
Term-Subst .generalizeT : string list −> int −> typ −> typ;

(∗ this is the standard type generalisation function !!!
only type−frees in the string−list were taken into account . ∗)

Term-Subst .generalize: string list ∗ string list −> int −> term −> term
(∗ this is the standard term generalisation function !!!

only type−frees and frees in the string−lists were taken
into account . ∗)

〉

Apparently, a bizarre conversion between the old-style interface and the new-style
tyenv is necessary. See the following example.
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ML〈

val S = Vartab.dest tyenv ;
val S ′ = (map (fn (s,(t ,u)) => ((s,t),u)) S ) : ((indexname ∗ sort) ∗ typ) list ;

(∗ it took me quite some time to find out that these two type representations,
obscured by a number of type−synonyms, where actually identical . ∗)

val ty = t-schematic;
val ty ′ = Term-Subst .instantiateT S ′ t-schematic;
val t = (generalize-term @{term []});

val t ′ = Term-Subst .map-types-same (Term-Subst .instantiateT S ′) (t)
(∗ or alternatively : ∗)
val t ′′ = Term.map-types (Term-Subst .instantiateT S ′) (t)
〉

A more abstract env for variable management in tactic proofs. A bit difficult to use
outside the very closed-up tracks of conventional use...

ML〈 Consts.the-const ; (∗ T is a kind of signature ... ∗)
Variable.import-terms;
Vartab.update;〉

3.2.3 Type-Inference (= inferring consistent type information if possible)

Type inference eliminates also joker-types such as dummyT and produces instances for
schematic type variables where necessary. In the case of success, it produces a certifiable
term.

ML〈 Type-Infer-Context .infer-types: Proof .context −> term list −> term list 〉

3.2.4 Constructing Terms without Type-Inference

Using Type_Infer_Context.infer_types is not quite unproblematic: since the type
inference can construct types for largely underspecified terms, it may happen that under
some circumstances, tactics and proof-attempts fail since just some internal term repre-
sentation was too general. A more defensive strategy is already sketched — but neither
explicitely mentioned nor worked out in the interface in HOLogic. The idea is to have
advanced term constructors that construct the right term from the leaves, which were by
convention fully type-annotated (so: this does not work for terms with dangling @(ML
Bound)’s).
Operations like HOLogic.mk_prod or HOLogic.mk_fst or HOLogic.mk_eq do exactly

this by using an internal pure bottom-up type-inference fastype_of. The following
routines are written in the same style complement the existing API HOLogic.

ML〈

fun mk-None ty = let val none = const-name 〈Option.option.None〉

val none-ty = ty −−> Type(type-name 〈option〉,[ty ])
in Const(none, none-ty)
end ;

fun mk-Some t = let val some = const-name 〈Option.option.Some〉

val ty = fastype-of t
val some-ty = ty −−> Type(type-name 〈option〉,[ty ])
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in Const(some, some-ty) $ t
end ;

fun mk-undefined (@{typ unit}) = Const (const-name 〈Product-Type.Unity〉, typ 〈unit 〉)
|mk-undefined t = Const (const-name 〈HOL.undefined 〉, t)

fun meta-eq-const T = Const (const-name 〈Pure.eq〉, T −−> T −−> propT );

fun mk-meta-eq (t , u) = meta-eq-const (fastype-of t) $ t $ u;

〉

3.2.5 Theories and the Signature API
ML〈

Sign.tsig-of : theory −> Type.tsig ;
Sign.syn-of : theory −> Syntax .syntax ;
Sign.of-sort : theory −> typ ∗ sort −> bool ;
〉

3.2.6 Thm’s and the LCF-Style, "Mikro"-Kernel

The basic constructors and operations on theorems$ISABELLE_HOME/src/Pure/
thm.ML, a set of derived (Pure) inferences can be found in $ISABELLE_HOME/src/Pure/
drule.ML.
The main types provided by structure thm are certified types ctyp, certified terms

cterm, thm as well as conversions conv.
ML〈

signature BASIC-THM =
sig
type ctyp
type cterm
exception CTERM of string ∗ cterm list
type thm
type conv = cterm −> thm
exception THM of string ∗ int ∗ thm list

end ;
〉

Certification of types and terms on the kernel-level is done by the generators:
ML〈

Thm.global-ctyp-of : theory −> typ −> ctyp;
Thm.ctyp-of : Proof .context −> typ −> ctyp;
Thm.global-cterm-of : theory −> term −> cterm;
Thm.cterm-of : Proof .context −> term −> cterm;

〉

... which perform type-checking in the given theory context in order to make a type
or term "admissible" for the kernel.

We come now to the very heart of the LCF-Kernel of Isabelle, which provides the
fundamental inference rules of Isabelle/Pure.
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(a) Pure Kernel Inference Rules I (b) Pure Kernel Inference Rules II

Figure 3.1:

Besides a number of destructors on thm’s, the abstract data-type thm is used for logical
objects of the form Γ `θ φ, where Γ represents a set of local assumptions, θ the "theory"
or more precisely the global context in which a formula φ has been constructed just by
applying the following operations representing logical inference rules:

ML〈

(∗inference rules∗)
Thm.assume: cterm −> thm;
Thm.implies-intr : cterm −> thm −> thm;
Thm.implies-elim: thm −> thm −> thm;
Thm.forall-intr : cterm −> thm −> thm;
Thm.forall-elim: cterm −> thm −> thm;

Thm.transfer : theory −> thm −> thm;

Thm.generalize: string list ∗ string list −> int −> thm −> thm;
Thm.instantiate: ((indexname∗sort)∗ctyp)list ∗ ((indexname∗typ)∗cterm) list −> thm −>

thm;
〉

They reflect the Pure logic depicted in a number of presentations such as M. Wenzel,
Parallel Proof Checking in Isabelle/Isar, PLMMS 2009, or simiular papers. Notated as
logical inference rules, these operations were presented as follows:

Note that the transfer rule:

Γ `θ φ θ v θ′

Γ `θ′ φ

which is a consequence of explicit theories characteristic for Isabelle’s LCF-kernel design
and a remarkable difference to its sisters HOL-Light and HOL4; instead of transfer, these
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systems reconstruct proofs in an enlarged global context instead of taking the result and
converting it.

Besides the meta-logical (Pure) implication _ =⇒ _, the Kernel axiomatizes also a
Pure-Equality _ ≡ _ used for definitions of constant symbols:

ML〈

Thm.reflexive: cterm −> thm;
Thm.symmetric: thm −> thm;
Thm.transitive: thm −> thm −> thm;

〉

The operation:

ML〈 Thm.trivial : cterm −> thm; 〉

... produces the elementary tautologies of the form A =⇒ A, an operation used to
start a backward-style proof.

The elementary conversions are:

ML〈

Thm.beta-conversion: bool −> conv ;
Thm.eta-conversion: conv ;
Thm.eta-long-conversion: conv ;

〉

On the level of Drule, a number of higher-level operations is established, which is in
part accessible by a number of forward-reasoning notations on Isar-level.

ML〈

op RSN : thm ∗ (int ∗ thm) −> thm;
op RS : thm ∗ thm −> thm;
op RLN : thm list ∗ (int ∗ thm list) −> thm list ;
op RL: thm list ∗ thm list −> thm list ;
op MRS : thm list ∗ thm −> thm;
op OF : thm ∗ thm list −> thm;
op COMP : thm ∗ thm −> thm;

〉

3.2.7 Theories

This structure yields the datatype thy which becomes the content of Context.theory.
In a way, the LCF-Kernel registers itself into the Nano-Kernel, which inspired me (bu)
to this naming.

