UNIVERSITE f un

L3 Mention Informatigue
Parcours Informatique et MIAGE

Genie Logiciel Avance -
Advanced Software
Engineering

From Analysis to Design

Burkhart Wolff
wolff@lri.fr



Plan of the Chapter

0 Introduction: The Role of Design
0 Objectives of the Design Phase
> capturing non-functional requirements
> refining functional aspects
> linking decisions, tracing requirements
0 Techniques

2018-2019 B. Wolff - GL A - Ana2Design



The Role of the Design Phase

Q  Transition from an analysis model Yo a collection
of more detailed, more executable, more explicit models

QO  Shift of Focus

> Analysis: Understanding the Requirements Documents
(Cahier de Charge)

> Design: Understanding the Implementation
and the specific constraints resulting from
technology choices
(programming language, frameworks, libraries,
protocols, ... )

0 Producing more refined UML models dor documentation

2018-2019 B. Wolff - GL A - Ana2Design 3




The Objectives of Design (1)

> Taking « non-functional » requirements into account :
= legal constraints, technical norms
= security
= performance
= robustness
= synchronization
= Adding technical classes and methods

> Instantiating architectural schemata
(design patterns, N-tier architectures)

> Reuse of «Components Off The Shelf » (COTS)

> for classes and packages
# interface code might be necessary

% component tests to provide !
2018-2019 B. Wolff - GL A - Ana2Design



The Objectives of Design (2)

Implementing Class/Use-Case/Sequence/

State-Chart/Architecture Diagrams

>

>

>

>

Introducing algorithmic aspects

Refining/detailing component interactions (interfaces)
Choice classes and methods implementing interactions
Choice of implementation language/technology

Coping with limitations:

® Inheritance ? Simple or multiple ?

< Visibility rules ?

& Exceptions

<« Libraries ? Number Representations
(integer? longint? multi-precision?)

2018-2019 B. Wolff - GL A - Ana2Design



>

Refining Class Diagrams

Adding technical classes and methods

= arithmetic operations (int, longint, multi-precision ints ?)

= date representations

= classes for protocols (streams ? sockets ? VPN ? web-protocols ?)

= classes for standard solutions
(package for credit-card payment, ...)

= synchronization protocols for data
in distributed systems

= Reuse of «Components Off The Shelf » (COTS)

= additional classes and operations for interface code
(example: "communication layer” abstracting "POSIX", ...
“data-base layer” abstracting "mySql”, ...)

= Provide tests for interfaces of COTS components
to understand their behaviour in corner cases

2018-2019 B. Wolff - GL A - Ana2Design 6



The Objectives of Design (3)

>

>

>

Systematics:

Documenting the design choices

Tracing choices wrt. requirements / cahier de charge (doors)
Checking the coherence of choices,

trying to keep the design simple

Writing design document, linking to analyse documents

Classes of Analysis -> Design Classes
Associations of Analysis -> Attributes, methods, tables ?
Operations of Analysis -> Methods in design classes

2018-2019 B. Wolff - GL A - Ana2Design



Context: Norms in Software Engineering

Amusing Book: Raymonds Cathedral-Bazaar

Metaphor for (Open-Source) Processes:

> ... The Cathedral model, in which
source code is available with each
software release, but code developed
between releases is restricted to an

exclusive group of software developersy,4

GNU Emacs and GCC are presented
as examples.

> ... The Bazaar model, in which the
code is developed over the Internet

in view of the public. Raymond cre-

L
T o f b fan § boad sboai Bcbapolopy Sadlaw "‘5'*
it dacilic atioers thot po v derpond fropraocb S WL
— Ly hamaald ‘E“E!-
i,

MUSINGS ON LINUX AND OPEN SOURCE
Ef AN ACCIDENTAL REVOLUTIONARY

WTTH & FOREAED B BSE YOUINE, CHARMAN £ CEO OF RED HT, 18

dits Linus Torvalds, leader of the Linux kernel project, as

the inventor of this process.

