
L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software

Engineering
From Analysis to Design

Burkhart Wolff
wolff@lri.fr

9/8/20 B. Wolff - GLA - From Analysis to Design

Plan of the Chapter

❑ Introduction: The Role of Design
❑ Objectives of the Design Phase

➢ capturing non-functional requirements
➢ refining functional aspects
➢ linking decisions, tracing requirements

❑ Techniques

9/8/20 B. Wolff - GLA - From Analysis to Design

The Role of the Design Phase

❑ Transition from an analysis model to a collection
of more detailed, more executable, more explicit models

❑ Shift of Focus
➢ Analysis: Understanding the Requirements Documents

(Cahier de Charge)
➢ Design: Understanding the Implementation

and the specific constraints resulting from
technology choices
(programming language, frameworks, libraries,
 protocols, ...)

❑ Producing more refined UML models dor documentation

9/8/20 B. Wolff - GLA - From Analysis to Design

The Objectives of Design (1)

4

➢ Taking « non-functional » requirements into account :
■ legal constraints, technical norms
■ security
■ performance
■ robustness
■ synchronization

☞ Adding technical classes and methods
➢ Instantiating architectural schemata

(design patterns, N-tier architectures)
➢ Reuse of «Components Off The Shelf » (COTS)
➢ for classes and packages

 ☞ interface code might be necessary

 ☞ component tests to provide !

9/8/20 B. Wolff - GLA - From Analysis to Design

The Objectives of Design (2)

❑ Implementing Class/Use-Case/Sequence/
State-Chart/Architecture Diagrams
➢ Introducing algorithmic aspects
➢ Refining/detailing component interactions (interfaces)
➢ Choice classes and methods implementing interactions
➢ Choice of implementation language/technology
➢ Coping with limitations:

☞ Inheritance ? Simple or multiple ?

☞ Visibility rules ?

☞ Exceptions

☞ Libraries ? Number Representations

(integer? longint? multi-precision?)

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

6

➢ Adding technical classes and methods
■ arithmetic operations (int, longint, multi-precision ints ?)
■ date representations
■ classes for protocols (streams ? sockets ? VPN ? web-protocols ?)
■ classes for standard solutions

(package for credit-card payment, ...)
■ synchronization protocols for data

in distributed systems

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

6

➢ Adding technical classes and methods
■ Reuse of «Components Off The Shelf » (COTS)
■ additional classes and operations for interface code

(example: “communication layer” abstracting “POSIX”, ...
 “data-base layer” abstracting “mySql”, ...)

■ Provide tests for interfaces of COTS components
to understand their behaviour in corner cases

9/8/20 B. Wolff - GLA - From Analysis to Design

The Objectives of Desig (3)

7

❑ Systematics:
➢ Documenting the design choices
➢ Tracing choices wrt. requirements / cahier de charge (doors)
➢ Checking the coherence of choices,

trying to keep the design simple
➢ Writing design document, linking to analyse documents

 Classes of Analysis -> Design Classes

 Associations of Analysis -> Attributes, methods, tables ?
 Operations of Analysis -> Methods in design classes

9/8/20 B. Wolff - GLA - From Analysis to Design

Context: Norms in Software Engineering

Amusing Book: Raymonds Cathedral-Bazaar
Metaphor for (Open-Source) Processes:

➢ ... The Cathedral model, in which
source code is available with each
software release, but code developed
between releases is restricted to an
exclusive group of software developers.
GNU Emacs and GCC are presented
as examples.

➢ ... The Bazaar model, in which the
code is developed over the Internet
in view of the public. Raymond cre-
dits Linus Torvalds, leader of the Linux kernel project, as the inventor of
this process.

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/GNU_Emacs
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Linus_Torvalds

9/8/20 B. Wolff - GLA - From Analysis to Design

Norms for Cathedral Style

❑ Many attempts to control development processes and
software products by standards (norms)

❑ Attempts to assure and certify software quality.
➢ Most serious and relevant (in France):
➢ DO 178B (Avionics)
➢ ISO/IEC/IEEE 29119 (Software Test)

➢ ISO/IEC/IEEE 15408 «Common Criteria» for computer security certification
requiring formal models as well
as proof techniques for EAL 6 and EAL 7.

9/8/20 B. Wolff - GLA - From Analysis to Design

Domain Specific Safety Standards

❑ The following standards use SIL as a measure of
reliability and/or risk reduction
➢ ANSI/ISA S84 (Functional safety of safety instrumented systems for the

process industry sector)
➢ IEC EN 61508 (Functional safety of electrical/electronic/programmable

electronic safety related systems)
➢ IEC 61511 (Safety instrumented systems for the process industry sector)
➢ IEC 61513 (Nuclear Industry)
➢ IEC 62061 (Safety of machinery)
➢ EN 50128 (Railway applications - Software for railway control and protection)
➢ EN 50129 (Railway applications - Safety related electronic systems for

signalling
➢ EN 50402 (Fixed gas detection systems)

http://en.wikipedia.org/wiki/IEC_61508
http://en.wikipedia.org/wiki/IEC_61511

9/8/20 B. Wolff - GLA - From Analysis to Design

Domain Specific Safety Standards

❑ Hard «digital» requirements arise:

The international standard on functional safety for software
development of road vehicles ISO26262-6 requires the

 freedom from interference by software partitioning

❑ Thus it is aimed at providing a trusted embedded real-time operating
system, which is oriented to ECUs (Electronic Control Units) in
automotive industry. (avionics similarly)

9/8/20 B. Wolff - GLA - From Analysis to Design

Security vs. Architecture : Consequences

❑ A current industrial challenge resulting
from the requirement «Freedom of interference»
➢ Real-time Operating System Kernels

assuring not only memory protection, but
« Non-interference »
(PikeOS, Sel4, INTEGRITY-178B, RTOS Wind River Systems...)

