universite

PARIS-SACLAY

L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software
Engineering
From Analysis to Design

Burkhart Wolff
wolff@Iri.fr

Plan of the Chapter

2 Introduction: The Role of Design

2 Objectives of the Design Phase
> capturing non-functional requirements
= refining functional aspects
= linking decisions, tracing requirements

2 Techniques

9/8/20 B. Wolff - GLA - From Analysis to Design

The Role of the Design Phase

2 Transition from an analysis model o a collection
of more detailed, more executable, more explicit models

2 Shift of Focus

> Analysis: Understanding the Requirements Documents
(Cahier de Charge)

> Design: Understanding the Implementation
and the specific constraints resulting from
technology choices
(programming language, frameworks, libraries,
protocols, ...)

2 Producing more refined UML models dor documentation

9/8/20 B. Wolff - GLA - From Analysis to Design

The Objectives of Design (1)

= Taking « non-functional » requirements into account :

legal constraints, technical norms
security

performance

robustness

synchronization

= Adding technical classes and methods

= Instantiating architectural schemata

(design patterns, N-tier architectures)
= Reuse of «Components Off The Shelf » (COTS)

> for classes and packages

= interface code might be necessary

@ component tests to provide !

9/8/20

B. Wolff - GLA - From Analysis to Design

The Objectives of Design (2)

2 Implementing Class/Use-Case/Sequence/
State-Chart/Architecture Diagrams

> Introducing algorithmic aspects
> Refining/detailing component interactions (interfaces)
= Choice classes and methods implementing interactions
> Choice of implementation language/technology
= Coping with limitations:

= Inheritance ? Simple or multiple ?

= Visibility rules ?

w Exceptions

@ Libraries ? Number Representations
(integer? longint? multi-precision?)

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

>

Adding technical classes and methods

arithmetic operations (int, longint, multi-precision ints ?)
date representations
classes for protocols (streams ? sockets ? VPN ? web-protocols ?)

classes for standard solutions
(package for credit-card payment, ...)

synchronization protocols for data
in distributed systems

9/8/20

B. Wolff - GLA - From Analysis to Design 6

Refining Class Diagrams

= Adding technical classes and methods
Reuse of «Components Off The Shelf » (COTS)

additional classes and operations for interface code
(example: "communication layer” abstracting "POSIX", ...
"data-base layer” abstracting "mySql”, ...)

Provide tests for interfaces of COTS components
to understand their behaviour in corner cases

9/8/20 B. Wolff - GLA - From Analysis to Design

The Objectives of Desig (3)

4 Systematics:
>~ Documenting the design choices
> Tracing choices wrt. requirements / cahier de charge (doors)
> Checking the coherence of choices,
trying to keep the design simple

> Writing design document, linking to analyse documents

Classes of Analysis -> Design Classes

Associations of Analysis -> Attributes, methods, tables ?
Operations of Analysis -> Methods in design classes

9/8/20 B. Wolff - GLA - From Analysis to Design

Context: Norms in Software Engineering

Amusing Book: Raymonds Cathedral-Bazaar

Metaphor for (Open-Source) Processes:

>

. The Cathedral model, in which
is available with each
software release, but code developed
between releases is restricted to an
exclusive group of
and are presented
as examples.

.. The Bazaar model, in which the
code is developed over the
in view of the public. Raymond cre-

& THE BAZAAR

MUSINGS ON LINUX AND OPEN SOURCE
BY AN ACCIDENTAL REVDLUTIOHARY

ERICS. RAYHOND

WITH A FORENORD BY 538 YOUNS, CHARMAN & CEO OF RED HAT, I8¢

dits , leader of the Linux kernel project, as the inventor of

this process.

9/8/20

B. Wolff - GLA - From Analysis to Design

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/GNU_Emacs
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Linus_Torvalds

Norms for Cathedral Style

4 Many attempts to control development processes and
software products by standards (horms)

2 Atftempts to assure and certify software quality.
= Most serious and relevant (in France):
= DO 178B (Avionics)
>~ TISO/IEC/IEEE 29119 (Software Test)

= ISO/IEC/IEEE 15408 «Common Criteria» for computer security certification

requiring formal models as well
as proof techniques for EAL 6 and EAL 7.