ML〈

(∗ intern Theory .Thy ;

datatype thy = Thy of
{pos: Position.T ,
id : serial ,
axioms: term Name-Space.table,
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defs: Defs.T ,
wrappers: wrapper list ∗ wrapper list};

∗)

Theory .check : {long : bool} −> Proof .context −> string ∗ Position.T −> theory ;

Theory .local-setup: (Proof .context −> Proof .context) −> unit ;
Theory .setup: (theory −> theory) −> unit ; (∗ The thing to extend the table of commands with
parser − callbacks. ∗)
Theory .get-markup: theory −> Markup.T ;
Theory .axiom-table: theory −> term Name-Space.table;
Theory .axiom-space: theory −> Name-Space.T ;
Theory .axioms-of : theory −> (string ∗ term) list ;
Theory .all-axioms-of : theory −> (string ∗ term) list ;
Theory .defs-of : theory −> Defs.T ;
Theory .at-begin: (theory −> theory option) −> theory −> theory ;
Theory .at-end : (theory −> theory option) −> theory −> theory ;
Theory .begin-theory : string ∗ Position.T −> theory list −> theory ;
Theory .end-theory : theory −> theory ;〉

3.3 Advanced Specification Constructs

Isabelle is built around the idea that system components were built on top of the kernel
in order to give the user high-level specification constructs — rather than inside as in the
Coq kernel that foresees, for example, data-types and primitive recursors already in the
basic λ-term language. Therefore, records, definitions, type-definitions, recursive function
definitions are supported by packages that belong to the components strata. With the
exception of the Specification.axiomatization construct, they are all-together built
as composition of conservative extensions.
The components are a bit scattered in the architecture. A relatively recent and high-

level component (more low-level components such as Global_Theory.add_defs exist) for
definitions and axiomatizations is here:

ML〈

local open Specification
val -= definition: (binding ∗ typ option ∗ mixfix ) option −>

(binding ∗ typ option ∗ mixfix ) list −> term list −> Attrib.binding ∗ term −>
local-theory −> (term ∗ (string ∗ thm)) ∗ local-theory

val -= definition ′: (binding ∗ typ option ∗ mixfix ) option −>
(binding ∗ typ option ∗ mixfix ) list −> term list −> Attrib.binding ∗ term −>
bool −> local-theory −> (term ∗ (string ∗ thm)) ∗ local-theory

val -= definition-cmd : (binding ∗ string option ∗ mixfix ) option −>
(binding ∗ string option ∗ mixfix ) list −> string list −> Attrib.binding ∗ string −>
bool −> local-theory −> (term ∗ (string ∗ thm)) ∗ local-theory

val -= axiomatization: (binding ∗ typ option ∗ mixfix ) list −>
(binding ∗ typ option ∗ mixfix ) list −> term list −>
(Attrib.binding ∗ term) list −> theory −> (term list ∗ thm list) ∗ theory

val -= axiomatization-cmd : (binding ∗ string option ∗ mixfix ) list −>
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(binding ∗ string option ∗ mixfix ) list −> string list −>
(Attrib.binding ∗ string) list −> theory −> (term list ∗ thm list) ∗ theory

val -= axiom: Attrib.binding ∗ term −> theory −> thm ∗ theory
val -= abbreviation: Syntax .mode −> (binding ∗ typ option ∗ mixfix ) option −>

(binding ∗ typ option ∗ mixfix ) list −> term −> bool −> local-theory −> local-theory
val -= abbreviation-cmd : Syntax .mode −> (binding ∗ string option ∗ mixfix ) option −>

(binding ∗ string option ∗ mixfix ) list −> string −> bool −> local-theory −> local-theory
in val - = () end
〉

Note that the interface is mostly based on local_theory, which is a syn-
onym to Proof.context. Need to lift this to a global system transition ? Don’t
worry, Named_Target.theory_map: (local_theory -> local_theory) -> theory ->
theory does the trick.

3.3.1 Example

Suppose that we want do definition I :: ′a ⇒ ′a where I x = x at the ML-level. We
construct our defining equation and embed it as a prop into Pure.

ML〈 val ty = @{typ ′a}
val term = HOLogic.mk-eq (Free(I ,ty −−>ty) $ Free(x , ty), Free(x , ty));
val term-prop = HOLogic.mk-Trueprop term〉

Recall the notes on defensive term construction wrt. typing in Section 3.2.4. Then the
trick is done by:

setup〈

let
fun mk-def name p =

let val nameb = Binding .make(name,p)
val ty-global = ty −−> ty

val args = (((SOME (nameb,SOME ty-global ,NoSyn),(Binding .empty-atts,term-prop)),[]),[])
val cmd = (fn (((decl , spec), prems), params) =>

#2 oo Specification.definition ′ decl params prems spec)
in cmd args true
end ;

in Named-Target .theory-map (mk-def I @{here} )
end 〉

thm I-def

Voilà.

3.4 Backward Proofs: Tactics, Tacticals and Goal-States

At this point, we leave the Pure-Kernel and start to describe the first layer on top of
it, involving support for specific styles of reasoning and automation of reasoning.

tactic’s are in principle relations on theorems thm; this gives a natural way to rep-
resent the fact that HO-Unification (and therefore the mechanism of rule-instantiation)
are non-deterministic in principle. Heuristics may choose particular preferences between
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the theorems in the range of this relation, but the Isabelle Design accepts this funda-
mental fact reflected at this point in the prover architecture. This potentially infinite
relation is implemented by a function of theorems to lazy lists over theorems, which
gives both sufficient structure for heuristic considerations as well as a nice algebra, called
TACTICAL’s, providing a bottom element no_tac (the function that always fails), the top-
element all_tac (the function that never fails), sequential composition op THEN, (serial-
ized) non-deterministic composition op ORELSE, conditionals, repetitions over lists, etc.
The following is an excerpt of ~~/src/Pure/tactical.ML:
ML〈

signature TACTICAL =
sig
type tactic = thm −> thm Seq .seq

val all-tac: tactic
val no-tac: tactic
val COND : (thm −> bool) −> tactic −> tactic −> tactic

val THEN : tactic ∗ tactic −> tactic
val ORELSE : tactic ∗ tactic −> tactic
val THEN ′: ( ′a −> tactic) ∗ ( ′a −> tactic) −> ′a −> tactic
val ORELSE ′: ( ′a −> tactic) ∗ ( ′a −> tactic) −> ′a −> tactic

val TRY : tactic −> tactic
val EVERY : tactic list −> tactic
val EVERY ′: ( ′a −> tactic) list −> ′a −> tactic
val FIRST : tactic list −> tactic
(∗ ... ∗)

end
〉

The next layer in the architecture describes tactic’s, i.e. basic operations on theorems
in a backward reasoning style (bottom up development of proof-trees). An initial goal-
state for some property A — the goal — is constructed via the kernel Thm.trivial-
operation into A =⇒ A, and tactics either refine the premises — the subgoals the of this
meta-implication — producing more and more of them or eliminate them in subsequent
goal-states. Subgoals of the form [[B1; B2; A; B3; B4]] =⇒ A can be eliminated via
the Tactic.assume_tac - tactic, and a subgoal Cm can be refined via the theorem [[E 1;
E 2; E 3]] =⇒ Cm the Tactic.resolve_tac - tactic to new subgoals E 1,E 2, E 3. In case
that a theorem used for resolution has no premise E i, the subgoal Cm is also eliminated
("closed").
The following abstract of the most commonly used tactic’s drawn from ~~/src/Pure/

tactic.ML looks as follows:
ML〈

(∗ ... ∗)
assume-tac: Proof .context −> int −> tactic;
compose-tac: Proof .context −> (bool ∗ thm ∗ int) −> int −> tactic;
resolve-tac: Proof .context −> thm list −> int −> tactic;
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eresolve-tac: Proof .context −> thm list −> int −> tactic;
forward-tac: Proof .context −> thm list −> int −> tactic;
dresolve-tac: Proof .context −> thm list −> int −> tactic;
rotate-tac: int −> int −> tactic;
defer-tac: int −> tactic;
prefer-tac: int −> tactic;
(∗ ... ∗)

〉

Note that "applying a rule" is a fairly complex operation in the Extended Isabelle
Kernel, i.e. the tactic layer. It involves at least four phases, interfacing a theorem coming
from the global context θ (=theory), be it axiom or derived, into a given goal-state.

• generalization. All free variables in the theorem were replaced by schematic vari-
ables. For example, x + y = y + x is converted into ?x + ?y = ?y + ?x. By the
way, type variables were treated equally.