2018-2019 B. Wolff - GL A - Ana2Design


http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/GNU_Emacs
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Linus_Torvalds

Norms for Cathedral Style

Many attempts to control development processes and

software products by standards (norms)

>

>

>

>

Attempts to assure and certify software quality.

Most serious and relevant (in France):
DO 178B (Avionics)
ISO/IEC/IEEE 29119 (Software Test)

ISO/IEC/IEEE 15408 «Common Criteria» for computer

security certification requiring formal models as well
as proof techniques for EAL 6 and EAL 7.

2018-2019 B. Wolff - GL A - Ana2Design



Domain Specific Safety Standards

0 The following standards use SIL as a measure of

reliability and/or risk reduction

>  ANSI/ISA S84 (Functional safety of safety instrumented systems for the
process industry sector)

> |EC EN 61508 (Functional safety of electrical/electronic/programmable
electronic safety related systems)

> |EC 61511 (Safety instrumented systems for the process industry
sector)

IEC 61513 (Nuclear Industry)
IEC 62061 (Safety of machinery)

EN 50128 (Railway applications - Software for railway control and
protection)

> EN 50129 (Railway applications - Safety related electronic systems for
signalling

> EN 50402 (Fixed gas detection systems)

2018-2019 B. Wolff - GL A - Ana2Design 10


http://en.wikipedia.org/wiki/IEC_61508
http://en.wikipedia.org/wiki/IEC_61511

Domain Specific Safety Standards

0 Hard «digital» requirements arise:

The international standard on functional safety for software
development of road vehicles 1SO26262-6 requires the

freedom from interference by software partitioning

o Thus it is aimed at providing a trusted embedded real-time operating
system, which is oriented to ECUs (Electronic Control Units) in
automotive industry. (avionics similarly)

2018-2019 B. Wolff - GL A - Ana2Design 11



Security vs. Architecture : Consequences

QA current industrial challenge resulting

from the requirement «Freedom of interference»

> Real-time Operating System Kernels

assuring not only memory protection, but

« Non-interference »

(PikeOS, Sel4, INTEGRITY-178B, RTOS Wind River Systems... )

Airbag

Linux/
Audio
Entertainmt

Engine
Control

Airbag

Linux/
Audio
Entertain

Engine
Control

2018-2019

B. Wolff - GL A - Ana2Design

12




Robustness vs. Efficiency : Consequences

o  Communication between components
> Pipe-Communication
(flexible, compatible with dynamic process creation)
> Shared-Memory Communication
(fast, but rigid wrt. component-architecture)
> message-passing Browser
(very fast, but only for small messages) Snslie
> synchronous/asynchronous “mailboxes” (eg. Webkit)
: \p€S,  Browser
Linux/ Audio- Linux/ i | Task 1
Audio Dri Audio
Entertainmt e Driver Browser
\ Task 1
Task 1
2018-2019 B. Wolff - GL A - Ana2Design 13




Example Design Patterns : « Observer »

Objective: Maintain coherence of different « views »
of a piece of data;

Motivation: decoupling management of an objet and its use in
different components

- an observer can observe several objects ;
this list can dynamically change

- an observed object can be target of several observers;
this list can dynamically change

Collaborations:
- an observer registers for the observed object

- the observed object notifies his registerd observers
- the observer can store specificinformation in the observed object

2018-2019 B. Wolff - GL A - Ana2Design 14




Example Design Patterns : « Observer »

Subject
observers | Observer
attach(observer) * | update()
detach(observer)
notify() ConcreteObserver
. ==~
ConcreteSubject W update)
k
getState() this is a aggregation in practice
setState()

2 Directly impemented in Java :
interface observer Where class observable is to derive ..

2 Adding « controlers » (interactions) gives MVC.

2018-2019 B. Wolff - GL A - Ana2Design 15



>

Refining Class Diagrams

Adding technical classes and methods

= arithmetic operations (int, longint, multi-precision ints ?)