9/8/20 B. Wolff - GLA - From Analysis to Design

Domain Specific Safety Standards

3

The following standards use SIL as a measure of

reliability and/or risk reduction

>

ANSI/ISA S84 (Functional safety of safety instrumented systems for the
process industry sector)

(Functional safety of electrical/electronic/programmable
electronic safety related systems)

(Safety instrumented systems for the process industry sector)
IEC 61513 (Nuclear Industry)
IEC 62061 (Safety of machinery)
EN 50128 (Railway applications - Software for railway control and protection)

EN 50129 (Railway applications - Safety related electronic systems for
signalling

EN 50402 (Fixed gas detection systems)

9/8/20

B. Wolff - GLA - From Analysis to Design

http://en.wikipedia.org/wiki/IEC_61508
http://en.wikipedia.org/wiki/IEC_61511

Domain Specific Safety Standards

2 Hard «digital» requirements arise:

The international standard on functional safety for software
development of road vehicles 1ISO26262-6 requires the

freedom from interference by software partitioning

2 Thus itis aimed at providing a trusted embedded real-time operating
system, which is oriented to ECUs (Electronic Control Units) in
automotive industry. (avionics similarly)

9/8/20 B. Wolff - GLA - From Analysis to Design

Security vs. Architecture : Consequences

2 A current industrial challenge resulting
from the requirement «Freedom of interference»

> Real-time Operating System Kernels
assuring not only memory protection, but

« Non-interference »
(PikeOS, Sel4, INTEGRITY-178B, RTOS Wind River Systems...)

Linux/ : Linux/ :
Airbag Audio Engénel Airbag Audio Engénel
Entertainmt elire Entertain alnere

9/8/20 B. Wolff - GLA - From Analysis to Design

Robustness vs. Efficiency : Consequences

2 Communication between components
> Pipe-Communication
(flexible, compatible with dynamic process creation)
= Shared-Memory Communication
(fast, but rigid wrt. component-architecture)
> message-passing Browser
(very fast, but only for small messages) Engine
. ; (eg. Webkit)
= synchronous/asynchronous “mailboxes
: \p€51ll Browser
Linux/ Audio- Linux/ ="+ Task 1
Audio Dri Audio |
Entertainmt Il Driver ‘\:* Browser
A | \ Task 1
Task 1
9/8/20 B. Wolff - GLA - From Analysis to Design

Example Design Patterns : « Observer »

2 Objective: Maintain coherence of different « views »
of a piece of data;

2 Motivation: decoupling management of an objet and its use in different
components

> an observer can observe several objects ;
this list can dynamically change

> an observed object can be target of several observers;
this list can dynamically change

2 Collaborations:

= anobserver registers for the observed object
= the observed object notifies his registerd observers

> the observer can store specificinformation in the observed object

9/8/20 B. Wolff - GLA - From Analysis to Design

Example Design Patterns : « Observer »

Directhyeampemented in Java-
] observers | Observer

| .
hbserver WNh u]r)'szltg(l)ass observable IS To

attach(observer)

d%gtla\é}?(o‘l')'server)

Adding « controlers » (infanactimns).gives MVC.

19N\ =}

ConcreteSubject Subjya;date()

%k

getState() this is a aggregation in practice

setState()

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

= Fixing (Arithmetic) implementation types

Checking2
(=, max_overdraft: Integer
(=; overdraft_interest: Integer

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

= Fixing (Arithmetic) implementation types

Checking2
(=3 max_overdraft: Integer
i=j overdraft_interest: Integer

Checking
=5 max_overdraft: FPN
i=j overdraft_interest: FPN

v

fixed point numbers precision in cents / A
penny. Rounding errors during calculations

should be in favour of the bank.

FPN
@ _+_(FPN): FPN

- @ _-_(FPN, FPN): FPN

#. _"_(FPN): FPN
{#; exchange_from_to(Currency, Currency): FPN

Refining Class Diagrams

= Totalizing operation contracts with exceptions

pre : cond A
A post :
#.m1(): Class cond'(result)

9/8/20 B. Wolff - GLA - From Analysis to Design

19

Refining Class Diagrams

= Totalizing operation contracts with exceptions

pre : cond A
A post :
#,m1(): Class cond'(result)

v pre : True A

A post : if cond then result.exception = ...

u Xn P

ResultNExn « Enumeration »
=, exception: Exceptions Exceptions
4 result: Class2 = exn1
=1 exn2
9/8/20 =1 exn3

=none

Refining Class Diagrams

= Expressing Inheritance
= ... because the target language doesn't support it
- ... because the instance shouldn't loose its identity

when changes

Person

"

Employe Director

908/22019 B. WoBf WGIfA — Gtoin- Ared e sigDesign

Refining Class Diagrams

= Expressing Inheritance
... because the target language doesn't support it
... because the instance shouldn't loose its identity

when changes

Person
Person

" [S

Employe Director Employe Ext Director Ext

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

= Expressing Inheritance
... because the target language doesn't support it
... because the instance shouldn't loose its identity
when changes

Person
Person

— T

Employe Director Characteristic

A—

Employe Director

9/8/20 B. Wolff - GLA - From Analy

Refining Class Diagrams

= Implementing Associations
... depends on cardinality (1?2 *? 1.5 ?)

... depends on type (set ? multiset ? list ?)