• lifting over assumptions. If a subgoal is of the form: [[B1; B2]] =⇒ A and we have
a theorem [[D1; D2]] =⇒ A, then before applying the theorem, the premisses were
lifted resulting in the logical refinement: [[[[B1; B2]] =⇒ D1; [[B1; B2]] =⇒ D2]] =⇒
A. Now, resolve_tac, for example, will replace the subgoal [[B1; B2]] =⇒ A by the
subgoals [[B1; B2]] =⇒ D1 and [[B1; B2]] =⇒ D2. Of course, if the theorem wouldn’t
have assumptions D1 and D2, the subgoal A would be replaced by nothing, i.e.
deleted.

• lifting over parameters. If a subgoal is meta-quantified like in:
∧
x y z . A x y z, then

a theorem like [[D1; D2]] =⇒ A is lifted to
∧
x y z . [[D1

′; D2
′]] =⇒ A ′, too. Since

free variables occurring in D1, D2 and A have been replaced by schematic variables
(see phase one), they must be replaced by parameterized schematic variables, i. e.
a kind of skolem function. For example, ?x + ?y = ?y + ?x would be lifted to !! x
y z. ?x x y z + ?y x y z = ?y x y z + ?x x y z. This way, the lifted theorem can
be instantiated by the parameters x y z representing "fresh free variables" used for
this sub-proof. This mechanism implements their logically correct bookkeeping via
kernel primitives.

• Higher-order unification (of schematic type and term variables). Finally, for all
these schematic variables, a solution must be found. In the case of resolve_tac,
the conclusion of the (doubly lifted) theorem must be equal to the conclusion of
the subgoal, so A must be α/β-equivalent to A ′ in the example above, which is
established by a higher-order unification process. It is a bit unfortunate that for
implementation efficiency reasons, a very substantial part of the code for HO-
unification is in the kernel module thm, which makes this critical component of the
architecture larger than necessary.

In a way, the two lifting processes represent an implementation of the conversion
between Gentzen Natural Deduction (to which Isabelle/Pure is geared) reasoning and
Gentzen Sequent Deduction.
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3.5 The classical goal package

The main mechanism in Isabelle as an LCF-style system is to produce thm’s in
backward-style via tactics as described in Section 3.4. Given a context — be it global as
theory or be it inside a proof-context as Proof.context, user-programmed verification
of (type-checked) terms or just strings can be done via the operations:

ML〈

Goal .prove-internal : Proof .context −> cterm list −> cterm −> (thm list −> tactic) −> thm;

Goal .prove-global : theory −> string list −> term list −> term −>
({context : Proof .context , prems: thm list} −> tactic) −> thm;

(∗ ... and many more variants. ∗)
〉

3.5.1 Proof Example

The proof:

lemma (10 ::int) + 2 = 12 by simp

... represents itself at the SML interface as follows:

ML〈val tt = HOLogic.mk-Trueprop (Syntax .read-term @{context} (10 ::int) + 2 = 12 );
(∗ read-term parses and type−checks its string argument ;

HOLogic.mk-Trueprop wraps the embedder from @{ML-type bool} to
@{ML-type prop} from Pure. ∗)

val thm1 = Goal .prove-global @{theory} (∗ global context ∗)
[] (∗ name ? ∗)
[] (∗ local assumption context ∗)
(tt) (∗ parsed goal ∗)
(fn - => simp-tac @{context} 1 ) (∗ proof tactic ∗)〉

3.6 The Isar Engine

The main structure of the Isar-engine is Toplevel and provides and internal state with
the necessary infrastructure — i.e. the operations to pack and unpack theories and
Proof.contexts — on it:

ML〈

Toplevel .theory-toplevel : theory −> Toplevel .state;
Toplevel .init-toplevel : unit −> Toplevel .state;
Toplevel .is-toplevel : Toplevel .state −> bool ;
Toplevel .is-theory : Toplevel .state −> bool ;
Toplevel .is-proof : Toplevel .state −> bool ;
Toplevel .is-skipped-proof : Toplevel .state −> bool ;
Toplevel .level : Toplevel .state −> int ;
Toplevel .context-of : Toplevel .state −> Proof .context ;
Toplevel .generic-theory-of : Toplevel .state −> generic-theory ;
Toplevel .theory-of : Toplevel .state −> theory ;
Toplevel .proof-of : Toplevel .state −> Proof .state;
Toplevel .presentation-context : Toplevel .state −> Proof .context ;
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(∗ ... ∗) 〉

The extensibility of Isabelle as a system framework depends on a number of tables, into
which various concepts commands, ML-antiquotations, text-antiquotations, cartouches,
... can be entered via a late-binding on the fly.
A paradigmatic example is the Outer_Syntax.command-operation, which — represent-

ing in itself a toplevel system transition — allows to define a new command section and
bind its syntax and semantics at a specific keyword. Calling Outer_Syntax.command
creates an implicit Theory.setup with an entry for a call-back function, which happens
to be a parser that must have as side-effect a Toplevel-transition-transition. Registers
Toplevel.transition -> Toplevel.transition parsers to the Isar interpreter.

ML〈 Outer-Syntax .command : Outer-Syntax .command-keyword −> string −>
(Toplevel .transition −> Toplevel .transition) parser −> unit ;〉

A paradigmatic example: "text" is defined by:

Here are a few queries relevant for the global config of the isar engine:

ML〈 Document .state();〉

ML〈 Session.get-keywords(); (∗ this looks to be really session global . ∗) 〉

ML〈 Thy-Header .get-keywords @{theory};(∗ this looks to be really theory global . ∗) 〉

3.6.1 Transaction Management in the Isar-Engine : The Toplevel
ML〈Toplevel .exit : Toplevel .transition −> Toplevel .transition;
Toplevel .keep: (Toplevel .state −> unit) −> Toplevel .transition −> Toplevel .transition;

Toplevel .keep ′: (bool −> Toplevel .state −> unit) −> Toplevel .transition −>
Toplevel .transition;
Toplevel .ignored : Position.T −> Toplevel .transition;
Toplevel .generic-theory : (generic-theory −> generic-theory) −> Toplevel .transition −>

Toplevel .transition;
Toplevel .theory ′: (bool −> theory −> theory) −> Toplevel .transition −> Toplevel .transition;
Toplevel .theory : (theory −> theory) −> Toplevel .transition −> Toplevel .transition;

Toplevel .present-local-theory :
(xstring ∗ Position.T ) option −>

(Toplevel .state −> unit) −> Toplevel .transition −> Toplevel .transition;
(∗ where text treatment and antiquotation parsing happens ∗)

(∗fun document-command markdown (loc, txt) =
Toplevel .keep (fn state =>

(case loc of
NONE => ignore (output-text state markdown txt)
| SOME (-, pos) =>

error (Illegal target specification −− not a theory context ^ Position.here pos))) o
Toplevel .present-local-theory loc (fn state => ignore (output-text state markdown txt)); ∗)

(∗ Isar Toplevel Steuerung ∗)
Toplevel .keep : (Toplevel .state −> unit) −> Toplevel .transition −> Toplevel .transition;
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(∗ val keep ′ = add-trans o Keep;
fun keep f = add-trans (Keep (fn - => f ));
∗)

Toplevel .present-local-theory : (xstring ∗ Position.T ) option −> (Toplevel .state −> unit) −>
Toplevel .transition −> Toplevel .transition;
(∗ fun present-local-theory target = present-transaction (fn int =>

(fn Theory (gthy , -) =>
let val (finish, lthy) = Named-Target .switch target gthy ;
in Theory (finish lthy , SOME lthy) end

| - => raise UNDEF ));

fun present-transaction f g = add-trans (Transaction (f , g));
fun transaction f = present-transaction f (K ());

∗)

Toplevel .theory : (theory −> theory) −> Toplevel .transition −> Toplevel .transition;
(∗ fun theory ′ f = transaction (fn int =>

(fn Theory (Context .Theory thy , -) =>
let val thy ′ = thy

|> Sign.new-group
|> f int
|> Sign.reset-group;

in Theory (Context .Theory thy ′, NONE ) end
| - => raise UNDEF ));

fun theory f = theory ′ (K f ); ∗)〉

ML〈

(∗ Isar Toplevel Control ∗)
Toplevel .keep : (Toplevel .state −> unit) −> Toplevel .transition −> Toplevel .transition;

(∗ val keep ′ = add-trans o Keep;
fun keep f = add-trans (Keep (fn - => f ));
∗)