= date representations

= classes for protocols (streams ? sockets ? VPN ? web-protocols ?)

= classes for standard solutions
(package for credit-card payment, ...)

= synchronization protocols for data
in distributed systems

= Reuse of «Components Off The Shelf » (COTS)

= additional classes and operations for interface code
(example: "communication layer” abstracting "POSIX", ...
“data-base layer” abstracting "mySql”, ...)

= Provide tests for interfaces of COTS components
to understand their behaviour in corner cases

2018-2019 B. Wolff - GL A - Ana2Design 16



Refining Class Diagrams

> Fixing (Arithmetic) implementation types

Checking2
3 max_overdraft: Integer
=) overdraft_interest: Integer

2018-2019 B. Wolff - GL A - Ana2Design

17



Refining Class Diagrams

> Fixing (Arithmetic) implementation types

Checking2
3 max_overdraft: Integer

=) overdraft_interest: Integer

Checking
=3 max_overdraft: FPN
=4 overdraft_interest: FPN

v

fixed point numbers precision in cents / A
penny. Rounding errors during calculations

should be in favour of the bank.

#

L]
#

FPN
_+_(FPN): FPN
_-_(FPN, FPN): FPN
_*_(FPN): FPN

exchange_from_to(Currency, Currency): FPN



>

Refining Class Diagrams

Totalizing operation contracts with exceptions

pre : cond k
A post :
#,m1(): Class' cond'(result)

2018-2019 B. Wolff - GL A - Ana2Design

19



Refining Class Diagrams

> Totalizing operation contracts with exceptions

pre : cond L
A post :
#.m1(): Class cond'(result)

v pre : True h

A post : if cond then result.exception = ...

ResultNExn « Enumeration »
=, exception: Exceptions Exceptions
=, result: Class2 =iexn1

=1 exn2
2018-2019 — o3

=lnone



Refining Class Diagrams

»  Expressing Inheritance
" .. because the target language doesn't support it
" . because the instance shouldn't loose its identity
when changes

Person

L

Employe Director

2018-2019 B. Wolff - GL A - Ana2Design



>

Refining Class Diagrams

Expressing Inheritance
" .. because the target language doesn't support it
" . because the instance shouldn't loose its identity
when changes

Person
Person
Employe Director Employe Ext Director Ext

2018-2019 B. Wolff - GL A - Ana2Design

22



>

Refining Class Diagrams

Expressing Inheritance
" .. because the target language doesn't support it
" . because the instance shouldn't loose its identity
when changes

Person
Person
Employe Director Characteristic
Employe Director

2018-2019 B. Wolff - GL A - Anaz 23



>

Refining Class Diagrams

Implementing Associations
= .. depends on cardinality (1? *?21.57?)
= . depends on type (set ? multiset ? list ? )

2018-2019 B. Wolff - GL A - Ana2Design

24



>

Refining Class Diagrams

Implementing Associations
= .. depends on cardinality (1? *?21.57?)
= . depends on type (set ? multiset ? list ? )
= ... as mutually linked lists (or arrays) of references

2018-2019 B. Wolff - GL A - Ana2Design

25



Refining Class Diagrams

> Implementing Associations
= .. depends on cardinality (1? *?21.57?)
= . depends on type (set ? multiset ? list ? )
= ..asrecomputing methods ...

A . b B A B
a * 3 b():B List() #3b(): A List

2018-2019 B. Wolff - GL A - Ana2Design 26



Refining Class Diagrams

> Implementing Associations
= .. depends on cardinality (1? *?21.57?)
= . depends on type (set ? multiset ? list ? )
= .. as recomputing methods using an index table

A . b B A B
a * 3 b():B List() #3b(): A List

T

AB_table_elem
# 0

2018-2019 B. Wolff - GL A - Ana2Design 27



Tracing Requirements

Tracing requirements from CDC over Analysis and
Design Milestones is mandatory in many certification
processes

Technical Solution:

>

Rational Dynamic Object Oriented Requirements System (DOORS)
client—server application, with a Windows-only client and servers for
Linux, Windows, and Solaris.