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

= Implementing Associations
... depends on cardinality (1?2 *? 1.5 ?)
... depends on type (set ? multiset ? list ?)

... as mutually linked lists (or arrays) of references

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

= Implementing Associations
... depends on cardinality (1? *?2 1.5 ?)
... depends on type (set ? multiset ? list ?)

... as recomputing methods ...

A . b B A B
a . 43 b():B List() 4 b(): A List

9/8/20 B. Wolff - GLA - From Analysis to Design

Refining Class Diagrams

= Implementing Associations
= ...depends on cardinality (1?*?1.57?)
= ...depends on type (set ? multiset ? list ?)

= ... as recomputing methods using an index table

A . b B A B
a * &2 b():B List() 3 b(): AList
AB_table_elem
0

9/8/20 B. Wolff - GLA - From Analysis to Design

Tracing Requirements

2 Tracing requirements from CDC over Analysis and
Design Milestones is mandatory in many certification
processes

2 Technical Solution:

= Rational Dynamic Object Oriented Requirements System (DOORS)
client-server application, with a Windows-only client and servers for
Linux, Windows, and Solaris.

> There is also a web client, DOORS Web Access.

> For example, it is common practice to capture verification
relationships to demonstrate that a requirement is verified

by a certain test artefact.

= DOORS comes with an own modeling language allowing to

generate UML diagrams

= https://www.ibm.com/de-de/marketplace/requirements-management/details

9/8/20 B. Wolff - GLA - From Analysis to Design

Tracing Requirements

2 DOORS screenshot

D DOORS Database: /Sport Trac - DOORS i8] 'CAR21 User Requirements’ current 3.3 in /Sport Trac (Formal modute) - DOORS
fle Edit View Favorites Tools 'Change Management Help File Edit View Insert Link Analysis Table Tools Discussions User Change Management Help
Favorites | . 11 Location /Spoa Trac View A Beginng vl (Allovels ”! & B | AT <E 7 LA
= |1 DOORS Database Nome Type S l
=83 NRC 22 Var Speed Progd Userrequs
(2 NECS0 @ Archaectaure Foenl | Users shall be able to operate brakes in standard footwear.
‘g:i‘:ﬂ 4 CAR21 System Requiremen Feeri | Users shall be able to operate brakes In 3 Inch high heeled shoes without the
£ 3 BAE Systoms il CARZ1 User Roquirements Foen | Need to remove the foot from the floor.
423 Cardiotach Exarple 1 CAR21 Verficaton Methods Foert | 2.3.8.1.2 Visibility
2 Chandiers & CI Svucture Feerl | 2.3.8.1.2.1 Daylight
+ 23 cresvon i Class Ust Foem
+ 23 DOORS Training Webinar i CM Modute Foed | Users shal have maximum daylght vesbity from wthin the vehde.
22 DOORS Traning Webmar 1 || 3 Code Lissng Foent 2.3.%&& %tﬁnﬁ_
+ @ ETRS - Harmony ITSW i Enhancements Forrd | Users/ i). =T Rp—— P L o
: 1) /Sport Trac/CAR21 User Requirements :Object 359 Columns and Attributes - DOORS
+ g ;mwm 8 MS Project Car plan Form | Users 9 K
: .y ope 2 MS Progect Resource Foenl | speed ,%IMJ ypes
+ 23 Merin i OvjectTeam Foml | 234! [Name Baso hype Min vaiue Max value -
32 Navy i Tou LML Sube Lo Lights ADY Enumerason i
+ 23 NRC il Use Case Template Foen ¢
i 22 OWASP @ Use Cases Foerl | 2.3. Boolean numeraton
+ 23 Procurement Management i Use Scenano Foeml | Userq | Booh.::ov'v:Colo« E e z|
+ 23 Requwements - DOE | Cont ype numerason !
22 Requirements - DOE 1 2.3. || Croated Thu Erumerason |
+ 23 Requiements - Lead Lab Userd Date Date |
+ 23 Sandbox 2.3 Foatre Enumerason :
¥ & Spont Trac 1l Funcson Enumerason
+ ; ?:'on T\;::,‘ Userg || HighMedwm Low Erumerason
¥ 08
' & Tool Compadson = PT L-s'l Emmc'nbon
+ 23 TansferData Userq |
¥ 22 USAF the :mlmpo ;log'.v 0 100
U @2 0al
wi Rarimamant Enoumarannn >
| [Cew) Comwon] [Comn- e
‘
i i

9/8/20

B. Wolff - GLA - From Analysis to Design

Conclusion

2 Refinement of the Analysis docs

2 Objectives of the Design Phase
> capturing non-functional requirements
= refining functional aspects
= linking decisions, tracing requirements

2 Techniques numerous, and depend on
chosen target languages / technologies

9/8/20 B. Wolff - GLA - From Analysis to Design