Toplevel .present-local-theory : (xstring ∗ Position.T ) option −> (Toplevel .state −> unit) −>
Toplevel .transition −> Toplevel .transition;
(∗ fun present-local-theory target = present-transaction (fn int =>

(fn Theory (gthy , -) =>
let val (finish, lthy) = Named-Target .switch target gthy ;
in Theory (finish lthy , SOME lthy) end

| - => raise UNDEF ));

fun present-transaction f g = add-trans (Transaction (f , g));
fun transaction f = present-transaction f (K ());

∗)
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Toplevel .theory : (theory −> theory) −> Toplevel .transition −> Toplevel .transition;
(∗ fun theory ′ f = transaction (fn int =>

(fn Theory (Context .Theory thy , -) =>
let val thy ′ = thy

|> Sign.new-group
|> f int
|> Sign.reset-group;

in Theory (Context .Theory thy ′, NONE ) end
| - => raise UNDEF ));

fun theory f = theory ′ (K f ); ∗)
〉

3.6.2 Configuration flags of fixed type in the Isar-engine.

The toplevel also provides an infrastructure for managing configuration options for
system components. Based on a sum-type Config.value with the alternatives Bool
of bool | Int of int | Real of real | String of string and building the para-
metric configuration types ’a Config.T and the instance type raw = value T, for all
registered configurations the protocol:

ML〈

Config .get : Proof .context −> ′a Config .T −> ′a;
Config .map: ′a Config .T −> ( ′a −> ′a) −> Proof .context −> Proof .context ;
Config .put : ′a Config .T −> ′a −> Proof .context −> Proof .context ;
Config .get-global : theory −> ′a Config .T −> ′a;
Config .map-global : ′a Config .T −> ( ′a −> ′a) −> theory −> theory ;
Config .put-global : ′a Config .T −> ′a −> theory −> theory ;〉

... etc. is defined.

Example registration of an config attribute XS232:

ML〈

val (XS232 , XS232-setup)
= Attrib.config-bool binding 〈XS232 〉 (K false);

val - = Theory .setup XS232-setup;〉

Another mechanism are global synchronised variables:

ML〈 (∗ For example ∗)

val C = Synchronized .var Pretty .modes latEEex ;
(∗ Synchronized : a mechanism to bookkeep global

variables with synchronization mechanism included ∗)
Synchronized .value C ;〉
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4 Front-End

In the following chapter, we turn to the right part of the system architecture shown in
Figure 1.1: The PIDE ("Prover-IDE") layer [4] consisting of a part written in SML and
another in SCALA. Roughly speaking, PIDE implements "continuous build - continu-
ous check" - functionality over a textual, albeit generic document model. It transforms
user modifications of text elements in an instance of this model into increments (edits)
and communicates them to the Isabelle system. The latter reacts by the creation of a
multitude of light-weight reevaluation threads resulting in an asynchronous stream of
markup that is used to annotate text elements. Such markup is used to highlight, e.g.,
variables or keywords with specific colors, to hyper-linking bound variables to their defin-
ing occurrences, or to annotate type-information to terms which becomes displayed by
specific user-gestures on demand (hovering), etc. Note that PIDE is not an editor, it is
the framework that coordinates these asynchronous information streams and optimizes
it to a certain extent (outdated markup referring to modified text is dropped, and cor-
responding re-calculations are oriented to the user focus, for example). Four concrete
editors — also called PIDE applications — have been implemented:

1. an Eclipse plugin (developped by an Edinburg-group, based on an very old PIDE
version),

2. a Visual-Studio Code plugin (developed by Makarius Wenzel), currently based on
a fairly old PIDE version,

3. clide, a web-client supporting javascript and HTML5 (developed by a group at
University Bremen, based on a very old PIDE version), and

4. the most commonly used: the plugin in JEdit - Editor, (developed by Makarius
Wenzel, current PIDE version.)

The document model forsees a number of text files, which are organized in form of
an acyclic graph. Such graphs can be grouped into sessions and "frozen" to binaries
in order to avoid long compilation times. Text files have an abstract name serving as
identity (the mapping to file-paths in an underlying file-system is done in an own build
management). The primary format of the text files is .thy (historically for: theory),
secondary formats can be .sty,.tex, .png, .pdf, or other files processed by Isabelle and
listed in a configuration processed by the build system.

A .thy file consists of a header, a context-definition and a body consisting of a sequence
of commands. Even the header consists of a sequence of commands used for introductory
text elements not depending on any context information (so: practically excluding any
form of text antiquotation (see above)). The context-definition contains an import and
a keyword section; for example:
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Figure 4.1: A Theory-Graph in the Document Model
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theory Isa_DOF (* Isabelle Document Ontology Framework *)
imports Main

RegExpInterface (* Interface to functional regular automata for monitoring *)
Assert

keywords "+=" ":=" "accepts" "rejects"

where Isa_DOF is the abstract name of the text-file, Main etc. refer to imported text
files (recall that the import relation must be acyclic). keywords are used to separate
commands form each other; predefined commands allow for the dynamic creation of new
commands similarly to the definition of new functions in an interpreter shell (or: toplevel,
see above.). A command starts with a pre-declared keyword and specific syntax of this
command; the declaration of a keyword is only allowed in the same .thy-file where the the
corresponding new command is defined. The semantics of the command is expressed in
ML and consists of a Toplevel.transition -> Toplevel.transition function. Thus,
the Isar-toplevel supports the generic document model and allows for user-programmed
extensions.

In the traditional literature, Isabelle .thy-files were were said to be processed by
processed by two types of parsers:

1. the "outer-syntax" (i.e. the syntax for commands) is processed by a lexer-library
and parser combinators built on top, and

2. the "inner-syntax" (i.e. the syntax for Λ - terms) with an evolved, eight-layer
parsing and pretty-printing process based on an Early-algorithm.

This picture is less and less true for a number of reasons:

1. With the advent of (〈)... (〉), a mechanism for cascade-syntax came to the Isabelle
platform that introduce a flexible means to change parsing contexts and parsing
technologies.

2. Inside the term-parser levels, the concept of cartouche can be used to escape the
parser and its underlying parsing technology.

3. Outside, in the traditional toplevel-parsers, the (〈)... (〉) is becoming more and more
enforced (some years ago, syntax like term{∗ ... ∗} was replaced by syntax term(〈)...
(〉). This makes technical support of cascade syntax more and more easy.

4. The Lexer infra-structure is already rather generic; nothing prevents to add be-
side the lexer - configurations for ML-Parsers, Toplevel Command Syntax parsers,
mathematical notation parsers for λ-terms new pillars of parsing technologies, say,
for parsing C or Rust or JavaScript inside Isabelle.
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Figure 4.2: Output with hyperlinked position.

4.1 Basics: string, bstring and xstring

string is the basic library type from the SML library in structure String. Many Isabelle
operations produce or require formats thereof introduced as type synonyms bstring (de-
fined in structure Binding and xstring (defined in structure Name_Space. Unfortunately,
the abstraction is not tight and combinations with elementary routines might produce
quite crappy results.

ML〈val b = Binding .name-of @{binding here}〉

... produces the system output val it = "here": bstring, but note that it is mis-
leading to believe it is just a string.

ML〈String .explode b〉

ML〈String .explode(Binding .name-of
(Binding .conglomerate[Binding .qualified-name X .x ,

@{binding here}] ))〉

However, there is an own XML parser for this format. See Section Markup.

ML〈 fun dark-matter x = XML.content-of (YXML.parse-body x )〉

4.2 Positions

A basic data-structure relevant for PIDE are positions; beyond the usual line- and column
information they can represent ranges, list of ranges, and the name of the atomic sub-
document in which they are contained. In the command:

ML〈

val pos = @{here};
val markup = Position.here pos;
writeln (And a link to the declaration of ′here ′ is ^markup)〉

... uses the antiquotation @{here} to infer from the system lexer the actual position
of itself in the global document, converts it to markup (a string-representation of it) and
sends it via the usual writeln to the interface.

Figure 4.2 shows the produced output where the little house-like symbol in the display
is hyperlinked to the position of @{here} in the ML sample above.