There is also a web client, DOORS Web Access.

For example, it is common practice to capture verification
relationships to demonstrate that a requirement is verified

by a certain test artefact.

DOORS comes with an own modeling language allowing to

generate UML diagrams
https://www.ibm.com/de-de/marketplace/requirements-management/details

2018-2019 B. Wolff - GL A - Ana2Design 28



Tracing Requirements

O DOORS screenshot

1) DOORS Database: /Sport Trac - DOORS

ile Ednt View

Favorites Tools Change Management

Help

‘ﬁ 'CAR21 User Requirements’ current 3.3 in /Sport Trac (Formal modute) - DOORS

File Edit View

Insert Link Analyms Table Tools Dmscussions User Change Management Help
Favorites | " |, Location Spod Trac View | ABeginng v |Atlovels 7' 4 & MAT B T7TPALN
= |J DOORS Database Name Typd
- User requrements :]
=3 _NRC 22 Var Speed Proge
3 NECS09 @ Archaechaure Feer | Users shall be able to operate brakes in standard footwear.
&3 ASRM 4 CAR21 System Requiremen_ Foerd | USrs shall be able to operate brakes in 3 inch high heeled shoes without the
#02 Ammc need to remove the foot from the floor
{ 22 BAE Systems il CAR21 User Roquirements  Foer .
+ 23 Cardhotach Exarrple i CAR21 Varficaton Methods  Foem 2.3.8.1.2 Visibility
# 2 Chandiers i 1 Swucture Fol | 2,3.8.1.2.1 Daylight
22 creswon il Class List Foer
§;1DODRS¥- Webnar LM Foent Users shal have maxamum dayight vsbity from within the vehide.
# 22 DOORS Trauning Webmar | i Code Lissng Feem 238122 @Q&ﬂm&
+ 2 ETRS - Harmony ITSW b F pe 5 . - — - ———
L O Frealind Acplicuton gis;:::‘é:m Fom Ez: L) /Sport Trac/CAR21 User Requirements Object 359 Columns and Attributes - DOORS E=RRCR =5 |
: g f;:lm 2 MS Pioect Resource Fom | speed| MIMJ Types
i 22 Merfin il ObjectToam Forlll 2341 [ Base type Min valse Max value -
#2 Nawy 8 Vau Ui Sele fom Lights ADT Enumeérason
+ & NRC il Use Case Template Foer
+ 23 OWASP i@ Use Cases Foer 2.3. Boolean Eaumaraion
+ 23 Procurement Management i Use Scenano Formt | Userd BooleanWimhColor Enumesaton .
4 23 Requirements - DOE Contractor Type Enumesaton
+ &3 Requirements - DOE 1 2.3. Created Thru Enumeration
+ 23 Requwements - Lead Lab Userd Date Date
+ 23 Sandbox 2.3 Faawre Enumesaton
i &> Spont Trac : Funcson Enumaerason
+ 3 SpeaTrac User High Medwm Low Enumecation
+ 33 Theoa View \
+ 23 Tool Compamon 23 P‘lgl_urt E .
+ 23 Tranafer Data Useryg e :
23 USAF the Porcentage Intoger 0 o0
Real Real L
wi Ranwarmant Ernmarahnn
[ New. ][ mpon. || Copy. €ou
4
il
2018-2019 B. Wolff - GL A - Ana2Design 29



Conclusion

A Refinement of the Analysis docs

0 Objectives of the Design Phase
> capturing non-functional requirements
> refining functional aspects
> linking decisions, tracing requirements

0 Techniques numerous, and depend on
chosen target languages / technologies

2018-2019 B. Wolff - GL A - Ana2Design 30



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