Airbag
Linux/
Audio

Entertainmt

Engine
Control

OS 1 OS 2 OS 3
Proc 1 Proc 2 Proc 3Proc 2

Cables, Cables, Cables ...

Airbag
Linux/
Audio

Entertain

Engine
Control

Multicore - Proc 1
RT-OS with Separation

simple bus

9/8/20 B. Wolff - GLA - From Analysis to Design

Browser
Engine

(eg. Webkit)

Robustness vs. Efficiency : Consequences

❑ Communication between components
➢ Pipe-Communication
(flexible, compatible with dynamic process creation)
➢ Shared-Memory Communication

(fast, but rigid wrt. component-architecture)
➢ message-passing

(very fast, but only for small messages)
➢ synchronous/asynchronous “mailboxes”

 Linux/

Audio
Entertainmt

Audio-
Driver

Memory

Linux/
Audio
Driver

Browser
Task 1

Shared

Browser
Task 1

Browser
Task 1

pipes

9/8/20 B. Wolff - GLA - From Analysis to Design

Example Design Patterns : « Observer »

❑ Objective: Maintain coherence of different « views »
of a piece of data;

❑ Motivation: decoupling management of an objet and its use in different
components
➢ an observer can observe several objects ;

this list can dynamically change
➢ an observed object can be target of several observers;

this list can dynamically change

❑ Collaborations:
➢ an observer registers for the observed object
➢ the observed object notifies his registerd observers
➢ the observer can store specificinformation in the observed object

9/8/20 B. Wolff - GLA - From Analysis to Design

Example Design Patterns : « Observer »

❑ Directly impemented in Java :
interface observer where class observable is to
derive …

❑ Adding « controlers » (interactions) gives MVC.

Observer

update()

Subject

attach(observer)

detach(observer)

notify()

ConcreteSubject

getState()

setState()

ConcreteObserver

update()

observers

*

subject

*
this is a aggregation in practice

☞

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Fixing (Arithmetic) implementation types

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

B. Wolff - GL A - Ana2Design 18

➢ Fixing (Arithmetic) implementation types

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

19

➢ Totalizing operation contracts with exceptions

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

B. Wolff - GL A - Ana2Design 20

➢ Totalizing operation contracts with exceptions

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

B. Wolff - GL A - Ana2Design

➢ Expressing Inheritance
■ ... because the target language doesn't support it
■ ... because the instance shouldn't loose its identity

when changes

2018-2019

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Expressing Inheritance
■ ... because the target language doesn't support it
■ ... because the instance shouldn't loose its identity

when changes

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Expressing Inheritance
■ ... because the target language doesn't support it
■ ... because the instance shouldn't loose its identity

when changes

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Implementing Associations
■ ... depends on cardinality (1 ? * ? 1..5 ?)
■ ... depends on type (set ? multiset ? list ?)

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Implementing Associations
■ ... depends on cardinality (1 ? * ? 1..5 ?)
■ ... depends on type (set ? multiset ? list ?)
■ ... as mutually linked lists (or arrays) of references

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Implementing Associations
■ ... depends on cardinality (1 ? * ? 1..5 ?)
■ ... depends on type (set ? multiset ? list ?)
■ ... as recomputing methods ...

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

➢ Implementing Associations
■ ... depends on cardinality (1 ? * ? 1..5 ?)
■ ... depends on type (set ? multiset ? list ?)
■ ... as recomputing methods using an index table

9/8/20 B. Wolff - GLA - From Analysis to Design

Tracing Requirements

❑ Tracing requirements from CDC over Analysis and
Design Milestones is mandatory in many certification
processes

❑ Technical Solution:
➢ Rational Dynamic Object Oriented Requirements System (DOORS)

client–server application, with a Windows-only client and servers for
Linux, Windows, and Solaris.

➢ There is also a web client, DOORS Web Access.
➢ For example, it is common practice to capture verification

relationships to demonstrate that a requirement is verified
by a certain test artefact.
➢ DOORS comes with an own modeling language allowing to
generate UML diagrams
➢ https://www.ibm.com/de-de/marketplace/requirements-management/details

9/8/20 B. Wolff - GLA - From Analysis to Design

Tracing Requirements

❑ DOORS screenshot

9/8/20 B. Wolff - GLA - From Analysis to Design

Conclusion

❑ Refinement of the Analysis docs
❑ Objectives of the Design Phase

➢ capturing non-functional requirements
➢ refining functional aspects
➢ linking decisions, tracing requirements

❑ Techniques numerous, and depend on
chosen target languages / technologies