4.3 Markup and Low-level Markup Reporting

The structures Markup and Properties represent the basic annotation data which is part
of the protocol sent from Isabelle to the front-end. They are qualified as "quasi-abstract",
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which means they are intended to be an abstraction of the serialized, textual presenta-
tion of the protocol. Markups are structurally a pair of a key and properties; Markup
provides a number of of such keys for annotation classes such as "constant", "fixed",
"cartouche", some of them quite obscure. Here is a code sample from Isabelle-DOF. A
markup must be tagged with an id; this is done by the serial-function discussed earlier.
Markup Operations, were used for hyperlinking applications to binding occurrences, info
for hovering, infors for type ...

ML〈

(∗ Position.report is also a type consisting of a pair of a position and markup. ∗)
(∗ It would solve all my problems if I find a way to infer the defining Position.report

from a type definition occurence ... ∗)

Position.report : Position.T −> Markup.T −> unit ;
Position.reports: Position.report list −> unit ;

(∗ ? ? ? I think this is the magic thing that sends reports to the GUI . ∗)
Markup.entity : string −> string −> Markup.T ;
Markup.properties : Properties.T −> Markup.T −> Markup.T ;
Properties.get : Properties.T −> string −> string option;
Markup.enclose : Markup.T −> string −> string ;

(∗ example for setting a link , the def flag controls if it is a defining or a binding
occurence of an item ∗)
fun theory-markup (def :bool) (name:string) (id :serial) (pos:Position.T ) =
if id = 0 then Markup.empty
else
Markup.properties (Position.entity-properties-of def id pos)

(Markup.entity Markup.theoryN name);
Markup.theoryN : string ;

serial(); (∗ A global , lock−guarded seriel counter used to produce unique identifiers,
be it on the level of thy−internal states or as reference in markup in
PIDE ∗)

〉

4.3.1 A simple Example

ML〈

local

val docclassN = doc-class;

(∗ derived from: theory-markup; def for defining occurrence (true) in contrast to
referring occurence (false). ∗)

fun docclass-markup def name id pos =
if id = 0 then Markup.empty
else Markup.properties (Position.entity-properties-of def id pos)

(Markup.entity docclassN name);
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in

fun report-defining-occurrence pos cid =
let val id = serial ()

val markup-of-cid = docclass-markup true cid id pos
in Position.report pos markup-of-cid end ;

end
〉

The @ML report-defining-occurrence-function above takes a position and a "cid"
parsed in the Front-End, converts this into markup together with a unique number iden-
tifying this markup, and sends this as a report to the Front-End.

4.3.2 A Slightly more Complex Example

ML 〈

fun markup-tvar def-name ps (name, id) =
let
fun markup-elem name = (name, (name, []): Markup.T );
val (tvarN , tvar) = markup-elem ((case def-name of SOME name => name | - => ) ^ ′s

nickname is);
val entity = Markup.entity tvarN name
val def = def-name = NONE

in
tvar ::
(if def then I else cons (Markup.keyword-properties Markup.ML-keyword3 ))

(map (fn pos => Markup.properties (Position.entity-properties-of def id pos) entity) ps)
end

fun report [] - - = I
| report ps markup x =

let val ms = markup x
in fold (fn p => fold (fn m => cons ((p, m), )) ms) ps end

〉

ML 〈

local
val data = — Derived from Yakoub’s example ;-)

[ (〈Frédéric 1er 〉, 〈King of Naples〉)
, (〈Frédéric II 〉, 〈King of Sicily〉)
, (〈Frédéric III 〉, 〈the Handsome〉)
, (〈Frédéric IV 〉, 〈of the Empty Pockets〉)
, (〈Frédéric V 〉, 〈King of Denmark–Norway〉)
, (〈Frédéric VI 〉, 〈the Knight 〉)
, (〈Frédéric VII 〉, 〈Count of Toggenburg〉)
, (〈Frédéric VIII 〉, 〈Count of Zollern〉)
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, (〈Frédéric IX 〉, 〈the Old 〉)
, (〈Frédéric X 〉, 〈the Younger 〉) ]

val (tab0 , markup) =
fold-map (fn (name, msg) => fn reports =>

let val id = serial ()
val pos = [Input .pos-of name]

in
( (fst(Input .source-content msg), (name, pos, id))
, report pos (markup-tvar NONE pos) (fst(Input .source-content name), id) reports)

end)
data
[]

val () = Position.reports-text markup
in
val tab = Symtab.make tab0
end
〉

ML 〈

val - =
fold (fn input =>

let
val pos1 ′ = Input .pos-of input
fun ctnt name0 = fst(Input .source-content name0 )
val pos1 = [pos1 ′]
val msg1 = fst(Input .source-content input)
val msg2 = No persons were found to have such nickname

in
case Symtab.lookup tab (fst(Input .source-content input)) of
NONE => tap (fn - => Output .information (msg2 ^ Position.here-list pos1 ))

(cons ((pos1 ′, Markup.bad ()), ))
| SOME (name0 , pos0 , id) => report pos1 (markup-tvar (SOME (ctnt name0 )) pos0 )

(msg1 , id)
end)

[ 〈the Knight 〉 — Example of a correct retrieval (CTRL + Hovering shows what we are
expecting)

, 〈the Handsome〉 — Example of a correct retrieval (CTRL + Hovering shows what we are
expecting)

, 〈the Spy〉 — Example of a failure to retrieve the person in tab
]

[]
|> Position.reports-text

〉

The pudding comes with the eating:
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4.3.3 Environment Structured Reporting

The structure Name_Space offers an own infra-structure for names and manages the
markup accordingly. MORE TO COME

’a Name_Space.table

4.4 The System Lexer and Token Issues

Four syntactic contexts are predefined in Isabelle (others can be added): the ML context,
the text context, the Isar-command context and the teerm-context, referring to different
needs of the Isabelle Framework as an extensible framework supporting incremental,
partially programmable extensions and as a Framework geared towards Formal Proofs
and therefore mathematical notations. The basic data-structure for the lexical treatment
of these elemens are Token’s.

4.4.1 Tokens

The basic entity that lexers treat are tokens. defined in Token It provides a classification
infrastructure, the references to positions and Markup as well as way’s to annotate tokens
with (some) values they denote:

ML〈

local
open Token

type dummy = Token.T
type src = Token.T list
type file = {src-path: Path.T , lines: string list , digest : SHA1 .digest , pos: Position.T}

type name-value = {name: string , kind : string , print : Proof .context −> Markup.T ∗ xstring}

val - = Token.is-command : Token.T −> bool ;
val - = Token.content-of : Token.T −> string ; (∗ textueller kern eines Tokens. ∗)

val - = pos-of : T −> Position.T

(∗
datatype kind =

(∗immediate source∗)
Command | Keyword | Ident | Long-Ident | Sym-Ident | Var | Type-Ident | Type-Var | Nat |
Float | Space |
(∗delimited content∗)
String | Alt-String | Verbatim | Cartouche | Comment of Comment .kind option |
(∗special content∗)
Error of string | EOF

40



datatype value =
Source of src |
Literal of bool ∗ Markup.T |
Name of name-value ∗ morphism |
Typ of typ |
Term of term |
Fact of string option ∗ thm list |
Attribute of morphism −> attribute |
Declaration of declaration |
Files of file Exn.result list

∗)
in val - = ()
end
〉

4.4.2 A Lexer Configuration Example

ML〈

(∗ MORE TO COME ∗)
〉

4.5 Combinator Parsing

Parsing Combinators go back to monadic programming as advocated by Wadler et. al,
and has been worked out [2]. Parsing combinators are one of the two major parsing
technologies of the Isabelle front-end, in particular for the outer-syntax used for the
parsing of toplevel-commands. The core of the combinator library is Scan providing the
’a parser which is a synonym for Token.T list -> ’a * Token.T list.
"parsers" are actually interpreters; an ’a parser is a function that parses an input

stream and computes(=evaluates, computes) it into ’a. Since the semantics of an Isabelle
command is a transition => transition or theory⇒ theory function, i.e. a global system
transition. parsers of that type can be constructed and be bound as call-back functions
to a table in the Toplevel-structure of Isar.
The library also provides a bunch of infix parsing combinators, notably:

ML〈

val - = op !! : ( ′a ∗ message option −> message) −> ( ′a −> ′b) −> ′a −> ′b
(∗apply function∗)

val - = op >> : ( ′a −> ′b ∗ ′c) ∗ ( ′b −> ′d) −> ′a −> ′d ∗ ′c
(∗alternative∗)
val - = op || : ( ′a −> ′b) ∗ ( ′a −> ′b) −> ′a −> ′b
(∗sequential pairing∗)
val - = op −− : ( ′a −> ′b ∗ ′c) ∗ ( ′c −> ′d ∗ ′e) −> ′a −> ( ′b ∗ ′d) ∗ ′e
(∗dependent pairing∗)
val - = op :−− : ( ′a −> ′b ∗ ′c) ∗ ( ′b −> ′c −> ′d ∗ ′e) −> ′a −> ( ′b ∗ ′d) ∗ ′e
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(∗projections∗)
val - = op :|−− : ( ′a −> ′b ∗ ′c) ∗ ( ′b −> ′c −> ′d ∗ ′e) −> ′a −> ′d ∗ ′e
val - = op |−− : ( ′a −> ′b ∗ ′c) ∗ ( ′c −> ′d ∗ ′e) −> ′a −> ′d ∗ ′e
val - = op −−| : ( ′a −> ′b ∗ ′c) ∗ ( ′c −> ′d ∗ ′e) −> ′a −> ′b ∗ ′e
(∗concatenation∗)
val - = op ^^ : ( ′a −> string ∗ ′b) ∗ ( ′b −> string ∗ ′c) −> ′a −> string ∗ ′c
val - = op ::: : ( ′a −> ′b ∗ ′c) ∗ ( ′c −> ′b list ∗ ′d) −> ′a −> ′b list ∗ ′d
val - = op @@@ : ( ′a −> ′b list ∗ ′c) ∗ ( ′c −> ′b list ∗ ′d) −> ′a −> ′b list ∗ ′d
(∗one element literal∗)
val - = op $$ : string −> string list −> string ∗ string list
val - = op ∼$$ : string −> string list −> string ∗ string list

〉

Usually, combinators were used in one of these following instances:

ML〈

type ′a parser = Token.T list −> ′a ∗ Token.T list
type ′a context-parser = Context .generic ∗ Token.T list −> ′a ∗ (Context .generic ∗ Token.T

list)

(∗ conversion between these two : ∗)

fun parser2contextparser pars (ctxt , toks) = let val (a, toks ′) = pars toks
in (a,(ctxt , toks ′)) end ;

val - = parser2contextparser : ′a parser −> ′a context-parser ;

(∗ bah, is the same as Scan.lift ∗)
val - = Scan.lift Args.cartouche-input : Input .source context-parser ;〉

4.5.1 Advanced Parser Library

There are two parts. A general multi-purpose parsing combinator library is found under
Parse, providing basic functionality for parsing strings or integers. There is also an
important combinator that reads the current position information out of the input stream:

ML〈

Parse.nat : int parser ;
Parse.int : int parser ;
Parse.enum-positions: string −> ′a parser −> ( ′a list ∗ Position.T list) parser ;
Parse.enum: string −> ′a parser −> ′a list parser ;
Parse.input : ′a parser −> Input .source parser ;

Parse.enum : string −> ′a parser −> ′a list parser ;
Parse.!!! : (Token.T list −> ′a) −> Token.T list −> ′a;
Parse.position: ′a parser −> ( ′a ∗ Position.T ) parser ;

(∗ Examples ∗)
Parse.position Args.cartouche-input ;
〉
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The second part is much more high-level, and can be found under Args. In parts,
these combinators are again based on more low-level combinators, in parts they serve
as an an interface to the underlying Earley-parser for mathematical notation used in
types and terms. This is perhaps meant with the fairly cryptic comment: "Quasi-inner
syntax based on outer tokens: concrete argument syntax of attributes, methods etc." at
the beginning of this structure.

ML〈

local

open Args

(∗ some more combinaotrs ∗)
val - = symbolic: Token.T parser
val - = $$$ : string −> string parser
val - = maybe: ′a parser −> ′a option parser
val - = name-token: Token.T parser

(∗ common isar syntax ∗)
val - = colon: string parser
val - = query : string parser
val - = bang : string parser
val - = query-colon: string parser
val - = bang-colon: string parser
val - = parens: ′a parser −> ′a parser
val - = bracks: ′a parser −> ′a parser
val - = mode: string −> bool parser
val - = name: string parser
val - = name-position: (string ∗ Position.T ) parser
val - = cartouche-inner-syntax : string parser
val - = cartouche-input : Input .source parser
val - = text-token: Token.T parser

(∗ advanced string stuff ∗)
val - = embedded-token: Token.T parser
val - = embedded-inner-syntax : string parser
val - = embedded-input : Input .source parser
val - = embedded : string parser
val - = embedded-position: (string ∗ Position.T ) parser
val - = text-input : Input .source parser
val - = text : string parser
val - = binding : binding parser

(∗ stuff related to INNER SYNTAX PARSING ∗)
val - = alt-name: string parser
val - = liberal-name: string parser
val - = var : indexname parser
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val - = internal-source: Token.src parser
val - = internal-name: Token.name-value parser
val - = internal-typ: typ parser
val - = internal-term: term parser
val - = internal-fact : thm list parser
val - = internal-attribute: (morphism −> attribute) parser
val - = internal-declaration: declaration parser

val - = named-source: (Token.T −> Token.src) −> Token.src parser
val - = named-typ: (string −> typ) −> typ parser
val - = named-term: (string −> term) −> term parser

val - = text-declaration: (Input .source −> declaration) −> declaration parser
val - = cartouche-declaration: (Input .source −> declaration) −> declaration parser
val - = typ-abbrev : typ context-parser

val - = typ: typ context-parser
val - = term: term context-parser
val - = term-pattern: term context-parser
val - = term-abbrev : term context-parser

(∗ syntax for some major Pure commands in Isar ∗)
val - = prop: term context-parser
val - = type-name: {proper : bool , strict : bool} −> string context-parser
val - = const : {proper : bool , strict : bool} −> string context-parser
val - = goal-spec: ((int −> tactic) −> tactic) context-parser
val - = context : Proof .context context-parser
val - = theory : theory context-parser

in val - = () end

〉

4.5.2 Bindings

The structure Binding serves as structured name bindings, as says the description, i.e. a
mechanism to basically associate an input string-fragment to its position. This concept
is vital in all parsing processes and the interaction with PIDE.
Key are two things:

1. the type-synonym bstring which is synonym to string and intended for "primitive
names to be bound"

2. the projection Binding.pos_of : binding -> Position.T

3. the constructor establishing a binding Binding.make: bstring * Position.T ->
binding
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Since this is so common in interface programming, there are a number of antiquotations

ML〈

val H = @{binding here}; (∗ There are bindings consisting of a text−span and a position,
where ¨positions¨ are absolute references to a file ∗)

Binding .pos-of H ; (∗ clicking on H activates the hyperlink to the defining occ of H above ∗)
(∗ {offset=23 , end-offset=27 , id=−17214}: Position.T ∗)

(∗ a modern way to construct a binding is by the following code antiquotation : ∗)
binding 〈theory〉

〉

4.5.3 Input streams.

Reads as : Generic input with position information.

ML〈

Input .source-explode : Input .source −> Symbol-Pos.T list ;
Input .source-explode (Input .string f @{thm refl});

(∗ If stemming from the input window , this can be s th like:

[( , {offset=14 , id=−2769}), (f , {offset=15 , id=−2769}), ( , {offset=16 , id=−2769}),
(@, {offset=17 , id=−2769}), ({, {offset=18 , id=−2769}), (t , {offset=19 , id=−2769}),
(h, {offset=20 , id=−2769}), (m, {offset=21 , id=−2769}), ( , {offset=22 , id=−2769}),
(r , {offset=23 , id=−2769}), (e, {offset=24 , id=−2769}), (f , {offset=25 , id=−2769}),
(l , {offset=26 , id=−2769}), (}, {offset=27 , id=−2769})]

∗)

〉

4.6 Term Parsing

The heart of the parsers for mathematical notation, based on an Earley parser that can
cope with incremental changes of the grammar as required for sophisticated mathematical
output, is hidden behind the API described in this section.

Note that the naming underlies the following convention : there are:

1. "parser"s and type-"checker"s

2. "reader"s which do both together with pretty-printing

This is encapsulated the data structure Syntax — the table with const symbols,
print and ast translations, ... The latter is accessible, e.g. from a Proof context via
Proof_Context.syn_of.

Inner Syntax Parsing combinators for elementary Isabelle Lexems
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ML〈

Syntax .parse-sort : Proof .context −> string −> sort ;
Syntax .parse-typ : Proof .context −> string −> typ;
Syntax .parse-term : Proof .context −> string −> term;
Syntax .parse-prop : Proof .context −> string −> term;
Syntax .check-term : Proof .context −> term −> term;
Syntax .check-props: Proof .context −> term list −> term list ;
Syntax .uncheck-sort : Proof .context −> sort −> sort ;
Syntax .uncheck-typs: Proof .context −> typ list −> typ list ;
Syntax .uncheck-terms: Proof .context −> term list −> term list ;〉

In contrast to mere parsing, the following operators provide also type-checking and
internal reporting to PIDE — see below. I did not find a mechanism to address the
internal serial-numbers used for the PIDE protocol, however, rumours have it that such
a thing exists. The variants _global work on theories instead on Proof.contexts.

ML〈

Syntax .read-sort : Proof .context −> string −> sort ;
Syntax .read-typ : Proof .context −> string −> typ;
Syntax .read-term: Proof .context −> string −> term;
Syntax .read-typs: Proof .context −> string list −> typ list ;
Syntax .read-sort-global : theory −> string −> sort ;
Syntax .read-typ-global : theory −> string −> typ;
Syntax .read-term-global : theory −> string −> term;
Syntax .read-prop-global : theory −> string −> term;
〉

The following operations are concerned with the conversion of pretty-prints and, from
there, the generation of (non-layouted) strings.

ML〈

Syntax .pretty-term:Proof .context −> term −> Pretty .T ;
Syntax .pretty-typ:Proof .context −> typ −> Pretty .T ;
Syntax .pretty-sort :Proof .context −> sort −> Pretty .T ;
Syntax .pretty-classrel : Proof .context −> class list −> Pretty .T ;
Syntax .pretty-arity : Proof .context −> arity −> Pretty .T ;
Syntax .string-of-term: Proof .context −> term −> string ;
Syntax .string-of-typ: Proof .context −> typ −> string ;
Syntax .lookup-const : Syntax .syntax −> string −> string option;
〉

Note that Syntax.install_operations is a late-binding interface, i.e. a collection
of "hooks" used to resolve an apparent architectural cycle. The real work is done in
~~/src/Pure/Syntax/syntax_phases.ML
Even the parsers and type checkers stemming from the theory-structure are registered

via hooks (this can be confusing at times). Main phases of inner syntax processing, with
standard implementations of parse/unparse operations were treated this way. At the
very very end in , it sets up the entire syntax engine (the hooks) via:
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4.6.1 Example
ML〈

(∗ Recall the Arg−interface to the more high−level , more Isar−specific parsers: ∗)
Args.name : string parser ;
Args.const : {proper : bool , strict : bool} −> string context-parser ;
Args.cartouche-input : Input .source parser ;
Args.text-token : Token.T parser ;

(∗ here follows the definition of the attribute parser : ∗)
val Z = let val attribute = Parse.position Parse.name −−

Scan.optional (Parse.$$$ = |−− Parse.!!! Parse.name) ;
in (Scan.optional(Parse.$$$ , |−− (Parse.enum , attribute))) end ;

(∗ Here is the code to register the above parsers as text antiquotations into the Isabelle
Framework : ∗)

Thy-Output .antiquotation-pretty-source binding 〈theory〉 (Scan.lift (Parse.position
Args.embedded));

Thy-Output .antiquotation-raw binding 〈file〉 (Scan.lift (Parse.position Parse.path)) ;

(∗ where we have the registration of the action

(Scan.lift (Parse.position Args.cartouche-input))))

to be bound to the

name

as a whole is a system transaction that , of course, has the type

theory −> theory : ∗)
(fn name => (Thy-Output .antiquotation-pretty-source name

(Scan.lift (Parse.position Args.cartouche-input))))
: binding −> (Proof .context −> Input .source ∗ Position.T −> Pretty .T ) −> theory −>

theory ;
〉

4.7 Output: Very Low Level

For re-directing the output channels, the structure Output may be relevant:

ML〈

Output .output ; (∗ output is the structure for the hooks with the target devices. ∗)
Output .output bla-1 :;
〉

It provides a number of hooks that can be used for redirection hacks ...
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4.8 Output: LaTeX

The heart of the LaTeX generator is to be found in the structure Thy_Output. This is
an own parsing and writing process, with the risc that a parsed file in the IDE parsing
process can not be parsed for the LaTeX Generator. The reason is twofold:

1. The LaTeX Generator makes a rough attempt to mimic the LayOut if the thy-file;
thus, its spacing is relevant.

2. there is a special bracket (∗<∗) ... (∗>∗) that allows to specify input that is
checked by Isabelle, but excluded from the LaTeX generator (this is handled in
an own sub-parser called Document_Source.improper where also other forms of
comment parsers are provided.

Since Isabelle2018, an own AST is provided for the LaTeX syntax, analogously to
Pretty. Key functions of this structure Latex are:

ML〈

local

open Latex

type dummy = text

val - = string : string −> text ;
val - = text : string ∗ Position.T −> text

val - = output-text : text list −> string
val - = output-positions: Position.T −> text list −> string
val - = output-name: string −> string
val - = output-ascii : string −> string
val - = output-symbols: Symbol .symbol list −> string

val - = begin-delim: string −> string
val - = end-delim: string −> string
val - = begin-tag : string −> string
val - = end-tag : string −> string
val - = environment-block : string −> text list −> text
val - = environment : string −> string −> string

val - = block : text list −> text
val - = enclose-body : string −> string −> text list −> text list
val - = enclose-block : string −> string −> text list −> text

in val - = ()
end ;

Latex .output-ascii ;
Latex .environment isa bg ;
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Latex .output-ascii a-b:c ′é;
(∗ Note: ∗)
space-implode sd &e sf dfg [qs,er ,alpa];

〉

Here is an abstract of the main interface to Thy_Output:

ML〈

output-document : Proof .context −> {markdown: bool} −> Input .source −> Latex .text list ;
output-token: Proof .context −> Token.T −> Latex .text list ;
output-source: Proof .context −> string −> Latex .text list ;
present-thy : Options.T −> theory −> segment list −> Latex .text list ;

isabelle: Proof .context −> Latex .text list −> Latex .text ;

isabelle-typewriter : Proof .context −> Latex .text list −> Latex .text ;

typewriter : Proof .context −> string −> Latex .text ;

verbatim: Proof .context −> string −> Latex .text ;

source: Proof .context −> {embedded : bool} −> Token.src −> Latex .text ;

pretty : Proof .context −> Pretty .T −> Latex .text ;
pretty-source: Proof .context −> {embedded : bool} −> Token.src −> Pretty .T −> Latex .text ;
pretty-items: Proof .context −> Pretty .T list −> Latex .text ;
pretty-items-source: Proof .context −> {embedded : bool} −> Token.src −> Pretty .T list −>
Latex .text ;

(∗ finally a number of antiquotation registries : ∗)
antiquotation-pretty :

binding −> ′a context-parser −> (Proof .context −> ′a −> Pretty .T ) −> theory −>
theory ;
antiquotation-pretty-source:
binding −> ′a context-parser −> (Proof .context −> ′a −> Pretty .T ) −> theory −> theory ;

antiquotation-raw :
binding −> ′a context-parser −> (Proof .context −> ′a −> Latex .text) −> theory −>

theory ;
antiquotation-verbatim:

binding −> ′a context-parser −> (Proof .context −> ′a −> string) −> theory −> theory ;

〉

Thus, Syntax_Phases does the actual work of markup generation, including markup
generation and generation of reports. Look at the following snippet:

ML〈

(∗
fun check-typs ctxt raw-tys =
let
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val (sorting-report , tys) = Proof-Context .prepare-sortsT ctxt raw-tys;
val - = if Context-Position.is-visible ctxt then Output .report sorting-report else ();

in
tys
|> apply-typ-check ctxt
|> Term-Sharing .typs (Proof-Context .theory-of ctxt)

end ;

which is the real implementation behind Syntax .check-typ

or :

fun check-terms ctxt raw-ts =
let
val (sorting-report , raw-ts ′) = Proof-Context .prepare-sorts ctxt raw-ts;
val (ts, ps) = Type-Infer-Context .prepare-positions ctxt raw-ts ′;

val tys = map (Logic.mk-type o snd) ps;
val (ts ′, tys ′) = ts @ tys
|> apply-term-check ctxt
|> chop (length ts);

val typing-report =
fold2 (fn (pos, -) => fn ty =>
if Position.is-reported pos then
cons (Position.reported-text pos Markup.typing

(Syntax .string-of-typ ctxt (Logic.dest-type ty)))
else I ) ps tys ′ [];

val - =
if Context-Position.is-visible ctxt then Output .report (sorting-report @ typing-report)
else ();

in Term-Sharing .terms (Proof-Context .theory-of ctxt) ts ′ end ;

which is the real implementation behind Syntax .check-term

As one can see, check−routines internally generate the markup.

∗)
〉

4.9 Inner Syntax Cartouches

The cascade-syntax principle underlying recent isabelle versions requires a particular
mechanism, called "cartouche" by Makarius who was influenced by French Wine and
French culture when designing this.
When parsing terms or types (via the Earley Parser), a standard mechanism for calling

another parser inside the current process is needed that is bound to the (〈)〉 ... 〈(〉)
paranthesis’.
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The following example — drawn from the Isabelle/DOF implementation — allows to
parse UTF8 - Unicode strings as alternative to ′′abc ′′ HOL-strings.

ML〈— Dynamic setup of inner syntax cartouche

(∗ Author : Frédéric Tuong , Université Paris−Saclay ∗)
(∗ Title: HOL/ex/Cartouche-Examples.thy

Author : Makarius ∗)
local
fun mk-char (f-char , f-cons, -) (s, -) accu =

fold
(fn c => fn (accu, l) =>

(f-char c accu, f-cons c l))
(rev (map Char .ord (String .explode s)))
accu;

fun mk-string (-, -, f-nil) accu [] = (accu, f-nil)
| mk-string f accu (s :: ss) = mk-char f s (mk-string f accu ss);

in
fun string-tr f f-mk accu content args =
let fun err () = raise TERM (string-tr , args) in

(case args of
[(c as Const (@{syntax-const -constrain}, -)) $ Free (s, -) $ p] =>

(case Term-Position.decode-position p of
SOME (pos, -) => c $ f (mk-string f-mk accu (content (s, pos))) $ p
| NONE => err ())

| - => err ())
end ;

end ;
〉

syntax -cartouche-string :: cartouche-position ⇒ - (-)

ML〈

structure Cartouche-Grammar = struct
fun list-comb-mk cst n c = list-comb (Syntax .const cst , String-Syntax .mk-bits-syntax n c)
val nil1 = Syntax .const @{const-syntax String .empty-literal}
fun cons1 c l = list-comb-mk @{const-syntax String .Literal} 7 c $ l

val default =
[ ( char list
, ( Const (@{const-syntax Nil}, @{typ char list})
, fn c => fn l => Syntax .const @{const-syntax Cons} $ list-comb-mk @{const-syntax

Char} 8 c $ l
, snd))

, ( String .literal , (nil1 , cons1 , snd))]
end
〉
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ML〈

fun parse-translation-cartouche binding l f-integer accu =
let val cartouche-type = Attrib.setup-config-string binding (K (fst (hd l)))

(∗ if there is no type specified , by default we set the first element
to be the default type of cartouches ∗) in

fn ctxt =>
let val cart-type = Config .get ctxt cartouche-type in
case List .find (fn (s, -) => s = cart-type) l of
NONE => error (Unregistered return type for the cartouche: \ ^ cart-type ^ \)
| SOME (-, (nil0 , cons, f )) =>

string-tr f (f-integer , cons, nil0 ) accu (Symbol-Pos.cartouche-content o
Symbol-Pos.explode)

end
end

〉

The following registration of this cartouche for strings is fails because it has already
been done in the surrounding Isabelle/DOF environment...

term 〈A =⇒ B 〉 = ′′′′
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5 Conclusion

This interactive Isabelle Programming Cook-Book represents my current way to view
and explain Isabelle programming API’s to students and collaborators. It differs from the
reference manual in some places on purpose, since I believe that a lot of internal Isabelle
API’s need a more conceptual view on what is happening (even if this conceptual view is
at times over-abstracting a little). It is written in Isabelle/DOF and conceived as "living
document" (a term that I owe Simon Foster), i.e. as hypertext-heavy text making direct
references to the Isabelle API’s which were checked whenever this document is re-visited
in Isabelle/jEdit.
All hints and contributions of collegues and collaborators are greatly welcomed; all

errors and the roughness of this presentation is entirely my fault.

53





Bibliography

[1] B. Barras, L. D. C. González-Huesca, H. Herbelin, Y. Régis-Gianas, E. Tassi,
M. Wenzel, and B. Wolff. Pervasive parallelism in highly-trustable interactive the-
orem proving systems. volume 7961 of Lecture Notes in Computer Science, pages
359–363. Springer, 2013. ISBN 978-3-642-39319-8. URL https://doi.org/10.1007/
978-3-642-39320-4_29.

[2] G. Hutton. Higher-order functions for parsing. J. Funct. Program., 2(3):323–343,
1992. URL https://doi.org/10.1017/S0956796800000411.

[3] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002. ISBN 3-540-43376-7. URL https://doi.org/10.1007/3-540-45949-9.

[4] M. Wenzel. Asynchronous user interaction and tool integration in isabelle/pide. vol-
ume 8558 of Lecture Notes in Computer Science, pages 515–530. Springer, 2014. ISBN
978-3-319-08969-0. URL https://doi.org/10.1007/978-3-319-08970-6_33.

[5] M. Wenzel. System description: Isabelle/jedit in 2014. volume 167 of EPTCS, pages
84–94, 2014. URL https://doi.org/10.4204/EPTCS.167.10.

55

https://doi.org/10.1007/978-3-642-39320-4_29
https://doi.org/10.1007/978-3-642-39320-4_29
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.4204/EPTCS.167.10

	1 Introduction
	2 SML and Fundamental SML libraries
	2.1 ML, Text and Antiquotations
	2.2 The Isabelle/Pure bootstrap
	2.3 Elements of the SML library

	3 Prover Architecture
	3.1 The Nano-Kernel: Contexts, (Theory)-Contexts, (Proof)-Contexts
	3.1.1 Mechanism 1 : Core Interface.
	3.1.2 Mechanism 2 : Extending the Global Context  by User Data

	3.2 The LCF-Kernel: terms, types, theories, proof_contexts, thms
	3.2.1 Terms and Types
	3.2.2 Type-Certification (=checking that a type annotation is consistent)
	3.2.3 Type-Inference (= inferring consistent type information if possible)
	3.2.4 Constructing Terms without Type-Inference
	3.2.5 Theories and the Signature API
	3.2.6 Thm's and the LCF-Style, "Mikro"-Kernel
	3.2.7 Theories

	3.3 Advanced Specification Constructs
	3.3.1 Example

	3.4 Backward Proofs: Tactics, Tacticals and Goal-States
	3.5 The classical goal package
	3.5.1 Proof Example

	3.6 The Isar Engine
	3.6.1 Transaction Management in the Isar-Engine : The Toplevel
	3.6.2 Configuration flags of fixed type in the Isar-engine.


	4 Front-End
	4.1 Basics: string, bstring and xstring
	4.2 Positions
	4.3 Markup and Low-level Markup Reporting
	4.3.1 A simple Example
	4.3.2 A Slightly more Complex Example
	4.3.3 Environment Structured Reporting

	4.4 The System Lexer and Token Issues
	4.4.1 Tokens
	4.4.2 A Lexer Configuration Example

	4.5 Combinator Parsing
	4.5.1 Advanced Parser Library
	4.5.2 Bindings
	4.5.3 Input streams.

	4.6 Term Parsing
	4.6.1 Example

	4.7 Output: Very Low Level
	4.8 Output: LaTeX
	4.9 Inner Syntax Cartouches

	5 Conclusion

